

### The Problem and Our Solution





National Cyber Tip Lin

#### Stolen Car Database

Stolen Car Database is an international database of stolen vehicles such as cars, boats, motorbikes, and trucks. This International stolen vehicle database contains the registration of stolen, wanted, and embezzled vehicles from USA, UK, Europe, Asia, Africa and Pacific. By listing a stolen vehicle in the international stolen vehicle database, a car, motorbike, boat, camper, plant or a truck into Digitpol's stolen vehicle database, this will enable, immediately the vehicle to be visible across a wide range of social media platforms, on the internet and shared with Digitpol's investigation partners.

Add a Stolen Vehicle To This Database

Digitpol Stolen Car Database

Everything You Need to Know About Mobile Amber Alerts

## **Use Case and Design Requirements**

#### Ease-Of-Use



- Hands-free operation
  - Initial installation < 10 minutes</li>
  - No further driver interaction required

#### **High Accuracy**



- End-to-end accuracy [1] >= 80%
  - Detection >= 90% mAP50
  - OCR >= 90% accuracy



#### **Low Latency**

- Critical path latency (frame capture to tip line notification) < 1.1s</li>
  - Detection <= 200ms</li>
  - OCR <= 50ms</li>
  - Watchlist query <= 500ms</li>
  - Image upload <= 300ms</li>

#### **Privacy & Security**

- Switch-based opt-in/out control
  - Setting update <= 1s</li>



- Law-compliant data retention policy
  - Data at rest erased or encrypted (retain 21 days)
  - Data in transit encrypted
  - Access control w/ authentication

# **Solution Approach**



#### **End-to-End Integration**

- Recording & ALPR dual functionality
- Powered via car cigarette lighter

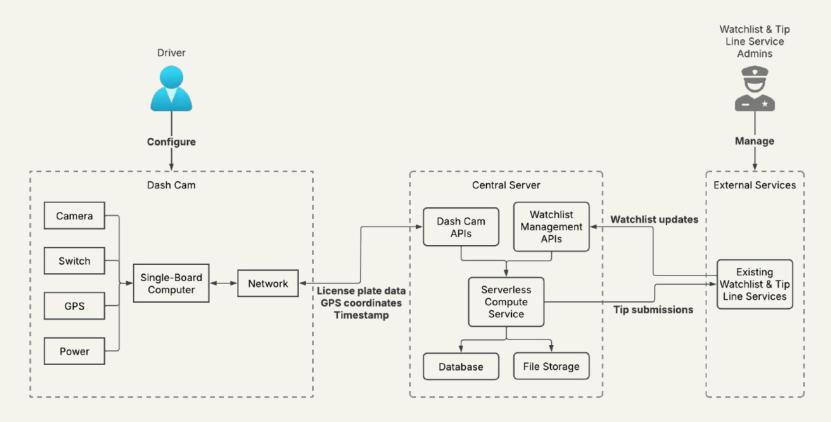


# Near Real-Time Processing

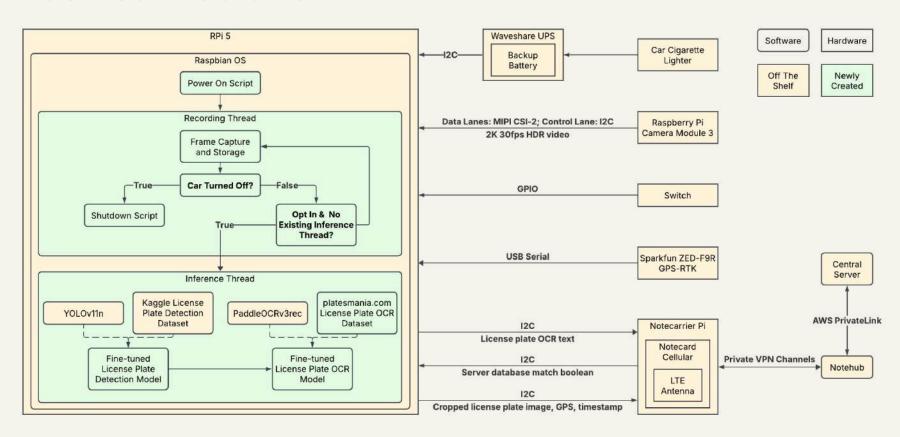
- On-device ML
- Minimized server communication



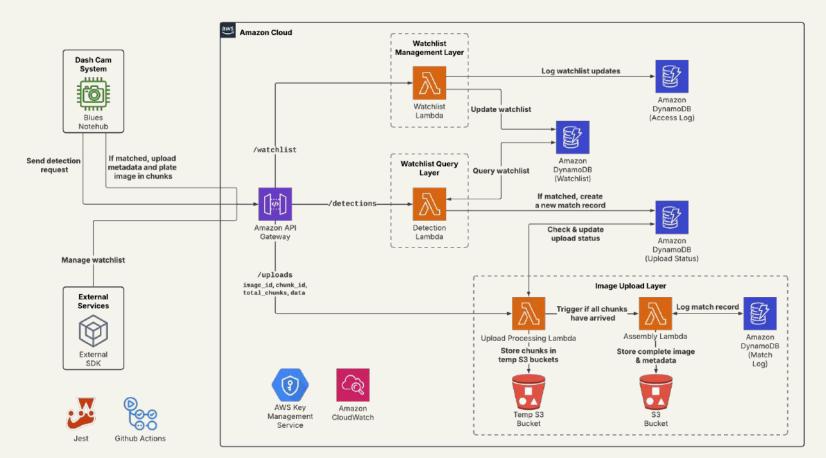
#### Distributed Cloud Server


- Serverless
   Lambda-based architecture
- RESTful APIs w/ caching




# Privacy and Security Commitment

- Instant opt-in/out
- API key-based access control
- Data encryption w/ AWS KMS & PrivateLink


# **Complete Solution**



### **Dash Cam Solution**



### **Central Server Solution**



# **Dash Cam Testing**

| Test Plan              |                                                                                                           | Requirement                                                                                                          | Result                                                                                                  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Basic<br>Functionality | <ul> <li>Weigh the dash cam</li> <li>Power via car cigarette lighter for a 30-minute road test</li> </ul> | <ul> <li>&lt; 1.5lbs weight</li> <li>Powered via car cigarette lighter</li> <li>1-minute continuous clips</li> </ul> | <ul> <li>0.77lbs weight</li> <li>Confirmed that power and storage function as expected</li> </ul>       |  |
| Ease-Of-Use            | Measure install, startup,<br>and shutdown time<br>across 5 trials                                         | <ul><li>&lt; 10 minutes installation</li><li>&lt; 30s startup/shutdown<br/>script execution latency</li></ul>        | <ul> <li>5 minutes installation</li> <li>41s startup latency</li> <li>332ms shutdown latency</li> </ul> |  |
| Privacy                | Measure the time from toggling the switch to starting/pausing inference across 10 trials                  | <= 1s opt-in/out latency                                                                                             | < 1s opt-in/out latency<br>(instantaneous)                                                              |  |

# **ALPR Testing**

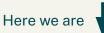
|                       | Test Plan                                                                            | Requirement     | Result                               |  |
|-----------------------|--------------------------------------------------------------------------------------|-----------------|--------------------------------------|--|
| Detection<br>Accuracy | Evaluate the detection<br>model on 386 real-world<br>images                          | >= 90% mAP50    | 90.4% mAP50                          |  |
| OCR Accuracy          | Evaluate the OCR model<br>on 4000 synthetic and<br>1000 real-world images            | >= 90% accuracy | 93.2% accuracy                       |  |
| Process Rate          | Measure the time from capturing a frame to outputting an OCR result across 10 trials | >= 2fps         | 3.9fps • 123ms detection • 134ms OCR |  |

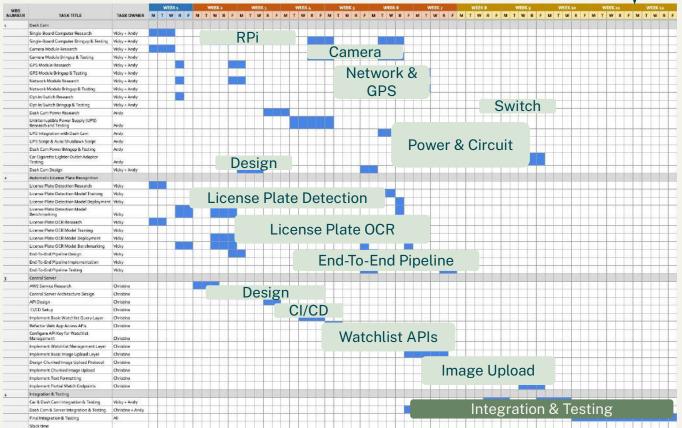
## **End-To-End Testing**

|                          | Test Plan                                                                                                                      | Requirement                                                                                                                                        | Result                                                                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| End-To-End<br>Accuracy   | <ul> <li>Evaluate the ALPR pipeline on 5000 real-world images</li> <li>Conduct a 30-minute road test</li> </ul>                | >= 80% accuracy                                                                                                                                    | <ul> <li>79% accuracy with test dataset</li> <li>100% accuracy with road test, additional 468% plates recognized [1]</li> </ul>                         |
| Critical Path<br>Latency | Measure the time from capturing a frame to submitting a tip across 10 trials                                                   | < 1.1s latency                                                                                                                                     | <ul> <li>8.06s total latency</li> <li>123ms detection</li> <li>134ms OCR</li> <li>469ms watchlist query [2]</li> <li>7332ms image upload [3]</li> </ul> |
| Security                 | <ul> <li>Inspect data storage<br/>after a 30-minute road<br/>test</li> <li>Attempt unauthorized<br/>server requests</li> </ul> | <ul> <li>Data at rest erased or encrypted (retain 21 days)</li> <li>Data in transit encrypted</li> <li>Access control w/ authentication</li> </ul> | <ul> <li>Confirmed secure erase and encryption</li> <li>Unauthorized requests rejected</li> </ul>                                                       |

<sup>[1]</sup> The driver identified 25 license plates while driving. All 25 plates were correctly identified by the dash cam. In addition, the dash cam detected an extra 117 license plates that the driver was unable to observe while driving. [2] From the server log, the average API response time is 33ms with a 500 entries watchlist. This means 436ms out of 469ms is attributed to Blues network overhead.

<sup>[3]</sup> From the server log, the average API response time is 132ms per 2KB chunk. For an average cropped image (5KB), it contains 3 chunks. This means 6936ms out of 7332ms is attributed to Blues network overhead.


# **Design Trade-Off Highlight**


| Approach  |       | ML                 |           |                                                                                                          |                                      |
|-----------|-------|--------------------|-----------|----------------------------------------------------------------------------------------------------------|--------------------------------------|
| Detection | OCR   | Watchlist<br>Query | Latency   | Network Load                                                                                             | Concerns                             |
| Cloud     | Cloud | Cloud              | 20ms [1]  | • Frequent full image (~162KB) upload (470s)                                                             | Network<br>bandwidth                 |
| Edge      | Cloud | Cloud              | 129ms [2] | • Frequent cropped image (~5KB) upload (7.3s)                                                            | Network<br>bandwidth                 |
| Edge      | Edge  | Edge               | 257ms     | <ul> <li>Moderate watchlist sync (2.16s [3])</li> <li>Rare cropped image (~5KB) upload (7.3s)</li> </ul> | Security & watchlist synchronization |
| Edge      | Edge  | Cloud              | 257ms     | <ul> <li>Frequent watchlist query (469ms)</li> <li>Rare cropped image (~5KB) upload (7.3s)</li> </ul>    | 1                                    |

<sup>[1] 14</sup>ms detection on Nvidia T4 GPU in TensorRT format, and 6ms OCR on Nvidia T4 GPU in Paddle format.

<sup>[2] 123</sup>ms detection on RPi 5, and 6ms OCR on Nvidia T4 GPU in Paddle format.

### **Schedule**











Central Server

