

Crowdsourced Automatic License Plate Recognition (ALPR) Network

Team B2: Christine Li, Vicky Liu, Andy Zhao

The Challenges of Existing ALPR Systems

SU 89.7 NPR News | July 31, 2023 Police LPR Unit, Lehigh County, PA

The cost to implement a mobile te Recognition (LPR) existing enforcement nge from \$50,000 to deployment

cost

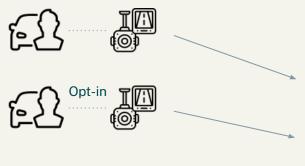
sity of Traverse City, Michiga

PA Turnpike

https://www.engadget.com...26-amber-alert-expla iner.html

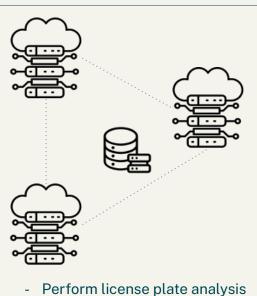
"The LPR System Pays For Itself": An Interview With Detective Sal Aprile

Leonardo I PR Product News

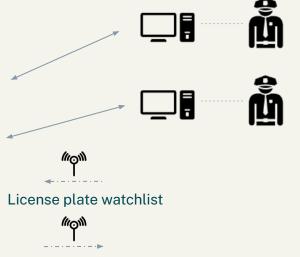

Our Solution: Crowdsourced ALPR Dash Cam Network

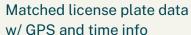
Enhanced Dash Cam System

ECE Areas: Software Systems, Hardware Systems


Distributed Server System

Law Enforcement Portal





- License plate data
- **GPS** coordinates
- Date & time

- Store police watchlist
- Match plates against police watchlist database

Use Case Requirement

Dash Cam Requirements

Power: 12V DC

Weight: < 1.5lbs

Storage: Compatible with SD cards and supports loop recording

Hands-free operation

Privacy: Opt-in feature

Performance Metrics

ALPR Accuracy: ≥ 90% [1]

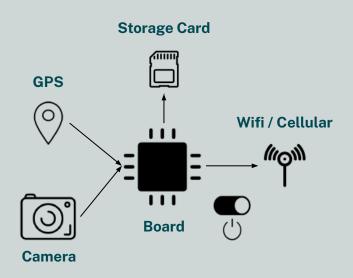
Capture-to-Alert Latency: < 1.1s [2]

Critical Path: Capture → Transfer → Process

Security: End-to-end encryption for all data transmission

Scalability: Support up to 314k [3] active dash cams

Industry benchmark


^{[2] 1000}ms Raspberry Pi to server transfer latency for 1080p30fps video + 100ms image processing latency (field testing) = 1.1s latency

^{[3] 6378.5}k employed in PA * 68.7% of employee drive to work * 15% of drivers use dash cams * 47.7% of the dash cam market is advanced dash cam = 314k active advanced dash cams during peak hour in PA

Technical Challenges

Challenges		Risk Mitigation	
01	Ensuring license plates are legible in varying conditions		 Edge detection Noise reduction Motion stabilization Adaptive preprocessing
02	Meeting the end to end latency requirement		 Offload heavy computation Parallel processing with a network of servers
03	Managing real time data from high volume active cameras		 Load balancer Simulate high traffic and resolve bottlenecks
04	Protecting user privacy while ensuring law enforcement access		 Data encryption Opt-in Clear user consent Anonymous GPS locations Data retention policy

Solution: Dashcam Hardware Choices

Edge Computing Devices

- RPi 4
- RPi 5 (Al support)

Jetson Orin Nano

Camera Modules

- RPi Camera Module 3, 12MP
- RPi Al Camera, 12MP
- RPi High Quality Camera,
 12MP
- RPi Global Shutter Camera, 1.6MP

• IMX219 Camera Module, 8MP

GPS Modules

PA1616S for RPi

GPS-18037 for Jetson

Solution: System and Webapp

License Plate Detection Model + OCR Model

- Finetune open source library
 (OpenALPR [1], FastALPR [2], EasyOCR
 [3], etc.)
- Training our own model w/ dataset
 (OpenALPR Benchmark [4], etc.)

Law Enforcement Web Portal

- Backend: RESTful APIs, WebSocket, microservices architecture
- Frontend: React

Database and Cloud Service

- NoSQL database (MongoDB etc.)
- AWS, GCP, Azure, etc.

Security

 End-to-end encryption for all data transmission

^[1] https://www.openalpr.com/

^[2] https://github.com/ankandrew/fast-alpr

^[3] https://github.com/JaidedAl/EasyOCR

^[4] https://github.com/openalpr/benchmarks/tree/master/endtoend/us

Testing

Dash Cam Unit Tests

Weight < 1.5lbs?

12V DC power supply compatible?

Footage loop recorded and stored in SD card?

Hands-free operation?

Opt-in feature?

Integration Tests

Capture-to-alert latency < 1.1s when connected?

Supports up to 314k active dash cams?

90%+ ALPR accuracy for human-visible plates?

Personal data securely encrypted?

Testing Milestones

Stage 1

Proof of concept testing

Stage 2

Basic dash cam functionality unit testing Stage 3

Single stationary dash cam integration testing

Stage 4

Multiple dash cams field testing

Stage 5

Load testing

Day, tilted, correct identification

Night, glaring, incorrect identification

Day, rainy, incorrect identification

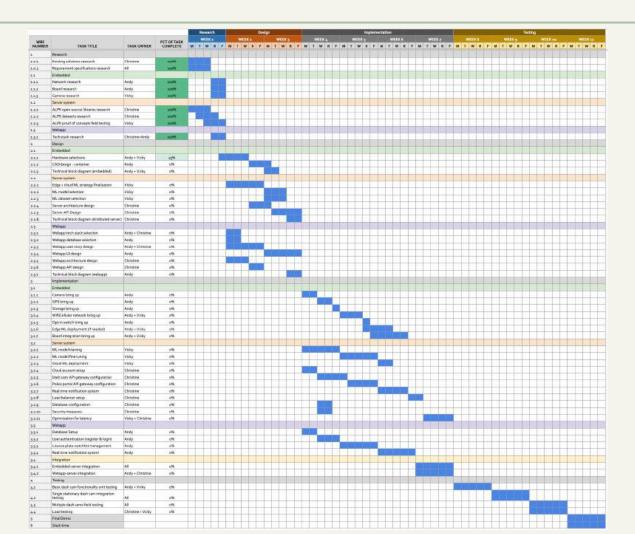
Day, sunny, correct identification

Division of Labor

Christine Li

- Distributed cloud infrastructure
- Distributed server API gateway
- Data transport

Vicky Liu


- Image processing pipeline (ML)
- Embedded dash cam
- Data transport

Andy Zhao

- Web app
- Embedded dash cam
- Data transport

Gantt Chart

Real-Time Coverage, Real-World Impact

