
18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 1 of 7

Flatbed 3D Scanning
Authors: Theo Cockrell, Sophia King, Yon Maor

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—3D scanning is a developing technology
that already sees plenty of use in commercial quality
control, art and history research, and hobbyist projects.
Current state of the art falls short of an accessible price
point and at scanning small features. In this report we
outline a 3D scanning process that utilizes off-the-shelf
flatbed scanners with our open source hardware and
software to offer a less expensive, detail-focused alter-
native to existing 3D scanning solutions.

Index Terms—Computer Graphics, Hausdorff Dis-
tance, Open Source, Optics, 3D Scanning

1 INTRODUCTION

3D scanning has become an extremely useful tool in
many different fields and disciplines, from studying ar-
chaeological finds and modeling deformation to generating
assets for video games. However, 3D scanners are expen-
sive and bulky, and more affordable scanners generally have
trouble scanning small objects. This leaves a market gap
for cheap, high-resolution 3D scanning solutions, particu-
larly for use on small objects. This project implements an
open source hardware-software system that uses an exist-
ing flatbed scanner, along with our custom hardware and
software, to generate high-resolution 3D scans. The 3D
scans are computed using photometric stereo.

This project may be of interest to researchers working
in the above fields and hobbyists interested in 3D model-
ing and 3D printing. As a result, we prioritize this project
being open source and accessible, and integrate our control
software with Blender, which is ubiquitous open software
in the 3D modeling community.

2 USE-CASE REQUIREMENTS

Our primary use-case requirements are for the project
to be cheap, accessible, and have the ability to scan small
objects with high resolution. Accessibility can be quanti-
fied mainly by the cost of components, but other metrics
can be applied to measure the difficulty of assembling the
hardware and operating the software. Specifically, we aim
to have the entire system cost less than $200 (not including
the flatbed scanner, which we assume the user has access
to), and for the system to take at most 20 minutes to
assemble for a non-engineer. Additionally, we will ensure
compatibility across all major operating systems (MacOS,
Windows, Linux), and with a wide variety of flatbed scan-
ners across the major brands (Canon, Brother, HP, etc.).

Quantifying resolution in 3D is more difficult. The res-
olution of our scans depends on the DPI of the scan, and
different scanners have varying DPI capabilities. Instead
of creating a resolution benchmark, we will compare a 3D
model generated by our system at 900DPI, with those gen-
erated with common commercial 3D scanners (Afinia 3D
and Artek 3D). We will model a test object and manufac-
ture it in two different materials (3D printed plastic and
machined aluminum), then scan it with our system and
the two benchmark scanners. We will then compare each
one with the ground truth via the Metro method. We aim
to achieve accuracy at most 10% worse than the Afinia 3D
Scanner.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

3.1 Overview

Flatbed 3D Scanning relies on a process called pho-
tometric stereo to build up the 3D models. This process
illuminates an object from multiple different angles and
compares the perceived brightness at each pixel across the
different illumination angles to compute the orientation of
the surface at that pixel. A flatbed scanner is ideal for this
application because it captures images that are essentially
orthographic and maintains a constant angle between the
light source and the light sensor across all surface points.

Our system, when prompted by a blender plugin, will
scan the same object with the flatbed scanner n times,
rotating the object by a constant amount between each
scan, then rotate each image in the opposite direction to
create a set of n aligned images with different illumination
angles. We can then set up a system of equations that
relate the brightness value at a pixel to the normal vector
at that pixel. Solving for the normal at each pixel will
yield a normal map, which can be converted into a depth
map (then, trivially, to any 3D model format) via existing
tools.

3.2 Hardware

This project utilizes a manipulator that is designed to
be placed on top of an opened flatbed scanner and rotate
the object between scans. We intend to achieve this rota-
tion with a stepper motor normal to the scanner surface
that rotates a suction cup meant to hold the object with

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 2 of 7

both suction and friction. These parts will be installed on
a 3D-printed mount with free vertical movement on top of
a structure made of aluminum T-channel extrusions.

The electronics are implemented with an ESP32 that
controls a stepper motor for rotation and a DC motor air
pump for suction. This system is powered by 12 volts of
wall power and controlled by Python software using USB
serial communication .

3.3 Software

3.3.1 Control Software and UI

The control software subsystem is responsible for com-
manding the manipulator device and the flatbed scanner,
as well as communicating with the UI and the image data
processing software. The UI will be a Blender add-on that
communicates directly with the scanner controller software.

Something about the overview flow of signals between
UI, control software, manipulator device, and flatbed scan-
ner. When the user presses the start button in the Blender
add-on, it will send a signal to the control software that it
should begin. The control software then sends a command
to the flatbed scanner to take a scan. After the scan is
saved, the scanner controller receives a return signal that
the scan completed. The scanner controller then sends a
command to the manipulator device to rotate the object.
After the manipulator completes its rotation, the scan-
ner controller then sends another command to the flatbed
scanner to scan again. This repeats as many times as the
user configures, with a minimum of three scans taken.

After all the scans required are saved, they are sent
from the scanner controller to the image data processing
software. Once the image processing is complete and has
constructed a 3D model, the scanner controller will send it
to the Blender add-on, where it will be directly imported
into the Blender program for any further refinement needed
from the user.

3.3.2 Image Data Processing

This software subsystem is responsible for aligning the
scanned images, computing the object’s normal map, con-
verting the normal map to a height map / .obj, and passing
the .obj back to the blender plugin caller.

Aligning the images should be trivial, as the stepper
motor and object fixture mechanism will ensure the images
are near-perfect rotations of each other. This means that
we can simply rotate each image back by the amount the
object was rotated when the scan was taken.

The normal map is computed via photometric stereo
as described above. [add more details on the math]. This
will be implemented in a low-level language such as Rust

or C/C++, as this computation requires solving many sys-
tems of equations, which can be computationally intensive.
That said, for testing purposes we may implement a python
version first, to begin characterizing out the system early
and not bottleneck the implementation of this subsystem.

Computing a height map from a normal map is far from
trivial, but many implementations of this process exist in
open source and commercial software, as both height maps
and normal maps are common wars for communicating
3D objects. The general approach involves computing the
gradients of the normal map in x and y and then finding
the height at a given point as the indefinite surface integral
of the gradients evaluated at (x, y). This can be approx-
imated via a Reimann sum and averaged across several
gradient orientations to reduce noise from the approxima-
tion.

4 DESIGN REQUIREMENTS

The primary design requirements are for the project to
be cheap, have a simple setup procedure, generate a scan
of at least comparable quality to commercial 3D scanners,
and to automate the scanning process. Keeping all of these
in mind will ensure that we meet our use-case requirements
to make the product accessible and approachable for non-
engineer users.

The final design should be cheap to compete effectively
for its limited object scope. We aim for the final design
to cost $200 or less to create, not including the cost of
a flatbed scanner or computer which we assume the user
already has can access. This also does not include cost
of materials for scrapped prototypes. We are tracking the
expenses incurred for each part of the design and carefully
selecting parts that keep costs low while serving the needed
purpose.

To complete the setup procedure of the final design
should take under 20 minutes or less for a user who is not
an engineer, but is relatively competent with computer
technology such as installing programs and a command
line. The setup process would include setting up the ma-
nipulator device, the flatbed scanner, and the software. For
the scanner, it is the same as setting up the same scanner
for average use, following the manufacturer’s directions.
For the manipulator, the user would need to plug it into
their computer through USB-A. They would then need to
put the manipulator on top of the object they want to scan
on the flatbed scanner, ensuring the arm of the manipula-
tor is aligned with the object. Finally, the software setup
would involve installing our custom Blender add-on to a
copy of the Blender software that is on their computer.
They will need to install Blender if they have not already.

Even though it’s a budget option, we’d like our project

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 3 of 7

to have comparable quality to more expensive commercial
3D scanners. To test this, we are going to design a test
object and 3D print it to use as a benchmark for com-
paring the different 3D scanning options. Since we would
then have the exact model measurements, we can then use
Hausdorff distance to measure our benchmark model to
the project scan of our object. Finding the Hausdorff dis-
tance between our benchmark model and the commercial
3D scan as well, we can compare how accurate our project
scan is against the commercial scan.

Our project should allow scans to take place with mini-
mal user labor. After setup and inputting some parameters,
the user should be able to hit the start button and have
a completed 3D scan. The whole process of scanning and
model construction after pressing start should take less
than 6 minutes, regardless of object size as long as it’s in
scope and regardless of detail level.

5 DESIGN TRADE STUDIES

This section describes the trade-offs involved in the de-
sign process, derived from design equations and/or plotted
graphs to identify a design that satisfies the use-case re-
quirements. The trade-offs are evaluated to ensure the de-
sign meets the related design specifications. Tests to evalu-
ate the design implementation and compare it to theoretical
trade-offs will be discussed in Section 7 (Test, Verification,
and Validation).

5.1 Affordable Design

The primary trade-off in achieving an affordable de-
sign is balancing cost with performance. To keep the total
cost below $200 (excluding the flatbed scanner), we prior-
itized off-the-shelf components and open-source software.
However, this introduces limitations in terms of hardware
precision and computational efficiency. For example, us-
ing a low-cost stepper motor and suction cup mechanism
may result in less precise rotations, which could affect
the alignment of scanned images. Additionally, relying on
photometric stereo without additional sensors (e.g., depth
cameras) increases the computational complexity of the
image processing pipeline. The trade-off here is between
cost and the accuracy of the final 3D model.

5.2 Simple Setup Procedure

Ensuring a simple setup procedure for non-engineer
users requires careful design of both the hardware and
software. The trade-off lies in the complexity of the user
interface (UI) and the time required for assembly. For
instance, designing a Blender add-on for the UI simplifies
the user experience but increases development time and
effort. Similarly, the manipulator’s design must balance

ease of assembly with structural stability. Using modular
components (e.g. aluminum T-channel extrusions) simpli-
fies assembly but may require additional adjustments to
ensure precise alignment during operation. The trade-off
is between user accessibility and the engineering effort re-
quired to achieve it.

5.3 Scans of Quality

Achieving high-quality scans involves trade-offs in reso-
lution, computational resources, and scanning time. Higher
DPI scans provide more detail but require more storage and
processing power. Additionally, the photometric stereo
method relies on solving systems of equations for each
pixel, which is computationally intensive. To balance qual-
ity and performance, we use a low-level language (e.g.,
Rust or C/C++) for the image processing software. How-
ever, this increases development complexity compared to
using a higher-level language like Python. The trade-off is
between scan quality, computational efficiency, and devel-
opment time.

5.4 Automated Process

Automating the scanning process reduces user effort but
increases the complexity of the control software and hard-
ware integration. The trade-off involves ensuring seamless
communication between the Blender add-on, the manipu-
lator, and the flatbed scanner. For example, automating
the rotation and scanning sequence requires precise timing
and error handling, which adds complexity to the soft-
ware. Additionally, automating the suction mechanism
introduces challenges in ensuring consistent object fixation
during rotation. The trade-off is between user convenience
and the engineering effort required to achieve a fully auto-
mated system.

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 4 of 7

6 SYSTEM IMPLEMENTATION

6.1 Hardware

Fig 1. A CAD rendering of the manipulator. The 3D
printed electronics mount is colored yellow.

The structure of the manipulator is built from alu-
minum T-channel extrusions and general hardware like
screws and nuts. An 8 in. x 8 in. square is used as the
base so that the manipulator can fit on most flatbed scan-
ners, which are designed to scan on at least an 8.5 in. x 11
in. surface. A second layer of T-channel extrusions is used
as support for the 3D printed electronics mount that is
centered on the manipulator. This second layer also holds
vertical screws with spacers that function as guide rails for
the electronics mount to freely move on. This is meant to
automatically fit objects up to 1 in. (the space under the
second layer of T-channels) by allowing the mount to slide
upwards in order to accommodate the object and then rest
on top of it. The mount itself will contain the ESP32,
motor controllers, stepper motor, DC motor air pump, and
suction cup used to manipulate a scanned object. With
the stepper motor and its suction cup extension resting
on top of the object, the suction cup is activated before
rotating the stepper motor. Between the friction of the
mount resting on the object and the suction ”fixing” the
object to the suction cup, precise rotations of the stepper
motor should rotate the object as well.

The ESP32 is programmed using the Arduino IDE
(C++). The core functionality consists of commands that
are encoded as individual characters over serial. Each com-
mand is characterized as a single-line command for either
the stepper motor or DC motor air pump. For example,
stepper motor commands are specified to rotate forward
or backward over a given number of degrees; sending ”a”
over serial could command a clockwise rotation of 45 de-
grees. DC motor air pump controls are simply ”Forward,”
”Reverse,” and ”Release.” Each of these could also nbe
encoded as a single-character serial command. Currently,
the serial connection has been tested with pyserial (to be
integrated into the blender plugin), but identical function-

ality could be achieved in a different language if necessary.

6.2 Control Software and UI

Fig 2. A sequence diagram of communication between
software and hardware elements.

The Blender add-on that acts as the UI will be in
Python, as that’s the language that Blender itself is writ-
ten in and requires. However, using a module such as
ctypes or a library like cffi will allow the Python file to call
C functions and files.

The controller software will be in C++, but that is sub-
ject to change. Originally, we were planning on using the
NAPS2 scanning library to have one library available for
any of the three main OS, but ran into complications with
trying to run the project on different OS. NAPS2 requires
a dotnet project to be used, which was difficult to set up
and NAPS2 required the dotnet 4.8 framework, which is
worrying with the latest release being dotnet 9.0.

As a result, we may pivot to having the controller file
call one of 3 different files depending on user’s OS in or-
der to use an individual scanning library that suits them
instead of using a universal library in one file. Possible
libraries include: the built-in WIA library with C for Win-
dows, either the built-in ImageCaptureCore or the SANE
open-source library with Python for Mac, and SANE with
Python also is compatible with Linux.

6.3 Image Processing Software

To find the normal vector at each pixel, we set up a
system of equations that relate the observed intensity to
the normal vector at the given pixel. For n = 4 rotations
it is relatively simple to derive a closed form:

The observed intensity I0 of a surface point is given by:

I0 = ρ

∫ l

−l

⟨n, l⟩ dx = ρ

∫ l

−l

nxx+ nya+ nzb√
x2 + a2 + b2

dx

where:

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 5 of 7

• ρ is the surface albedo,

• n = (nx, ny, nz) is the normal vector at the surface
point,

• l = (x, a, b) is the light source direction,

• l is the integration limit.

The integral simplifies to:

I0 = ρ(nya+ nzb)

∫ l

−l

1√
x2 + a2 + b2

dx = ρs(nya+ nzb)

where:

s =

∫ l

−l

1√
x2 + a2 + b2

dx = 2 ln
l +

√
l2 + a2 + b2√
a2 + b2

The integral of the term involving nxx vanishes because
it is an odd (anti-symmetrical) function over the interval
(−l, l): ∫ l

−l

nxx√
x2 + a2 + b2

dx = 0

By scanning the same surface point with the object ro-
tated by 90◦, 180◦, and 270◦, we obtain additional intensity
measurements:

I90 = ρs(−nxa+ nzb)

I180 = ρs(−nya+ nzb)

I270 = ρs(nxa+ nzb)

These four equations (including I0) can be arranged into
a matrix equation and solved using linear least-squares.
The solution for the components of the normal vector is:

ρsbnx =
I270 − I90
2 tan a

ρsbny =
I0 − I180
2 tan a

ρsbnz =
I0 + I90 + I180 + I270

4

ρ, s, b cancel out, leaving a closed form for the normal
vector.

The math is less trivial for different numbers of rota-
tions, so one approach is to solve the system numerically
for each n during testing, then compute the closed form for
whichever n shows the best results.

7 TEST & VALIDATION

7.1 Affordable Design

Testing this metric is trivial, as we only have to meet
our self-imposed cost limit.

7.2 Simple Setup Procedure

We plan on performing user tests on a sample group
with a diverse background in relevant fields, to determine
whether we meet our assembly time benchmark. We can
also use the same user tests to quantify the ease of use
of our UI, although most Blender plugins have similar UI
schemes.

7.3 Scans of Quality

Ensuring the scans are good quality will require testing
and a way to compare our scans to other commercial scans.
It will include unit testing for intensity calculation. For
creating comparisons, we will create a benchmark 3d model
object and 3D print it. We’ll scan the benchmark object
with our project and with other 3D commercial scanners
available to us. After finding the Hausdorff distance, we
can compare exactly which is closer to the benchmark and
determine the quality of our scans vs a commercial scanner.

7.4 Automated Process

To make it all an automated process, there must be
seamless communication between all the subsystem com-
ponents. To ensure this, we’re doing unit testing for each
subsystem. After they’re working individually, we slowly
start to integrate them and do practical unit tests. For
example, after the controller software passes unit tests
checking its command signals, we can connect it with the
manipulator and test individual commands to see if they
work before testing the whole file and string of commands.
A tradeoff of making it all automatic means that there’s a
lot of labor from the software to communicate with every-
thing, which is more engineering work to create. However,
this avoids a poor user experience of having to press a
button to start another process frequently given how many
subprocesses there are and simplifies the user experience,
going back to the principles of being easily approachable
without technical skills.

8 PROJECT MANAGEMENT

8.1 Schedule

See the Gantt Chart in Figure 2.

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 6 of 7

8.2 Team Member Responsibilities

Brief overview of what each team member is responsible
for. This subsection should be no more than half a column.

Theo’s primary responsibilities are the design, devel-
opment, and characterization of the manipulator. His
secondary responsibilities are to aid his teammates in hard-
ware/software integration and image processing math.

Sophia’s primary responsibilities are to code the con-
troller software and UI, ensuring their integration with
the hardware components and image processing software
successfully. Her secondary responsibilities are to help her
teammates with any difficulties along with ensuring quality
of documentation including presentations, website updates,
and status reports.

Yon’s primary responsibilities are in the image data
processing subunit. This includes aligning the images from
the scanner, working out the math for computing the nor-
mal map and implementing the system, and implementing
a normals-to-height-map system. Yon’s secondary respon-
sibilities include qualifying the final scans and generating
benchmarks using other commercial 3D scanners. He is
also responsible for most of the 3D printing.

8.3 Bill of Materials and Budget

See Table 1 for a table of materials and components
purchased.

8.4 TechSpark Useage Plans

We plan to use TechSpark to laser cut the acrylic cover
sheet that we will test to block ambient light during scan-
ning.

8.5 Risk Mitigation Plans

The most critical risk factor we’ve identified is the pos-
sibility of an abrasive object scratching the scanning sur-
face during rotation. The best solution we’ve identified so
far would be to install solenoids where the mount rests on
the T-channel extrusions. This would enable us to lift the
mount slightly when rotating, picking up the object as well
due to the suction cup. This introduces limiting factors and
design changes: the lifting force of the suction cup becomes
a bottleneck (ours can hold approximately 4 pounds), and
either the mount or stepper-suction cup connection would
need to be redesigned in order to keep the suction cup rest-
ing on the scanner surface if no object is being scanned
(keeping the full 1 in. clearance previously specified).

9 RELATED WORK

Photometric stereo was first introduced by R. J. Wood-
ham in Photometric Methods for Determining Surface
Orientation from Multiple Images. This process was later
applied by V. Skala and R. Pan using a flatbed scanner,
but this project did not implement a solution for image
alignment, making it extremely difficult to apply in prac-
tice.

Other related projects include W. W. Chi’s and D.
Byrne’s several projects on 3D Microscopic Texture In-
terface in CAD, which are also low-cost scanning systems
used in 3D modeling.

10 SUMMARY

Our project is a device and software package that uti-
lizes the existing technology of a flatbed scanner to produce
quality 3D object scans for a fraction of the price of existing
commercial 3D scanners. It scans objects from different an-
gles using the consistent light source of the flatbed scanner
to be able to assess the shape of the object. The hard-
ware utilizes a manipulator arm to rotate the object to get
multiple angles and communicated directly with the user’s
computer and software. It will be a challenge to ensure that
particularly abrasive objects are not given too much force,
or else they will scratch the glass of the flatbed scanner.
The controller software has a UI in the form of a Blender
add-on for easy access and editing of the model after it’s
completed. The controller software will have a challenge in
trying to be universal in OS’s and flatbed scanner models.
The controller software communicated with the flatbed
scanner, the manipulator device, the UI, and the image
processing software. The image processing software uses
a set of equations and pixel-to-pixel comparisons of the
scans to create a surface normal map that is converted
into a 3D model, but may encounter difficulties accounting
for noise and precise image alignment. The result is an
accurately detailed .obj file 3D model in an approachable
and affordable way, perfect for research departments with
tight budgets or hobbyists.

References

[1] Woodham, R. J. (1980). Photometric method for
determining surface orientation from multiple im-
ages. Optical Engineering, 19(1), 191139. Retrieved
from https://www.cs.ubc.ca/~woodham/papers/

Woodham80c.pdf

[2] Skala, V., & Pan, R. (2015). Making 3D repli-
cas using a flatbed scanner and a 3D printer.
Journal of WSCG, 23(1), 1–8. Retrieved from
https://www.researchgate.net/publication/

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 7 of 7

281105714_Making_3D_Replicas_Using_a_Flatbed_

Scanner_and_a_3D_Printer

[3] Chi, W.-W., & Byrne, D. (2020). 3D Microscopic Tex-
ture Interface in CAD: Cultivating Material Knowledge
for the Practiced Digital Hand. In Proceedings of the
2020 ACM Designing Interactive Systems Conference
(pp. 1–13). Retrieved from https://dl.acm.org/doi/

abs/10.1145/3357236.3395579

[4] Chi, W.-W. (2019). 3D Microscopic Texture In-
terface in CAD: Cultivating Material Knowledge
for the Practiced Digital Hand. Master’s the-
sis, Carnegie Mellon University. Retrieved from
https://kilthub.cmu.edu/articles/thesis/

3D_Microscopic_Texture_Interface_in_CAD_

Cultivating_Material_Knowledge_for_the_

Practiced_Digital_Hand/8234276?file=15351137

[5] Skala, V. (1999). Surface reconstruction from photomet-
ric stereo images. Computer Graphics Forum, 18(3),
C1–C8. Retrieved from https://onlinelibrary.

wiley.com/doi/epdf/10.1111/1467-8659.00236

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 8 of 7

Table 1: Bill of Materials

Description Model # Manufacturer Quantity Cost @ Total
12V DC Power Supply with adapters B0D7L6942H Amazon 1 $9.98 $9.98
Aluminum Spacers 3/4” unthreaded for 1/4-20 bolts B07K34NZ2K Amazon 2 $4.16 $8.32
SAE Stainless Steel Assorted Bolts, Washers, Nuts B0CL4PK2KY Amazon 1 $14.99 $14.99
8x8 inch 1/8” opaque white acrylic sheet B0DD6VJ4FB Amazon 1 $8.99 $8.99
4mm silicone tubing t-connector B083WNPXQ7 Amazon 1 $4.99 $4.99
5mm shaft coupler + mount B08334MFVT Amazon 1 $7.99 $7.99
M3 Screws Hardware package B0D1457XQ3 Amazon 1 $9.99 $9.99
Adafruit Huzzah (ESP32) 3619 Adafruit 1 $21.95 $21.95
Adafruit DC Motor/Stepper Featherwing 2927 Adafruit 1 $21.20 $21.20
Adafruit NEMA-17 Stepper Motor 324 Adafruit 1 $14.00 $14.00
Adafruit DC Air Pump 4700 Adafruit 1 $6.95 $6.95
Adafruit 3mm silicone tubing for air pump 4661 Adafruit 1 $2.50 $2.50
Adafruit Double-sided Foam Tape 5019 Adafruit 4 $0.75 $3.00
6 in. 1010 series 1010 80/20 2 $4.89 $9.78
8 in. 1010 series 1010 80/20 4 $5.59 $22.36
Inside-inside 1010 connector 33440 80/20 4 $4.36 $17.44
Right-angle gussets 4119 80/20 4 $6.38 $25.52
Slip-in fasteners 3382 80/20 20 $0.32 $6.40
0.5” bolts 3061 80/20 10 $0.34 $3.40
0.75” bolts 3065 80/20 10 $0.42 $4.20
1 ft. Rubber Footing 2828 80/20 4 $1.66 $6.64
Slide-in full-sized T-nuts 3204 80/20 4 $1.16 $4.64
0.286” Washer 3258 80/20 4 $0.12 $0.48
13mm single bellows FDA Silicone suction cup SB14-SIT-G18M VacMotion 1 $6.67 $6.67
CanoScan Lide 400 Slim Flatbed Scanner 013803306521 Canon 1 $96.29 $96.29

$338.67

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 9 of 7

F
ig
u
re

1
:
A

fu
ll
-p
a
g
e
ve
rs
io
n
o
f
th
e
sy
st
em

b
lo
ck

d
ia
g
ra
m

18-500 Design Project Report: Flatbed 3D Scanning 02/28/25 Page 10 of 7

F
ig
u
re

2
:
R
o
a
d
m
a
p

