A Use Case CookAR B **Use-Case Requirements Technical Challenges** Diya Handa, Rebecca Dettmar, Charvi Hoysal Solution Approach E Testing, Verification, Metrics F Tasks & Labour Division G Schedule

USE CASE

Cooking can be overwhelming, requiring constant checking of screens or recipe books. Current solutions lack hands free guidance and accessibility. Target AudienceABeginner cooksBBusy individualsCIndividuals with
accessibility needs

CookAR's Solution

AR based hands-free cooking assistant that displays step by step instructions. The system tracks progress through gesture

recognition.

USE CASE REQUIREMENTS

Requirement	Target Value	Justification & Rationale
Gesture Recognition Accuracy	\geq 90% gesture recognition accuracy	Ensures hands-free navigation without errors. Based on Google Mediapipe, which achieves >90% real-time accuracy
AR Overlay Clarity	Readable at 30–50 cm (distance from glasses).	Matches focus range of AR devices (e.g., Microsoft HoloLens) for clarity and reduced eye strain.
Glasses Weight	≤ 150g	Matches current lightweight AR headsets on the market. Nreal Air(79g), Google Glass (50g). Comfortable for duration of cooking
Latency	< 200ms latency between steps	Maintains real time interaction. Industry standard for AR systems
Battery Life	\geq 2 hours or a continuous power option	Supports typical 1-2 hour cooking sessions without interruptions
Wireless Stability	10-meter Bluetooth range	BLE ensures low latency, reliable communication for typical kitchen distances
Step-by-Step	Recipes broken into ≤ 10 steps	Reduce cognitive load and simplify the cooking process. Supported by <u>usability studies</u> for task based guidance
Recipe Database	100 sanitized beginner recipes	Provides variety and is manageable for pre-processing and testing.

USER SAFETY REQUIREMENTS

Physical Safety

- \Box Glasses weight limited to ≤ 150 g
- □ Materials used for 3D printing will be lightweight, skin safe

Thermal Safety

- □ Active monitoring of temperature sensors in microcontroller
- □ Microcontroller can operate up to 85°C. Will have ventilation

and low power components Electrical Safety

B

- Low voltage batteries
- □ Insulated devices to prevent short circuits or surges

TECHNICAL CHALLENGES

Gesture Recognition

Why Reliable detection in cluttered or dim environments

Risk Mitigation Plan:

Use pre-trained models and diverse environment testing

Wireless Communication

Why

BLE interference and

disconnections

Risk Mitigation Plan:

Automatic reconnection and local data storage

AR Overlay Visibility

Why

Lighting and readability issues

Risk Mitigation Plan:

Adjustable brightness and

high-contrast text.

Weight of Glasses

Why Additional hardware risks making glasses heavy Risk Mitigation Plan: Offload processing to the microcontroller and use lightweight materials **Step Latency**

Why

Disrupts cooking flow

Risk Mitigation Plan:

Optimize TensorFlow Lite and

reduce processing load

SOLUTION APPROACH

TESTING, VERIFICATIONS, METRICS

- Gesture Tracking

- Functional with local camera
- Functional with camera on glasses
- Functional interaction with AR display
- >= 90% accuracy

- Web Application

- Functional basic application
- Functional networking
- Functional recipe input to database
- User testing
- AR Display
 - Graphics properly rendering to AR Display
- Physical Glasses
 - User testing for wearability
 - < 150g weight
 - > 2hr battery life

Connectivity

- Functional bluetooth connection between glasses and webapp
- Able to send correctly formatted data to webapp
- Connection working in 10 meter range
- Functional communication between camera and microcontroller
- Functional communication between display and microcontroller
- < 200ms latency for full interaction cycle between user gesture and AR display update
- API response time <1 second on webapp
- Successful recipe render to AR display

Tasks and Division of Labour

Task	Team Member
 Construction of glasses 3D printing frame Physical part integration Device microcontrollers 	Rebecca
 Web App Backend framework Frontend design Integration with CV processing 	Charvi and Diya
 Hand Gesture Recognition Integration of datasets/libraries Integration with camera data 	Diya
 AR Overlay in Unity Design overlay Integration with web app Mapping overlays to physical lens 	Charvi

GANTT CHART

							February					Ma	rch		April			
							Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4
						Webapp basic functionality			6									
						Webapp networking functionality		Ģ										
						set up webapp databases												
				٦.		recipe reading from user input into database												
Gantt G	Web A	leb Application				create functional and polished UI												
	Gestur	re Tracking				gesture tracking with local camera												
	Device	85				gesture tracking functional with external camera on glasses						- -						
	AR Dis	AR Display				gesture tracking functional with AR display on glasses												
	Testing	g and Integrati	on			microcontroller connected to camera												
	Blanks	s are slack time			· .	microcontroller connected to AR display												
						AR display basic functionality						-						
].		AR renders recipes from webapp DB												
				2		physical glasses frame designed												
				5		physical glasses printed and assembled]							
	2		÷	2		. full integration									*			
				3		- final intergration testing and debug									Ģ		\supset	
						. User testing												