B5: ENIGMA18

Nancy Anderson Amelia Lobo **Tanisha Sethi**

APPLICATION

• Modernized implementation of WWII Enigma machine

USE CASE

- Educate about **historical cryptography** through hands-on encryption and decryption
- For use in museums and classrooms (**open-source**)

EXISTING SOLUTIONS

• Electromechanical (historical), software-emulators (not historically accurate)

Viewing of CMU's 3-rotor Enigma machine, Courtesy of Sam Lemley, Curator of Special Collections at CMU Libraries

Quantitative Use-Case Requirements

USE-CASE	DESIGN REQUIREMENT
I/O to represent all 26 letters of alphabet	• 26 LEDs and 26 keys
Compact size to be held in two hands	• Fit on DE0-Nano (49mm x 75.2 mm) header pins
Must have 1,054,560 combinations (number of configs for 3-rotor machine)	 Configurable rotors (pick 3 of 5) Configurable rotor starting position
Rotor (Pick 3 of 5 Rotors): $\frac{5!}{(5-3)!}$ ways	 Configurable ring position
$ m Starting \ Config \ (1 \ of \ 26 \ for \ 3 \ rotors): \ 26^3 = 17,576 \ ways$	
${\rm Total\ Combinations:\ 60*17, 576=1, 054, 560\ ways}$	

Quantitative Use-Case Requirements

USE-CASE	DESIGN REQUIREMENT
Hold complete encodings of 5 rotors on peripheral storage unit (configurability)	 Peripheral storage unit should hold 130B of information (5 * 26B)
Simulate "instantaneous" rotor rotation under human reaction time of 250ms	 FPGA must read 130B in <= 250ms SPI bandwidth > 4.16 Kbps
Power consumption only requires 1 standard wall outlet	 FPGA 5V mini-USB wall adapter LEDs & 7-seg displays operate at 3.3V from GPIO pins
100% of computation and interfacing should be done on FPGA	 Must use <= 70 GPIO pins (not including GND, 3.3V, 5V)

System Specification

- **Potentiometer (3):** Handles setting rotor number, rotor starting, ring position via FPGA ADC pins
- **7-segment display (8):** Display Enigma settings
- Button (8): Change Enigma settings
- LED matrix (26): Lampboard

Implementation Plan: PCB Schematic an III DEO-CV Terasic 154 5 pin header For MAX7219 On header C ... MAX7219 5 pin header For MAX7219 SN THHEILSN SER - 8614 • SN 74HCS15 Buitan I - SRCLA GND - SRCLR - RCLK LAMPBOARD

Implementation Plan: PCB Tradeoffs

CHOSEN	CONSIDERED	JUSTIFICATION
Shift Registers	Multiplexers	Optimized FPGA pin usage (70 pins) to reduce hardware complexity
MAX7219 7-Segment Display	LCD Display	Use of SPI protocol (only 3 pins) for efficient communication with low power consumption
Single SD Card	3 SD Card Readers	Historical accuracy for customisable encodings Streamlined user experience by reducing unnecessary hardware
External Keyboard	Custom PCB Keyboard	Enhanced accessibility with a safer , user-friendly interface (reduced exposure to live PCB components)
Panel-mount rotary potentiometer	Rotary shift potentiometer	Smoother analog input for precise control to improve reading accuracy

Implementation Plan: FSMs

Rotor 0-2 FSMs

- Handles rotor setting inputs from buttons and potentiometer
- Handles updates to 7-segment output

Keyboard FSM

• Rotates rotors and encrypts plaintext to ciphertext on keypress

Implementation Plan: RTL

- Input key from keyboard
- Read microSD
 card via SPI

- Select rotors, starting settings, and ring settings through PCB
- Reverse encryption though reflector module

Testing, Verification, Validation

AREA	TEST METHOD	DESIGN REQUIREMENT
PCB	Design Rule Check	Verify design meets manufacturing requirements with 0 errors
	Electrical Rule Check	Verify power and ground connections with 0 errors
	Multimeter	Continuity test, ensure proper fabrication with 0 open circuits
Peripherals	H2TestW for microSD	10 tests show 0% data corruption on 130B of rotor encodings
RTL Synthesis	Peripheral unit testing	 Lampboard: Lights up random sequence of 50 letters MicroSD: Read and write 10 times with different rotor encodings Keyboard: Type for 2 minutes, ensure all letters accurate
	Integrative user testing	• Test Enigma machine on 5 people , have them change each rotor number, rotor setting, and ring setting

Testing, Verification, Validation

AREA	METHOD	DESIGN REQUIREMENT
RTL Simulation	Constrained Random Tests	Rotor logic 100% accuracy : Input 500 randomized <u>plaintext</u> characters \rightarrow <u>ciphertext</u> \rightarrow <u>plaintext</u> 20 randomized Enigma settings
		MicroSD: 20 randomized 130B sequences with SPI protocol
		Keyboard: 20 randomized 200 inputs with matrix scanner algorithm
	Directed Testing	Corner cases and general cases
	Model Checking	Immediate and concurrent assertions

Testing, Verification, Validation

RISK	MITIGATION
Faulty PCB fabrication	Unit test with breadboard components
FPGA ADC pins do not have sufficient resolution for 26 letters	 SMD potentiometer (vs through-hole) Alternatively use buttons alone to encode rotor information
Unable to read from microSD card into FPGA	 Hardcoded RTL rotor encodings Rotors can still be selected via buttons
Keyboard matrix scanner algorithm fails	• Alternatively can use the USB OTG on the FPGA to interface with a USB peripheral keyboard

Project Management

▼ Schematic

EMBEDDED TEAM: Tanisha + Nancy **VERILOG TEAM**: Amelia + Nancy