

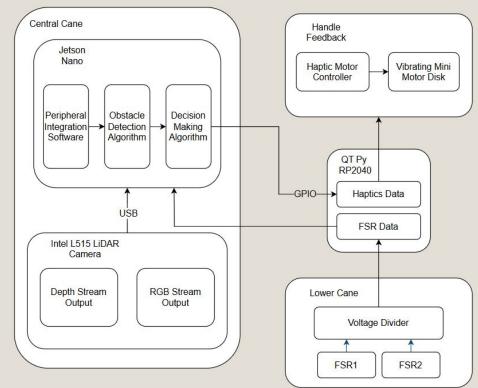
CurbAlert

PROJECT MANAGEMENT

Team A7

Kaya Akinci Cynthia Meah Maya Voelkl

USE-CASE/DESIGN REQUIREMENTS


2

USE-CASE REQUIREMENT	DESIGN REQUIREMENT
Detect common indoor obstacles like chairs, tables, and people within walking distance	Computer vision system (YOLOv8 + RealSense) with reliable object detection at ≥ 2.3 meters (7.5 ft)
Detect non-object indoor hazards such as walls and stairs	Accurate fine-tuned object detection system to identify stairs and wall detection using depth data
Provide clear, non-visual feedback to the user when an obstacle is detected	Haptic motor system delivers distinct vibration patterns based on detected obstacle (walls, objects, stairs)
Only run when the cane is pointed in direction of user's path	Force-sensitive resistors (FSRs) on cane tip trigger detection on/off based on ground contact
Compact, robust, unobtrusive design	All components (camera, jetson, haptics, QT Py, power supply) mounted on cane with total weight below 5 lbs
Minimal latency between obstacle detection and feedback	End-to-end delay under 2 seconds

PROJECT MANAGEMENT

SOLUTION APPROACH (HARDWARE UPDATES)

- Power adjustments
 - Smaller power bank: Our Jetson is a developer kit, does not have super mode (19V), takes 5V.
 - New power bank is 5V 3A instead of 20V.
 - Need to connect with barrel jack not USB-C
- Used QT-Py for integrating haptics and FSR
- Used remote ssh for remote debugging
- Woodshopped remaining pieces

SOLUTION APPROACH (SOFTWARE UPDATES)

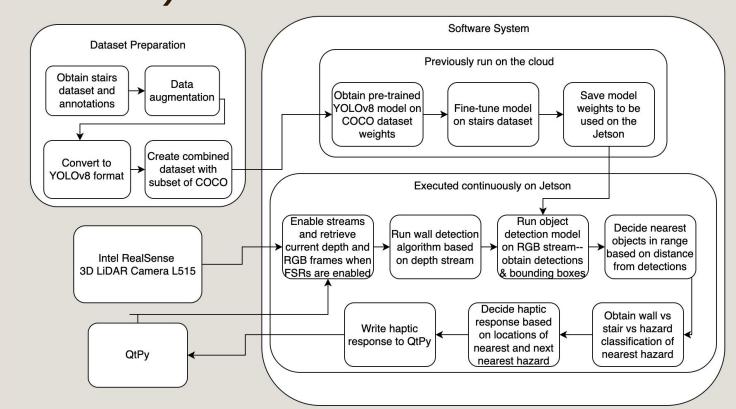
 LiDAR depth stream has frequent unavoidable holes with no distances

4

- Lower system accuracy, implemented workarounds
- Made object detection only reliant on RGB stream
- Fine-tuning "catastrophic interference"

Ο

REQUIREMENTS


SOL UT I ON APPROACH

SOLUTION APPROACH (SOFTWARE UPDATES)

5

	PROBLEM	SOLUTION APPROACH UPDATE	
	LiDAR depth stream has frequent unavoidable holes with no distances – lower stream accuracy	 Implemented workarounds ignoring distance holes Sacrifice some accuracy Made object detection only reliant on RGB stream 	
	Fine-tuning "catastrophic interference"	 Implemented changes to training process to minimize catastrophic forgetting Freezing previous layers, hyperparameter optimization, including subset of COCO dataset, stopping training early before overfitting Still does not outperform current solution Current solution: Single-class fine-tuning 	
-	Worse performance on different lightings and indoor environments	 Implemented data augmentation for training dataset used for fine-tuning Complex transformations such as shadow augmentation, saturation and hue changes, blur and noise additions, and contrast changes 	

SOLUTION APPROACH (SOFTWARE UPDATES)

COMPLETE SOLUTION

Public Demonstration Plan:

- Allow the user to walk around
- Set of stairs used to demonstrate our fine-tuned model and stairs feedback
- In a different direction we will have a chair and a person, which will demonstrate the priority we have given to closer objects
 - We will use the wall to show wall detection
 - We will have a display to show what is happening in the background

TESTING (METHODS & MITIGATIONS)

	SUBJECT	METHOD	
	Obstacle Detection	Place chairs/walls/steps at measured distances; check detection time and confidence	
	Depth Data	Mark positions in real world (2–7.5 ft), compare RealSense depth readings	
contact; s		Test voltage threshold for ground contact; step on/off tests with oscilloscope and serial output	
	Haptic Feedback	Verify vibration patterns match detection types	
	Latency	Measure amount of time between hazard being in detection range and start of haptic response	

Trade-offs:

- Power and performance
- Accuracy vs FPS

•

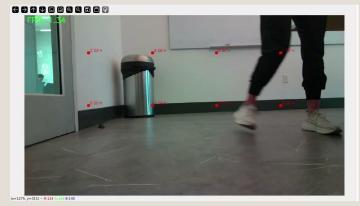
PROJECT MANAGEMENT

TESTING (METHODS & MITIGATIONS)

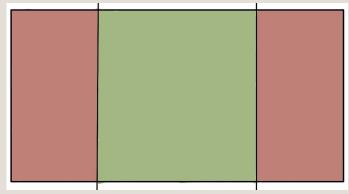
9

SUBJECT	METHOD	
Obstacle Detection	Place chairs/walls/steps at measured distances; check detection time and confidence	
Depth Data	Mark positions in real world (2–7.5 ft), compare RealSense depth readings	
FSR	Test voltage threshold for ground contact; step on/off tests with oscilloscope and serial output	
Haptic Feedback	Verify vibration patterns match detection types	
Latency	Measure amount of time between hazard being in detection range and start of haptic response	

PROJECT MANAGEMENT


TESTING (TRADE-OFFS)

INTRO


SUBJECT	TRADE-OFF
Jetson Super Mode	Used developer kit for Jetson, disallows super mode. Lowered power consumption from 19V to 5V. Sacrificed speed (lowered FPS to <5) and increased latency.
Power Bank	Decreased weight from 1.11 lbs to 0.4 lbs. Decreased battery life from 10 hours to ~2.5 hours.
Display for Demo	Significant lag when displaying stream on laptop – FPS lowers to ~1.5 (haptic responses do not lag).
Training model	Balanced performance and memory usage – slightly lower performance (not fully optimized hyperparameters) for reduced training time and smaller memory demands.

TESTING (OBSTACLE DETECTION)

TEST	EXPECTED	RESULTS
Object Detection on varying distances	90%	92% (46/50 True Positives, 0/50 False Positives)
Object Detection on Steps	90%	100% (50/50 True Positives)
Object Detection on Walls	90%	94% (47/50 True Positives) Mainly inaccurate on slanted walls where 1 side is too close)
Differentiation	90%	88% (44/50 True Positives) Inaccurate in cases where person is standing on stairs

11

INTRO

SOLUTION

COMPLETE

TESTING (INTEGRATION)

12

ш	\geq
F	ō
ш	н
_	E
₽	2
3	H
8	8
8	SO

TEST	EXPECTED	RESULTS
Haptic Response with Object Detection	95% Deterministic	100% Deterministic
Latency (time from hazard being in frame to haptic response playing)	Up to 2 seconds	To be tested

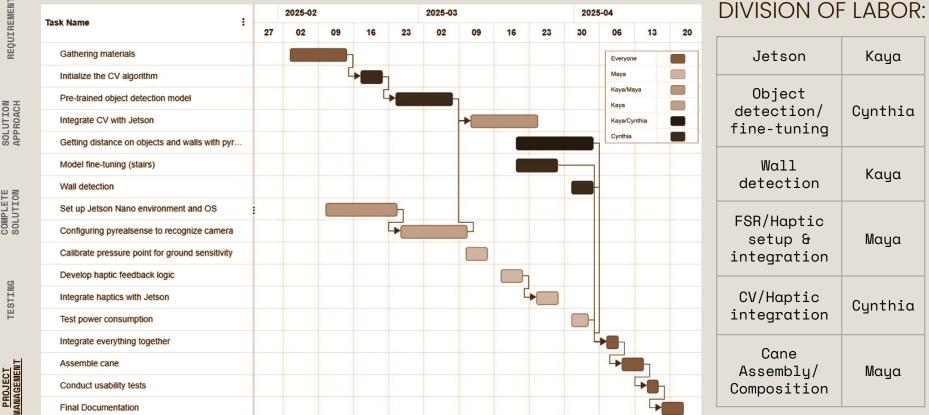
SOL UT I ON APPROACH

TESTING (INTEGRATION + FSR)

INTRO

2	Ŧ	
ō	5	
H	A	
느	2	
	5	
5	E.	
ō	-	

TEST	EXPECTED	RESULTS
Haptic Response with Object Detection	95% Deterministic	100% Deterministic
Latency	Up to 2 seconds	To be tested
Weight	Up to 5 lbs	4.7 lbs
FSR	95%	96% Accuracy (48/50 True Positives, 0/50 False Positives) Only inaccurate on carpets with no additional pressure



TESTING (FSR + Weight)

INTRO

TEST	EXPECTED	RESULTS
Weight - Jetson, haptic controller and wires, RealSense camera, power bank, cane composition, FSRs	Up to 5 lbs	4.72 lbs
FSR (100 tests) - 10 tests each on carpet, vinyl flooring, concrete, stairs, with no pressure (standing cane), and with pressure (added weight by user on cane)	95%	96% Accuracy (48/50 True Positives, 0/50 False Positives) Only inaccurate on carpets with no additional pressure

PROJECT MANAGEMENT

15

INTRO

SOL UT ION APPROACH

COMPLETE SOLUTION

Empowering Independence Through Technology.