
18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 1 of 14

PlatePatrol
Authors: Christine Li, Vicky Liu, Andy Zhao

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Traditional license plate recognition sys-
tems rely on fixed cameras, limiting real-time track-
ing for law enforcement. PlatePatrol bridges this gap
by transforming everyday dash cams into a crowd-
sourced automatic license plate recognition (ALPR)
network, enabling broader coverage at faster speed.
Each dash cam processes ALPR locally and transmits
detections to a secure cloud server, where license plates
are matched against law enforcement watchlists. In
road tests, PlatePatrol identified 468% more license
plates than a human driver and achieved 8.06s capture-
to-alert latency. Designed for speed, scale, privacy,
and security, PlatePatrol enhances public safety with
community-driven intelligence.

Index Terms—Automatic License Plate Recogni-
tion, Dash Cam, Distributed System, Law Enforce-
ment, Public Safety

1 INTRODUCTION

Automatic License Plate Recognition (ALPR) is widely
used in law enforcement to track vehicles involved in crimi-
nal activities such as stolen cars, hit-and-run incidents, and
AMBER alerts [1]. However, traditional ALPR systems
rely on fixed-location cameras—such as those installed on
police vehicles, toll booths, and traffic lights—which offer
limited spatial coverage and often introduce delays in inci-
dent reporting [2]. This lack of real-time visibility hampers
law enforcement’s ability to respond swiftly in high-stakes
situations [3].

To address these limitations, we developed PlatePatrol,
a crowdsourced ALPR system designed for both everyday
drivers and law enforcement agencies. PlatePatrol enables
real-time license plate detection through a distributed net-
work of mobile dash cams. Each dash cam processes frames
locally using on-device machine learning models and se-
curely transmits recognized license plate data to a cen-
tralized cloud server. The backend compares the detected
plate against law enforcement watchlists and, if a match
is found, immediately notifies the appropriate personnel
through API-driven webhooks.

Our system emphasizes four core design principles: end-
to-end integration, near real-time processing, distributed
cloud infrastructure, and strong privacy and security safe-
guards. PlatePatrol dash cams operate with dual function-
ality—recording standard video while simultaneously run-
ning ALPR models on-device—requiring no manual inter-
vention from drivers. By performing inference on the edge,
the system minimizes latency and reduces dependence on
continuous server communication. Matched plate data is

routed through a scalable, serverless cloud backend built
on AWS Lambda and DynamoDB, with RESTful APIs
enabling integration with third-party services. Through-
out the pipeline, user privacy is preserved with an instant
opt-in/opt-out mechanism, API key-based authentication,
and data encryption using AWS Key Management Service
(KMS) and PrivateLink.

With its scalable architecture and emphasis on low-
latency detection, PlatePatrol fills a critical gap in ALPR
coverage and provides actionable, real-time insights that
support public safety and accelerate law enforcement re-
sponse.

2 USE-CASE REQUIREMENTS

2.1 Dash Cam

To ensure compatibility with typical vehicle power
sources [4], the dash cam must operate on a 12V DC in-
put. In addition, the device must weigh less than 1.5lbs.
A lightweight design minimizes potential injury or damage
during sudden braking or collisions. The dash cam is also
required to support driving footage recording and store it
on an SD card. Finally, the dash cam must provide a gen-
eral hands-free experience to avoid distracting the driver
during operation. Specifically, the initial setup must be
completed in less than 10 minutes per device over its life-
time. Once initialized, the system should not require any
additional driver interaction.

2.2 ALPR

For the ALPR system to be effective, it must achieve a
minimum end-to-end accuracy of 80% in recognizing U.S.
license plate numbers. This metric is calculated by dividing
the number of correctly identified vehicles by the total num-
ber of vehicles with driver-legible license plates observed.
To ensure reliability, the combined false positive and false
negative rates must remain below 20%. The false positive
rate refers to the percentage of vehicles that are incorrectly
matched to a license plate due to misidentification or false
detection, while the false negative rate refers to the per-
centage of vehicles for which the system fails to produce a
prediction.

2.3 End-To-End

The end-to-end system must ensure privacy by allow-
ing drivers to opt in or out of the ALPR system within
1s. The critical path latency—from license plate capture
to law enforcement notification over the network—must not

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 2 of 14

exceed 1.1s to ensure timely alerts and a faster response to
incidents. The system must capture at least 2 frames of
each vehicle with a legible plate, minimizing ALPR errors
from motion blur or partial visibility. Lastly, ALPR data
access must be restricted to authorized law enforcement
personnel, complying with PA law [5] to protect sensitive
information and prevent misuse.

3 ARCHITECTURE

PlatePatrol consists of a distributed edge-cloud archi-
tecture comprising two main components: dash cams de-
ployed in vehicles and a centralized server backend. These
components support two primary user roles: drivers, who
operate the dash cams passively during everyday travel,
and administrators from watchlist and tip line services, who
manage plates of interest and receive notifications.

Figure 1 presents a high-level overview of the system
and the interactions between its components.

3.1 Dash Cam

Each dash cam captures license plate images along with
associated metadata such as GPS coordinates, date, and
time. The device includes a single-board computer to pro-
cess captured frames, a camera module for real-time record-
ing, a hardware switch to control ALPR activation, a GPS
module for geolocation tagging, local storage for buffering
video and detection events, and a network module to trans-
mit detection results to the central server via HTTP.

3.2 Central Server

The central server coordinates communication across
the system and provides RESTful APIs for both dash cam
devices and external service integration. It receives in-
bound watchlist query requests from dash cams, manages
plate subscriptions from third-party systems, and issues
alerts when matches are detected. The server also main-
tains persistent storage for active watchlists and logged
match records. Through a secure and scalable interface,
external organizations can register for alerts, receive real-
time notifications, and integrate PlatePatrol seamlessly
into their existing workflows.

4 DESIGN REQUIREMENTS

4.1 Dash Cam

The dash cam should operate on a 12V DC power source
through a car cigarette lighter. To ensure stable power de-
spite fluctuations, our design incorporates a voltage regu-
lator that converts 12V to a steady 5V supply (up to 5A)
for the single-board computer and its peripherals (camera,
GPS, and cellular modules). The total unit must weigh
less than 1.5lbs, with approximately 1lb allocated for the
single-board computer, peripherals, and batteries, and a

0.5lb margin for additional circuitry. The dash cam con-
tinuously records in 1-minute segments to support SD card
compatibility. This 1-minute duration simplifies data man-
agement by allowing the system to periodically delete older
clips and facilitate easier retrieval of specific footage by
drivers if needed. Finally, to maintain a hands-free experi-
ence, the system must automatically begin recording within
30s of ignition, cease within 30s after engine shutdown, and
be fully operational within 10 minutes of installation.

4.2 ALPR

The ALPR system must accurately recognize at least
80% of driver-readable license plates on U.S. roads while
maintaining false positive and false negative rates below
20%. Achieving this requires the license plate detec-
tion subsystem to maintain an mAP50 of 90% or higher.
mAP50, or mean average precision at 50 percent overlap,
reflects the model’s ability to accurately detect objects
(precision) and identify all relevant objects (recall). Ad-
ditionally, the optical character recognition (OCR) subsys-
tem must achieve at least 90% accuracy in correctly iden-
tifying entire license plates.

4.3 End-To-End

The system ensures driver privacy by allowing drivers to
opt in or out of the ALPR system via a single switch oper-
ation, with the new privacy setting taking effect within 1s.
The system’s critical path latency must be less than 1.1s.
This overall latency budget includes approximately 200ms
per frame for license plate detection, 50ms per frame for
OCR, 500ms for the network handshake, 300ms for network
transfer, and an additional 50ms allowance for overhead.
The system must capture at least 2 frames of each legible
vehicle. Assuming that the relative driving speed difference
on a road is less than 10mph and license plate visibility is
limited to 18ft, the system must achieve an ALPR process-
ing rate of approximately 2fps (1). Additionally, to ensure
that only authorized law enforcement personnel can access
the ALPR system, the design enforces strict data security
measures. Data stored on dash cams is erased upon shut-
down, while server-stored data is managed based on match
status: nonmatching records are deleted immediately, and
matching records are encrypted and retained for 21 days.
Data transmission is secured through a dedicated network
architecture, and system access is controlled via authenti-
cation and audit logs.

2 frames÷ (18ft÷ 10mph) ≈ 2fps (1)

5 DESIGN TRADE STUDIES

5.1 Dash Cam

5.1.1 Single-Board Computer

We selected the RPi 5 as our final platform, as it of-
fers the best overall trade-off between cost, performance,

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 3 of 14

Figure 1: System Architecture Block Diagram

Table 1: Comparison of Single-Board Computers for Dash Cam

Board Power (W) YOLOv11n Latency (ms) Cost (USD) Notes

RPi 4 4.8 206 $75 Low power, slowest inference
RPi 5 11.6 168 $80 Best balance of cost and performance
Jetson Nano 10 100 $129 Faster inference, but deprecated OS
Jetson Orin Nano 15 10 $259 Fastest inference, highest cost

and integration simplicity for our edge-based ALPR sys-
tem. Alternative options are summarized in Table 1.

5.1.2 Camera Module

In selecting the camera module for our dash cam, we pri-
oritized image clarity and cost to meet our ALPR accuracy
and crowdsourcing requirements. We evaluated several op-
tions, including RPi Camera Module 3, RPi High Quality
Camera, RPi AI Camera, and RPi Global Shutter Cam-
era. All candidates support 1080p recording. However,
the RPi Global Shutter Camera uniquely minimizes mo-
tion blur and distortion, whereas the others rely on rolling
shutter technology. The RPi Camera Module 3 is the most
affordable at $25, followed by the RPi High Quality Camera
and the RPi Global Shutter Camera at $50 each, with the
RPi AI Camera at $70. Although the RPi AI Camera of-
fers enhanced ALPR capabilities, our application does not
require its additional processing power at increased cost.
Considering image quality and affordability, the RPi Cam-
era Module 3 is our final choice.

5.1.3 Network Communication

For network communication, we evaluated Wi-Fi, cel-
lular, and LoRa options considering data transfer speed,
coverage, and power consumption. Wi-Fi offers high data
rates but is limited by range and infrastructure availability.
Cellular communication provides extensive coverage and re-
liable connectivity suitable for real-time ALPR data trans-
mission, despite higher power consumption. LoRa offers
low-power, long-range capabilities but limited bandwidth
unsuitable for image transfers and scalability concerns due
to dedicated gateway requirements. Cellular communica-
tion was selected due to its optimal balance of coverage,
reliability, and operational feasibility.

5.2 ALPR

5.2.1 License Plate Detection Model

For our license plate detection model, we considered
YOLOv11n and YOLOv11s, since larger models exceed the
computational capabilities of the RPi. YOLOv11n, with a
size of 10.2MB, achieves a mAP50-95 of 60.82% and an in-
ference latency of 168.08ms per image, whereas YOLOv11s,

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 4 of 14

at 36.3MB, offers a higher mAP50-95 of 74.16% but with a
significantly increased latency of 324.17ms per image. We
selected YOLOv11n because it provides a lightweight solu-
tion with acceptable accuracy while ensuring low latency.

5.2.2 License Plate OCR Model

For our license plate OCR system, we experimented
with three approaches: Convolutional Recurrent Neural
Network (CRNN), Scene Text Recognition with a Single
Visual Model (SVTR) with a Connectionist Temporal Clas-
sification (CTC) head, and SVTR augmented with both
CTC and Show, Attend and Read (SAR) heads. Although
the CRNN model is simple and effective for text recog-
nition tasks, integrating it with PaddleOCR’s Python API
proved challenging, complicating its deployment within our
pipeline. The SVTR model with the combined CTC and
SAR head, while theoretically promising in capturing de-
tailed character information, demonstrated excessive com-
plexity and a tendency to overfit. Ultimately, we chose
STR with CTC, as it provided performance comparable to
CRNN while being significantly easier to integrate into our
system, thereby streamlining development and ensuring re-
liable, low-latency ALPR operation.

5.2.3 Architectural Trade-Off

In designing our ALPR system architecture, we eval-
uated different configurations for performing detection,
OCR, and watchlist queries between cloud and edge com-
puting environments. Table 2 summarizes our trade-off
analysis. Ultimately, we selected an approach with detec-
tion and OCR performed at the edge and watchlist queries
conducted in the cloud. This configuration offers a practi-
cal balance, ensuring moderate network bandwidth usage
and adequate computational performance while maintain-
ing security.

5.3 Central Server

5.3.1 Cloud Platform

For the cloud platform, we compared Amazon Web Ser-
vices (AWS), Microsoft Azure, and Google Cloud Plat-
form based on reliability, ease of integration, and flexibil-
ity. AWS excels with the widest range of services, a strong
global infrastructure, and seamless support for serverless
computing, storage, and databases. Although Microsoft
Azure and Google Cloud Platform offer robust enterprise
solutions, their serverless computing and database capabil-
ities are less mature. We ultimately selected AWS for its
comprehensive ecosystem and our team’s familiarity with
the platform.

5.3.2 Server Architecture

We considered two compute models for the central
server: serverless computing with AWS Lambda and persis-
tent compute using Amazon Elastic Compute Cloud (EC2)

or containerized services. AWS Lambda scales automati-
cally and eliminates idle costs, making it a cost-efficient
choice for event-driven workloads like our use case. It also
reduces maintenance overhead, as AWS manages provision-
ing and updates. One potential drawback is cold-start la-
tency (100ms to 500ms), but our system is expected to have
frequent API requests, minimizing the impact. In contrast,
persistent compute, such as Amazon EC2, provides contin-
uous availability and avoids cold-start delays, making it
better suited for high-throughput applications. However,
it incurs higher costs because instances remain active even
during low-traffic periods and require manual scaling and
infrastructure management. Since our system experiences
peak hours and quiet periods, persistent compute would
often be underutilized, leading to unnecessary costs. AWS
Lambda was selected for its automatic scaling, lower cost,
and minimal maintenance, ensuring efficient resource use
while handling variable workloads.

5.3.3 Interface Design

In designing the interface for external interaction with
the PlatePatrol server, we evaluated two primary options:
building a dedicated user interface (UI) or adopting an
API-first architecture.

A dedicated UI would offer an intuitive interface for
watchlist management, match history browsing, and config-
uration. However, it would require significant frontend de-
velopment effort, introduce potential inconsistencies across
clients, and limit seamless integration with existing law en-
forcement databases [6] and tip line services [7]. These
systems are already widely deployed, and forcing users to
adopt a new interface would risk redundancy and hinder
adoption.

By contrast, an API-first approach exposes all function-
alities via RESTful APIs, such as watchlist registration,
query, and alerting. This enables programmatic access by
authorized external systems and supports automation, cus-
tomization, and integration into existing software stacks. It
also aligns with our serverless and scalable backend strat-
egy.

We selected an API-first design to maximize flexibility,
streamline development, and integrate cleanly with exist-
ing workflows—avoiding the need to reinvent the wheel for
public safety organizations that already have backend tools
in place.

5.3.4 Database Model

To meet the need for low-latency lookups and scal-
able operations, we transitioned to a fully NoSQL back-
end. We evaluated both relational (Amazon RDS) and
NoSQL (Amazon DynamoDB) databases. While relational
databases offer strong query flexibility, they are less suited
to the high-throughput, key-based access patterns typical
of watchlist matching. DynamoDB, a NoSQL key-value
store, provides millisecond-level lookups, built-in TTL sup-
port, and seamless horizontal scaling.

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 5 of 14

Table 2: Comparison of Cloud vs. Edge approaches

Approach
ML Latency Network Load Concerns

Detection OCR Watchlist Query
Cloud Cloud Cloud 20ms1 Frequent full image (∼162KB) upload

(470 s)
Network
bandwidth

Edge Cloud Cloud 129ms2 Frequent cropped image (∼5KB)
upload (7.3 s)

Network
bandwidth

Edge Edge Edge 257ms Moderate watchlist sync (2.16 s)3, Rare
cropped image (∼5KB) upload (7.3 s)

Security &
watchlist

synchronization
Edge Edge Cloud 257ms Frequent watchlist query (469ms),

Rare cropped image (∼5KB) upload
(7.3 s)

—

1 14ms detection on NVIDIA T4 GPU in TensorRT format, and 6ms OCR on NVIDIA T4 GPU in Paddle format.
2 123ms detection on RPi 5, and 6ms OCR on NVIDIA T4 GPU in Paddle format.
3 Assuming 500 entries based on the size of the Digitpol Stolen Car Database.

Although AMBER Alerts are rare (fewer than 250 cases
per year [3]), our system addresses a broader class of inci-
dents—including stolen vehicles and hit-and-runs—which
account for over 850,000 cases annually in the U.S [8]. In
these situations, real-time alerting is critical to maximize
recovery rates and reduce investigative delays.

Given our access patterns—frequent reads for watch-
list queries and fast writes for match logs—we adopted a
DynamoDB-only architecture. The global watchlist is in-
dexed by plate number for constant-time lookups, while
match events are logged with timestamps and GPS coordi-
nates for auditability. This approach simplifies the system,
reduces query latency, and ensures responsiveness under
variable load conditions.

5.3.5 Notification Method

To deliver real-time alerts to external services, we com-
pared polling, push notifications, and webhooks. Polling
requires external systems to repeatedly query our server,
increasing load and latency. Push notifications via services
like Amazon SNS offer real-time delivery but are limited
to specific channels (e.g., SMS, email) and do not integrate
well with backend systems.

We selected webhooks as our notification mechanism.
Webhooks allow external services to register callback URLs
that PlatePatrol invokes when a match occurs. This ap-
proach enables real-time, backend-to-backend integration
with minimal latency and overhead. Webhooks are also
stateless and scalable, fitting well with our serverless de-
sign. Compared to WebSockets, which require persistent
connections and session management, webhooks are more
reliable for loosely connected clients like law enforcement
platforms.

5.3.6 Image Upload Strategy

The dash cam captures license plate images that must
be transmitted reliably over constrained cellular networks.
We considered two upload methods: direct upload to Ama-

zon S3 using pre-signed URLs, and indirect upload through
the central server via Amazon API Gateway. While direct
S3 uploads reduce backend involvement, they complicate
chunking and access control, and do not easily support fine-
grained payload management.

To address the 2KB payload limit imposed by the dash
cam’s cellular module, we adopted an indirect upload strat-
egy using API Gateway. Images are split into small chunks
and transmitted as a sequence of HTTP PATCH requests.
Each chunk is validated and reassembled server-side using
AWS Lambda functions. This design ensures robust han-
dling of partial uploads, supports retries, and integrates
cleanly with our serverless backend while remaining com-
patible with mobile network constraints.

6 SYSTEM IMPLEMENTATION

6.1 Dash Cam

Figure 2 presents the detailed implementation of our
dash cam with an onboard ALPR system.

6.1.1 Hardware Subsystem

The dash cam primarily derives power from the vehi-
cle’s 12V cigarette lighter socket, converted to a stable 9V
supply through a dedicated voltage adapter to power our
Waveshare Uninterruptible Power Supply (UPS). Our RPi
5 is then powered by this UPS for a stable 5V power sup-
ply. In addition, this UPS safeguards against abrupt volt-
age drops and provides a safe shutdown mechanism when
the vehicle is powered off, thus protecting critical system
components such as the RPi and camera module.

The RPi 5 serves as the central hardware platform, in-
terfacing seamlessly with peripheral components. A RPi
Camera Module 3, connected via MIPI CSI-2 for data
transmission and I2C for control, captures 2K-resolution
images at 30fps continuously for analysis. Additionally, a
Notecarrier Pi hat with a Notecard Cellular module and

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 6 of 14

antenna ensures wireless connectivity. Communication be-
tween the RPi and the Notecard uses an I2C interface.

For GPS functionality, we integrated the SparkFun
ZED-F9R GPS-RTK module. This module delivers pre-
cise location coordinates and high-accuracy heading esti-
mates via a USB serial connection to the RPi. This posi-
tioning data is critical for associating detected license plate
matches with specific geographic locations and for support-
ing future functionality such as route logging and location-
based filtering.

A physical switch connected to a GPIO pin allows
drivers to manually enable or disable ALPR functionality,
ensuring direct control over the system’s operation.

6.1.2 Software Subsystem

The RPi 5 runs the Raspbian OS, configured to auto-
matically launch the ALPR software at startup. A custom
shutdown script monitors the UPS hat’s voltage level, trig-
gering a safe and graceful system shutdown when a critical
voltage drop is detected, thus preventing potential file sys-
tem corruption.

The ALPR software pipeline begins with a YOLOv11n
model, fine-tuned on a global license plate dataset sourced
from Kaggle [9], to detect and localize license plates accu-
rately. Detected plate regions are cropped and forwarded to
a PaddleOCR-based SVTR with CTC head model for text
recognition, trained on 20,000 images scraped from plates-
mania.com (15,000 for training, 5,000 for testing). This
approach compensates for the limited availability of large-
scale U.S. plate datasets and accommodates the unique
characteristics of U.S. plates.

For communication, the software establishes a hand-
shake with the central server through Blues Notehub. The
Blues Notecard communicates with Notehub over an en-
crypted private VPN channel, ensuring that data is not
exposed on the public internet. Notehub, in turn, se-
curely communicates with the central server via AWS Pri-
vateLink. The board sends the detected license plate text
to the server, which performs a database query against the
watchlist to find a match. When a match is found, the
board is notified and compiles a data packet containing the
cropped plate image, timestamp, and GPS coordinates, and
transmits this packet via HTTP over the Notecard’s cellu-
lar connection.

When the ALPR system is disabled via the physical
switch, the software halts the detection and OCR processes
while continuing video recording, ensuring that no plate
data is transmitted and thereby preserving driver privacy.

6.2 Central Server

The PlatePatrol central server is built on a fully server-
less AWS stack, designed to deliver real-time performance,
scalable throughput, and robust data security. The back-
end is organized into three functional layers: the Watchlist
Subscription Layer, the Watchlist Query Layer, and the

Image Upload and Notification Layer. Figure 3 illustrates
the key components and data flows across these layers.

6.2.1 Watchlist Subscription Layer

External administrators can subscribe to specific li-
cense plates by registering webhooks using an API
key. Each API key is uniquely assigned to an
authorized organization, enabling usage tracking and
strict access control. When a request is received—
such as POST /plates/{plate number}/webhooks to
subscribe to notifications for a specific plate, or
DELETE /plates/{plate number}/webhooks to remove a
subscription—the Watchlist Lambda function authenti-
cates the API key, updates the global watchlist stored in
Amazon DynamoDB, and logs the action in an access log
table for auditability. This API-first design supports dy-
namic, fine-grained subscriptions and enables secure, real-
time alert delivery through webhooks.

6.2.2 Watchlist Query Layer

When a dash cam detects a license plate, it issues
a watchlist query to the central server by calling GET

/detections/{plate number}. This request is routed
through Amazon API Gateway and handled by the De-
tection Lambda, which performs a key-value lookup in the
global watchlist stored in Amazon DynamoDB. If a match
is found, a new match record is created, and a unique match
ID is returned to the dash cam. This match ID is then used
to tag the associated image upload and streamline down-
stream processing. By leveraging DynamoDB’s low-latency
access patterns, this layer ensures that watchlist checks are
completed in near real-time, supporting responsive alert
delivery and scalable field deployment.

6.2.3 Image Upload and Notification Layer

Due to the 2KB payload size limitation of the Blues
Notecard Cellular module, dash cams upload license plate
images using a custom chunked upload protocol. When a
match is found, the dash cam receives a server-generated
match id in response to the watchlist query and initiates
the upload by splitting the captured image into chunks
(typically <2KB each). Each chunk is sent as a POST re-
quest to /uploads/{match id}, routed through Amazon
API Gateway to the Chunk Upload Processing Lambda.

Each request includes metadata—match id, chunk id,
total chunks, and base64-encoded image data. The pro-
cessing Lambda stores each chunk in a temporary Amazon
S3 path under uploads/{match id}/chunk {chunk id}
and updates an Upload Status record in DynamoDB to
track completeness. The system adheres to an ”at least
once” delivery model: dash cams automatically retry failed
uploads, and the server-side logic safely handles out-of-
order or duplicated chunks by deduplicating based on
chunk id.

Once all chunks have been received, a separate As-
sembly Lambda is triggered. This function retrieves the

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 7 of 14

stored chunks from S3, reassembles them in order, and
saves the final image to a permanent S3 location at
images/{match id}.jpg. It then logs the complete match
event—including the recognized plate number, timestamp,
GPS coordinates, and image reference—in the Match Log
Table and deletes the temporary chunks.

To complete the workflow, the Assembly Lambda sends
the full match payload to all registered webhooks associated
with the matched plate. These outbound alerts include the
plate number, location, timestamp, and a link to the re-
assembled image, enabling real-time responses by external
systems.

Security is enforced across this layer via AWS KMS
for encryption at rest, AWS PrivateLink for secure data
transit, and API key-based access control at all endpoints.
Operational monitoring is provided by Amazon Cloud-
Watch, and the backend is validated through automated
Jest-based integration tests covering webhook registration,
upload logic, and edge cases.

7 TEST & VALIDATION

To validate that our system fulfills both its intended
operational use cases and the detailed design requirements,
we conducted a series of lab simulations and followed by
real-world road tests with our dash cam installed in an ac-
tual car.

7.1 Dash Cam

We evaluated the dash cam’s power reliability through
both lab and field testing. In the lab, we simulated unstable
12V inputs and confirmed that our adapter and the UPS
module consistently maintained a 5V output with minimal
fluctuation, protecting the RPi and its peripherals. The
unit was also powered reliably in a 30-minute road test us-
ing a vehicle’s cigarette lighter socket.

For usability, the dash cam weighed only 0.586 lbs and
took about 5 minutes to install by a single person. After in-
stallation, it began recording within 41 seconds of ignition
and safely shut down just 332ms after power-off. Startup
and shutdown sequences executed successfully across five
simulated and five in-vehicle power cycles, with no file cor-
ruption.

7.2 ALPR

The ALPR testing phase included both simulated
and real-world evaluations. In the simulated testing,
the YOLOv11n model was benchmarked using a curated
set of 386 real-world images sourced from the Kaggle-
based dataset [9], achieving 90.4% mAP50. Concur-
rently, the PaddleOCRv3rec component was evaluated on
a scraped dataset from platesmania.com, which included

4,000 cropped synthetic U.S. license plate images and 1,000
cropped real-world images, achieving 93.2% recognition ac-
curacy.

For end-to-end simulation, We confirmed that detec-
tion and OCR on the dash cam completed in just 257ms,
achieving a 3.9 FPS ALPR processing rate. For 5,000
full-frame, real-world images from platesmania.com were
passed through the system. The YOLOv11n model de-
tected and cropped license plate regions from these im-
ages, and the resulting crops were processed by the Pad-
dleOCRv3rec model. The pipeline achieved 79% accuracy,
with 17% false positive rate and 4% false negative rate.
Although this fell 1% short of our 80% benchmark, we at-
tributed the gap to challenging image conditions, including
skewed angles and inconsistent text formatting. Given its
strong performance in field testing, we considered this level
of accuracy acceptable for deployment.

7.3 Security and Privacy

We validated privacy and security controls through
structured functional testing. The physical opt-in/opt-out
switch was toggled ten times, and in each case, the system
updated its inference state within 100ms. We confirmed
that all locally stored data was erased upon shutdown, en-
suring no residual information remained on the dash cam.
On the server side, non-match records were immediately
discarded, while matched records were encrypted and re-
tained for 21 days using AWS KMS.

To evaluate system security, we simulated various unau-
thorized access attempts. The server consistently rejected
invalid or missing API keys at the API Gateway, blocked
unauthorized database queries, and denied improper access
to Amazon S3 resources. Additionally, all watchlist modifi-
cations made via the API were properly authenticated and
logged for auditability.

7.4 End-to-End Integration

We conducted full integration tests to validate compo-
nent interoperability and performance. The system reli-
ably captured video, performed ALPR inference, queried
the watchlist, and sent alerts, all without manual inter-
vention. Detection accuracy, hardware responsiveness, and
data integrity were maintained throughout extended field
operation.

The system securely transmitted plate matches and as-
sociated metadata using Notehub over VPN and AWS Pri-
vateLink. Upon match confirmation, the cropped plate im-
age, timestamp, and GPS coordinates were uploaded to the
cloud server successfully. All timestamps and transmissions
were verified during testing.

We measured a total end-to-end system latency of ap-
proximately 8s from image capture to officer notification.

1From the server log, the average API response time is 33,ms with a 500-entry watchlist, meaning 436,ms out of the 469,ms watchlist
latency is attributed to Blues network overhead. For image uploads, the server log reports an average response time of 132,ms per 2,KB
chunk. For an average 5,KB cropped image (three chunks), 6,936,ms out of the 7,332,ms total upload time is attributed to Blues network

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 8 of 14

Although this exceeds our original 1.1s capture-to-alert de-
sign requirement, we still consider the system to operate in
near real time for practical ALPR scenarios.1

During a 30-minute road test, the driver verbally iden-
tified license plates while safely operating the vehicle, and
the entire drive was recorded for later analysis. After the
test, we cross-referenced the video footage with the sys-
tem’s ALPR detections. The driver was able to identify 25
license plates, all of which were correctly recognized and
logged by the system. In addition, the system detected
and recorded 117 additional license plates that the driver
missed—demonstrating a 468% improvement over human
observation. We also confirmed accurate, end-to-end com-
munication between the dash cam and backend server.

These results confirm that PlatePatrol meets the key
goals of high ALPR accuracy, reliable and safe dash cam
operation, secure cloud integration, and strong privacy
guarantees, making it viable for real-world deployment in
vehicle-based surveillance and enforcement applications.

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule and responsibility is shown in Fig. 4.

8.2 Team Member Responsibilities

All team members contributed to system integration,
road testing, final video production, the written report,
and the presentation documentation.

• Vicky: ALPR algorithm development and optimiza-
tion, dash cam hardware integration

• Andy: Dash cam hardware setup

• Christine: Central server implementation

8.3 Bill of Materials and Budget

We included our bill of materials in Table 3. All items
listed in the table were used, excluding the RPis, which we
borrowed and returned afterward.

8.4 TechSpark Usage

We conducted some circuit testing in TechSpark, where
we soldered our opt-in switch to the board. No materi-
als were taken, and all lab equipment was returned to its
original position.

8.5 Risk Management

We proactively identified and mitigated key risks across
hardware, software, and deployment. This section outlines
how we handled technical and operational risks to ensure
a stable, reliable system.

8.5.1 Dash Cam Technical Risks

• Hardware Stability: We followed an iterative de-
velopment process to validate core hardware compo-
nents, including power delivery, camera interface, and
GPS integration. Early testing helped catch voltage
instability and connectivity issues before full system
assembly.

• Safe Shutdown: We incorporated a UPS module
to protect the RPi from abrupt power loss. This re-
duced the risk of SD card corruption and prolonged
device lifespan.

• Thermal and Power Constraints: We bench-
marked RPi 4 and 5 for power draw, thermal be-
havior, and inference latency to ensure they could
support real-time ALPR workloads within automo-
tive environments.

8.5.2 Software and Integration Risks

• Integration Testing: To avoid integration failures,
we developed unit and integration tests using Jest on
our Node.js backend. Mocked API requests allowed
us to validate system logic, input validation, and er-
ror handling before connecting to live dash cam data.

• Inference Performance: We tested our machine
learning models (YOLOv11n and PaddleOCR) early
on edge hardware to validate latency and ensure they
could meet our frame rate requirements under real-
world conditions.

8.5.3 Operational and Testing Risks

• Phased Deployment: We structured our develop-
ment around key integration milestones—including
ALPR inference, watchlist querying, full image up-
load, and chunked image upload—each followed by
targeted validation. This incremental integration ap-
proach allowed us to test interfaces between compo-
nents early, reduce system-level bugs, and build con-
fidence before full deployment.

• Safe Testing Environments: All initial testing was
conducted in lab conditions before road deployment.
This protected hardware and allowed debugging with-
out the risks of in-vehicle testing.

• Real-World Validation: We planned multiple road
tests, each with defined test cases and fallback proce-
dures, ensuring safe operation and reliable data col-
lection even under variable driving conditions.

overhead. Note that image uploads are relatively infrequent, as they are only triggered when a license plate matches a target in the watchlist.

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 9 of 14

Table 3: Bill of Materials

Description Manufacturer Quantity Cost @ Total
Camera Module 3 Raspberry Pi 1 $25.00 $25.00
Camera Cable Raspberry Pi 1 $1.00 $1.00
Notecard Cellular Blues 1 $53.00 $53.00
Notecarrier Pi Hat Blues 1 $15.00 $15.00
LTE and GPS Antenna Blues 1 $3.25 $3.25
Waveshare UPS HAT (B) Waveshare 1 $33.99 $33.99
18650 Rechargeable Battery BENKIA 1 $12.96 $12.96
USB-C to USB-C Cable Anker 1 $9.99 $9.99
Circuit Wire to Car Cigarette Lighter Outlet HATMINI 1 $9.99 $9.99
Cigarette Lighter Adapter Outtag 1 $14.99 $14.99
PERMA-PROTO HAT FOR PI MINI KIT Adafruit Industries 3 $4.95 $14.85
SWITCH SLIDE DPDT 300MA 6V C&K 5 $0.77 $3.85
Shipping (all sources incl. DigiKey) $46.19
Tariff (DigiKey) $2.38

$246.44

9 Ethical Issues

9.1 Public Benefit and Societal Impact

PlatePatrol supports public safety by helping law en-
forcement locate vehicles involved in crimes such as auto
theft, hit-and-runs, and AMBER Alerts. By leveraging a
network of crowdsourced dash cams, the system expands
ALPR coverage beyond fixed infrastructure and enables
near real-time alerts. This can reduce response times, assist
with evidence gathering, and potentially save lives during
time-critical incidents.

9.2 Privacy and System Security

Despite its benefits, PlatePatrol introduces privacy con-
cerns if license plate detections are aggregated or misused.
For example, an unauthorized party could exploit the sys-
tem to monitor vehicle movements or build travel histories
of individuals. Additionally, a malicious user could attempt
to upload falsified detection data to trigger false alerts or
mislead law enforcement. To reduce this risk, PlatePatrol
enforces strict access control: only authorized third-party
users with valid API keys can access the system, and only
registered dash cams can upload detection data. All watch-
list activity is logged for auditability.

While our system implements robust security controls,
we acknowledge that no system is immune to advanced
threats such as infrastructure-level breaches or insider mis-
use. Continued monitoring and regular security audits are
essential to uphold public trust.

9.3 User Consent and Data Retention

PlatePatrol is designed to respect individual autonomy
and minimize unnecessary data collection. Participation
in the system is fully voluntary: drivers retain control
through a physical opt-in/opt-out switch, which halts all
ALPR activity and data transmission when toggled off. On

the backend, data retention is minimized by design—non-
matching detections are discarded immediately and never
stored. Only matched license plate records are retained,
and even then, they are encrypted and stored for no more
than 21 days in accordance with Pennsylvania privacy law.
This ensures user consent, limits exposure, and prevents
the accumulation of long-term surveillance data.

10 RELATED WORK

Several related projects and products offer insights into
the feasibility and impact of our solution.

10.1 Similar ECE Capstone Projects

AutoAlert [10], a Fall 2024 CMU ECE Capstone
project, explored real-time image processing using a dash
cam and a mobile app for lane detection, traffic light alerts,
and collision warnings. Its approach to embedded com-
puter vision and mobile integration inspired us to develop
a similar system for license plate recognition and real-time
law enforcement alerts. While AutoAlert focused on driver
safety, PlatePatrol adapts the concept for crowdsourced
ALPR and cloud-based data processing.

10.2 Commercial ALPR Solutions

Several commercial ALPR systems helped shape our
approach: 1) Rekor Scout [11] applies ALPR to existing
surveillance cameras, demonstrating the efficiency of cen-
tralized processing. This influenced our decision to ag-
gregate crowdsourced dash cam data into a cloud-based
system. 2) Leonardo ELSAG [12], used by law enforce-
ment, aids in stolen vehicle recovery and missing person
searches. Its reliance on fixed and mobile-mounted cam-
eras highlighted the need for broader coverage, reinforcing
our distributed dash cam model. Additionally, ELSAG’s

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 10 of 14

$15,000–$25,000 per-unit cost led us to focus on affordabil-
ity, exploring consumer-grade dash cams and cloud-based
processing as a scalable alternative.

10.3 Cloud-Based Vehicle Tracking Sys-
tems

Platforms like Samsara Fleet Tracking [13] and Geotab
[14] use GPS and cloud computing for real-time vehicle
monitoring. Their scalable cloud infrastructure influenced
our cloud-based approach, ensuring efficient real-time li-
cense plate matching and law enforcement alerts.

11 SUMMARY

11.1 Future Work

Several enhancements can extend PlatePatrol’s capabil-
ities and impact. On the edge, upgrading to more advanced
single-board computers or integrating dedicated AI acceler-
ators could improve inference speed and enable additional
models, such as vehicle make/model classification or color
recognition. From a hardware perspective, designing a cus-
tom PCB could simplify wiring, improve reliability, and
reduce form factor. Likewise, a more durable and compact
enclosure would enhance heat dissipation, weather resis-
tance, and overall usability in real-world driving environ-
ments.

For cloud-side infrastructure, replacing the Blues Note-
hub with a more flexible cellular module could eliminate
current payload constraints and streamline the image up-
load pipeline.

To expand real-world applicability, future iterations
could support integration with national law enforcement
databases and provide jurisdiction-based access control. A
broader deployment would benefit from scalable provision-
ing workflows to register and manage new dash cams, as
well as robust analytics for alert auditing, system health
monitoring, and usage tracking across agencies or regions.

11.2 Lessons Learned

Throughout the development of PlatePatrol, we learned
the importance of balancing technical ambition with practi-
cal design. Early in the project, our focus was heavily tilted
toward individual subsystems—achieving high ALPR accu-
racy, designing a reliable power supply, or optimizing cloud
performance. However, as we moved toward full system
integration, we realized that a successful product depends
equally on how these components interact in real-world con-
ditions.

One major takeaway was the value of thinking like both
engineers and designers. Engineering solutions must be
robust, but they also need to be intuitive, maintainable,
and user-aware. For example, designing a one-switch opt-
in mechanism for ALPR addressed not just privacy policy
but actual driver behavior.

Integration was another key lesson. Building subsys-
tems in isolation led to unforeseen issues when combining
them, especially when network latency, hardware timing, or
asynchronous logic were involved. In response, we adopted
earlier testing with mock APIs, tighter feedback loops, and
incremental integration milestones. This significantly re-
duced the complexity of debugging and improved final sys-
tem reliability.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• ALPR – Automatic License Plate Recognition

• API – Application Programming Interface

• AWS – Amazon Web Services

• DC – Direct Current

• FPS – Frames Per Second

• GPS – Global Positioning System

• HTTP – Hypertext Transfer Protocol

• KMS – Key Management Service

• LoRa - Long Range

• mAP – Mean Average Precision

• OCR – Optical Character Recognition

• PCB – Printed Circuit Board

• RDS – Relational Database Service

• RPi – Raspberry Pi

• SD – Secure Digital

• S3 – Simple Storage Service

• SQL – Structured Query Language

• TTL – Time To Live

• UPS – Uninterruptible Power Supply

• VPN – Virtual Private Network

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 11 of 14

References

[1] Coplogue. How Automatic License Plate Recogni-
tion (ALPR) Technology Has Transformed Law En-
forcement. Jan. 2025. url: https : / / coplogue .

com / 2025 / 01 / 07 / how - automatic - license -

plate - recognition - alpr - technology - has -

transformed-law-enforcement/.

[2] C. S. Koper and C. Lum. “The Impacts of Large-Scale
License Plate Reader Deployment on Criminal Inves-
tigations”. In: Police Quarterly 22.3 (2019), pp. 305–
329. doi: 10.1177/1098611119828039.

[3] National Center for Missing Exploited Children.
2023 AMBER Alert Report: Analysis of AMBER
Alert Activations in 2023. Tech. rep. National Cen-
ter for Missing Exploited Children, 2024. url:
https://www.missingkids.org/content/dam/

missingkids/pdfs/2023_Annual_AMBER_Alert_

Report.pdf.

[4] A. Harlin. A Guide to Vehicle Power Outlets. Feb.
2024. url: https://www.carparts.com/blog/a-
guide-to-vehicle-power-outlets.

[5] An Act Amending Title 75 (Vehicles) of the Penn-
sylvania Consolidated Statutes. 2021. url: https :

//www.legis.state.pa.us/CFDOCS/Legis/PN/

Public/btCheck.cfm?txtType=PDF&sessYr=2021&

sessInd = 0 & billBody = H & billTyp = B & billNbr =

0133&pn=0099.

[6] Digitpol. Stolen Car Database. https://digitpol.
com/stolen-car-database. Accessed: 2025-05-02.
2025. url: https://digitpol.com/stolen-car-
database.

[7] WeTip. Submit a Crime Tip Anonymously. https:
//www.wetip.com/submit- a- crime- tip/. Ac-
cessed: 2025-05-02. 2025. url: https://www.wetip.
com/submit-a-crime-tip/.

[8] Aliza Vigderman and Maya Afilalo. The State of Hit-
and-Runs in the U.S. AutoInsurance.com, last ac-
cessed April 30, 2025. Apr. 2025. url: https://www.
autoinsurance.com/research/hit-and-run/.

[9] F. Elmenshawii. Large License Plate Detection
Dataset. 2024. url: https : / / www . kaggle . com /
datasets / fareselmenshawii / large - license -

plate-dataset.

[10] A. Lenka, E. Szabo, and E. Lee. Team A4: AutoAlert.
Carnegie Mellon ECE Capstone, Fall 2024. 2024.
url: https : / / course . ece . cmu . edu / ~ece500 /
projects/f24-teama4/.

[11] Rekor Systems. Rekor Scout: Vehicle Recognition
Platform. 2025. url: https://www.openalpr.com/
software/scout.

[12] Leonardo US Cyber and Security Solutions. ELSAG
License Plate Reader Products. 2024. url: https:
//www.leonardocompany-us.com/lpr/products.

[13] Samsara. Samsara for Logistics. 2025. url: https:
//www.samsara.com/industries/logistics.

[14] Geotab. Fleet Dash Cams: Enhance Safety with AI-
Powered Video Solutions. 2025. url: https : / /

www.geotab.com/fleet-management-solutions/

fleet-dash-cams/.

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 12 of 14

F
ig
u
re

2
:
D
a
sh

C
a
m

&
A
L
P
R

B
lo
ck

D
ia
g
ra
m

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 13 of 14

Figure 3: Central Server Block Diagram

18-500 Design Project Report: Team B2 “PlatePatrol” - 2 May 2025 Page 14 of 14

F
ig
u
re

4
:
G
a
n
tt

C
h
a
rt

