

Use Case

- **Problem:** Using both a white cane and a walking cane limits independence, reduces balance, and makes it difficult to react quickly in case of stumbling.
- **Solution:** a multi-functional walking cane that provides both stability for mobility support and navigation assistance for detecting surrounding objects, curbs, and steps.
- The cane integrates radars, pressure points, and vibration or auditory alerts to detect obstacles and elevation changes, and alert the user.
- ECE Areas: Software, Hardware, and Signals.

Use-case Requirements

- Distance of Detection
 - Detection range of 2-7.5 feet (Based on typical stride length)
 - Allowing for an appropriate amount of time to take action/avoid object
- Detecting categories of obstacles
 - Indoor obstacles including objects, walls, steps
- Percentage accuracy of detection for objects in user's path within specified distance of detection
 - 95% based on similar project findings
 - Not 100% because of speed vs accuracy trade offs and miscategorization of obstacle
- Distinct haptic feedback
 - Vibrations are more reliable than audio feedback for elderly people

Use-case Requirements

- Minimum latency for detecting object
 - At most two seconds of delay between an object being in the specified range and a response sent to the user
 - Based on average walking speeds
- Weight requirement
 - \circ 5 lbs considering the technology and the elderly users
- Battery life
 - Moderate to full load for 2 hours
 - \circ Average healthy older user expected to walk 30 mins to 2 hrs a day
- Ease of use and stability from cane

Technical Challenges

- Object (wall/step) detection
 - Differentiating between relevant/irrelevant obstacles
- Accounting for dynamic movement as the cane is picked up and repositioned
 - Stationary scan time of the LiDAR camera
 - Movement of picking up and moving the cane
- Haptic feedback must be provided within 2 seconds of detecting an obstacle
- Pressure sensor accurately detecting ground contact to trigger obstacle detection
- Integration

Solution Approach

- Areas: Software, Hardware
- Key Items: LiDAR Camera L515, NVIDIA Jetson Nano, Pressure Pad (Force Sensitive Resistor), 4-Point Cane, Haptic Feedback (Vibration Motor)
 - LiDAR data sent to software when pressure pads are activated through Jetson Nano.
 - Two force sensitive resistor on diagonal corners of cane
- Software will parse through data and make decisions accordingly
- Hardware Protocol
 - UART for processing Radar data and sending pressure data

Solution Approach (cont.)

Intel RealSense LiDAR camera L515

- High depth accuracy: ~5 mm to ~14 mm thru 9 m^2
- Large range of detection: .25 m to 9 m with 70° × 55° depth FOV
- Allows for computer vision and object detection

Jetson Nano

- High Power: 5-10 W
- Processing Speed: 128-core Maxwell GPU
- Allows for efficient computing with CV/Al applications

Testing/Verification/Metrics

- 1. Computer vision with LiDAR camera
 - Object detection on 19 out of 20 objects (\geq 95%)
 - Step detection on 19/20 step objects (\geq 95%)
 - Ignoring non-testabile objects (flooring change, wrappers, etc.), should detect at most 1/20 times (≤ 5%)
 - Range of detection should fall within 2-7.5 feet
- 2. Pressure pads
 - Pressure pad can detect off ground vs on ground
 - Pressure pad enabling
 - On 2 different pressure spots, the FSR should detect at least 19/20 times (\geq 95%)

Testing/Verification/Metrics pt. 2

- 3. Haptics
 - Haptic responses can have 4 distinct vibration patterns
 - Haptic responses are deterministic and dependent on the decision making algorithm
- 4. Final composition
 - After assembling the cane, the weight should be \leq 5 lbs.
 - When detecting 20 results, we want a mean latency detection time of \leq 2 seconds.
- 5. Power Consumption
 - Power source/battery should be able to support high usage of Jetson Nano, LiDAR camera, FSRs
 - Must successfully detect objects and obstacles for a minimum of 2 hours

Tasks/Division of Labor

Kaya	Cynthia	Мауа
 Focus: Jetson/Peripherals Jetson Initialization Integration of Jetson to other devices (Pressure Pads, Haptics) Composition of Cane 	 Focus: Computer Vision Detection CV algorithm for detection of walls/objects Integration of CV to response 	 Focus: Jetson/Peripherals Integration of Jetson to other devices (CV) Power Testing (Jetson + camera, power source) Composition of Cane

*Note: we will be working on our tasks in constant collaboration with each other

Schedule

Task Name :		2025-02				2025-03			2025-04					
	27	02	09	16	23	02	09	16	23	30	06	13	20	27
Gathering materials			1											
Initialize the CV algorithm		0												
Simple object detection			1	•	1									
Object detection with distance				C	•									
Differentiation between obstacles							•	1						
Set up Jetson Nano environment														
Calibrate pressure point for ground sensitivity														
Integrate haptics with Jetson			he he	•	1									
Develop haptic feedback logic				C	• •									
Test power consumption							> —	-						
Integrate everything together								•						
Improve processing speed to meet our require														
Assemble cane														
Conduct usability tests										Ľ				
Make any adjustments needed														
Final Documentation												C		

Empowering independence through technology.