
18-500 Design Review Report - 2 March 2025 Page 1 of 13

UsAR Mirror
Authors: Steven Lee, Anna Paek, Shengxi Wu

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—This project introduces an AR mirror
that enhances the user experience by displaying multi-
ple viewpoints of the user’s face. In addition to overlay-
ing 3D filters, the mirror incorporates two webcams on
either side of the display, allowing users to view their
left and right profiles. This feature is particularly use-
ful for makeup application, as users can see how their
makeup looks from different angles, especially the side
profile. This addition provides a more versatile and
accurate reflection compared to existing AR mirrors.

Index Terms—AR/ VR System, Computer Vision,
Sensor Fusion, Face Reconstruction, Gesture Recogni-
tion

1 INTRODUCTION

Augmented Reality (AR) mirrors have seen a signifi-
cant rise in retail, particularly in boutiques and jewelry
stores. These mirrors enhance the shopping experience by
allowing customers to virtually try on makeup, clothing,
and accessories with convenience and efficiency. Compared
to traditional fitting rooms, AR mirrors enable customers
to try on 4x as many products while also increasing
engagement—users are 9x more engaged than with tra-
ditional video ads [19]. Retailers also benefit, experienc-
ing 3x higher foot traffic when AR mirrors are placed
in storefront windows to attract passersby. Additionally,
AR mirrors can operate for long periods of time, providing
an interactive and personalized shopping experience at any
time.

Despite these advantages, traditional AR mirrors still
face challenges. Accuracy and rendering speed remain
key issues, particularly in aligning virtual elements with
a user’s reflection when they move. Tilting the head or
stepping away from the mirror can cause virtual overlays
to remain fixed in place, disrupting the immersive experi-
ence. This misalignment is especially problematic for ap-
plications requiring precision, such as virtual clothing try-
ons and makeup simulations [13]. Additionally, concerns
over privacy due to facial recognition technology and high
costs associated with software, hardware, internet connec-
tivity, and maintenance, especially for high-quality cam-
eras, pose significant barriers to widespread adoption [13].

Our product aims to create a more cost-effective and
efficient AR mirror. By integrating multiple cameras, LED
lighting, and advanced display technologies, our solution
will provide users withmultiple viewpoints of themselves
for a more immersive experience. Real-time interaction
will be achieved through efficient algorithms and special-

ized GPU hardware, while an extensive library of AR fil-
ters and overlays will further enhance user engagement.
Additionally, we plan to incorporate smaller, low-cost dis-
plays and gesture recognition technology as an affordable
alternative to expensive touchscreen interfaces.

2 USE-CASE REQUIREMENTS

The UsAR Mirror has four primary use-case require-
ments. These requirements ensure that the UsAR Mirror
delivers a responsive, intuitive, and immersive AR experi-
ence. To make sure the AR mirror system is sustainable, it
should be able to run continuously for greater than 2 hours
straight.

2.1 Accurate Real-Time User Interaction

The UsAR Mirror must provide smooth and responsive
interactions. Camera movement delay shall not exceed 200
milliseconds (ms) when adjusting the viewing angle. A
3D face model must be generated within 1 second (s)
per user. AR filters shall be displayed at a minimum of 15
Frames Per Second (FPS) to ensure fluid visuals. AR
filter alignment should have no more than 5% pixel de-
viation from the user’s head position. Fast rendering and
accurate AR localization are essential to provide matching
experiences as looking into a physical mirror. Low camera
movement delay is also important for natural and immer-
sive interaction.

2.2 User-Controlled Camera Movement

Conventional mirror that only provides the front view
of the user, so we want our system to allow users to also
be able to view the side of their face. Users shall have
full control over their viewing angle. Camera adjustments
will be managed by Arduino-controlled stepper mo-
tors, allowing vertical movement up to 11.8 inches
(in) (matching the display width) and panning/rotation
up to 90°. The camera shall maintain an accuracy of ±5°
from the desired angle.

2.3 Screenshot Capture and Storage

Users shall be able to capture and save images of them-
selves directly from the mirror display. A Capture option
will be available for taking screenshots, which should be
saved automatically to either a default directory or a
user-selected directory. The supported image formats
should include PNG and JPEG .

18-500 Design Review Report - 2 March 2025 Page 2 of 13

2.4 Gesture-Based Navigation

Users shall navigate menus and make selections using
hand gestures (swipe up, down, left, and right).
The system must respond to gestures within 200 ms. Ges-
ture detection shall operate within a 0.5 to 2-meters(m)
range to accommodate different user positions. The ges-
ture recognition accuracy shall be at least 90% to ensure
a seamless user experience. We prioritized gesture recog-
nition reaction speed and reliability to prevent frustration
from misinterpretation. In terms of social factor consider-
ation, the ability to interact with the AR mirror without
touching it directly effectively prevents the spread of bac-
teria among users.

Figure 1: Block diagram of overall system design. (See Fig.
6 for enlargement).

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

The system architecture described in Fig.1 consists of
a Jetson Nano as the central processing unit, interfacing
with multiple cameras and a motorized camera rig. A
depth camera and two webcams are connected to the Jet-
son Nano via USB, providing visual and depth input for
real-time processing. The Jetson Nano serves as the cen-
tral controller of the system, handling real-time processing
through multiple software modules and renders processed
AR overlays and outputs them to a display via HDMI. Ad-
ditionally, the Jetson Nano communicates with an Arduino
via TX/RX to control stepper motors that adjust the cam-
era rig’s position and rotation angles.

This integrated hardware-software approach enables
low-latency, high-accuracy interactions, addressing align-
ment and rendering speed challenges faced by traditional
AR mirrors.

3.1 Computer Vision

The system integrates multi-camera fusion to combine
RGB and depth images, improving pose estimation and 3D
reconstruction. Depth-based segmentation allows for accu-
rate separation of the user from the background, ensuring
precise overlay placement. Additionally, GPU acceleration

on the Jetson Nano facilitates real-time rendering, reducing
latency and enhancing the smoothness of AR interactions.

The RGB input from sensor is used as input of machine
learning models for gesture recognition, allowing users to
interact with the AR interface using hand gestures instead
of physical buttons. Eye-tracking algorithms estimate eye
position which makes it possible to adjust frame position
relative to the position of the eyes.

3.2 Actuator Control

The motorized camera rig operates based on instruc-
tions from the Arduino, which receives commands from the
Jetson Nano. The camera’s movement is driven either by
user gestures for horizontal panning or by an initial eye-
position-based adjustment to ensure the camera aligns with
the user’s eye level for an optimal viewing experience.

To maintain smooth operation, the pan and verti-
cal actuators follow controlled motion profiles, minimizing
abrupt shifts that could disrupt user interaction. Addi-
tionally, the seamless integration of embedded systems al-
lows the Jetson Nano to communicate efficiently with the
Arduino-controlled motor system, enabling precise and re-
sponsive camera positioning.

4 DESIGN REQUIREMENTS

The design requirements specify the necessary hard-
ware, software, and performance criteria to ensure the use-
case requirements are met.

4.1 Hardware Requirements

• Camera System: The system shall incorporate a
camera sensor with a minimum capture rate of 60
FPS for real-time tracking and rendering. The dis-
play must support a refresh rate of at least 60 Hz
for seamless interaction.

• Camera Positioning: An Arduino-driven step-
per motor shall control vertical movement (up to
11.8 inches) and panning/rotation up to 90°
with an angular accuracy of ±5°. The width of the
display is around 11.8 inches, so we want to capture
as much distance as possible. We want up to 90° so
that we can capture the user’s side profile.

• Computing Hardware: The Jetson Orin Nano
shall be used for GPU-accelerated processing, han-
dling real-time image processing, gesture recog-
nition, and AR filter rendering while maintain-
ing low latency.

• Thermal and Power Stability: The system must
operate continuously for ≥ 2 hours without over-
heating or performance degradation, which are im-
portant factors to make sure system is sustainable for
long period of time without malfunctioning. 2 hours

18-500 Design Review Report - 2 March 2025 Page 3 of 13

is the estimated time duration a user would spend
using the AR mirror.

4.2 Software Requirements

• Gesture Recognition: The system shall use a
computer vision algorithm to detect swipe ges-
tures (left, right, up, down) with an accuracy of ≥
90%. The gesture recognition pipeline must provide
real-time feedback with an end-to-end latency of ≤
200 ms. This is to make sure the user experience
isn’t impaired with slow framerate or input latency.

• 3D Face Model Generation: To ensure realistic
AR filter alignment, the system must reconstruct a
3D face model within 1 second using efficient
mesh reconstruction techniques. The model must
have an average RMSE ≤ 5 mm when compared
to the full point cloud generated from depth data.
Although a high start up cost per user, moving the
longest compute to the start prevent disrupts after
AR overlay is activated, thus ensures the user experi-
ence would not be delayed or interrupted as AR filter
is on.

• AR Filter Rendering: The system shall use
OpenGL shaders for real-time texture mapping
and rendering. The rendering engine must maintain
a frame rate of ≥ 15 FPS to ensure smooth appli-
cation of AR effects.

• Filter Tracking Accuracy: The system shall main-
tain AR filter alignment with an accuracy of ≤ 5%
deviation from the user’s head movement and a drift
of ≤ 10 pixels per frame at 1920 × 1080 resolu-
tion. This fulfills the requirements of accurate real-
time rendering and minimizes perceptible drift, pre-
venting noticeable misalignment that could disrupt
the user’s experience with the AR filter.

• Camera Control and UI Navigation: The sys-
tem shall allow users to select their desired camera
view and filter options via gesture input. The cam-
era angle selection must have an accuracy of ≥ 95%,
with a deviation of no more than 5° from the intended
orientation. We give ourselves a 5% room for error in
accuracy to account for jitters and abrupt movement.
Theoretically, it should be greater than 90% since the
camera control is relatively precise with mathemati-
cal equations (trigonometry) as its algorithm.

• Screenshot Capture and Storage: Users shall be
able to capture and store screenshots with a 100%
success rate. The saved images must retain their
quality in PNG or JPEG format, and file stor-
age shall be verified to prevent corruption. This is to
ensure quality of experience and make sure the app
isn’t frustrating to use for the end user. PNG ad
JPEG format are high-quality and the most widely
used image format.

5 DESIGN TRADE STUDIES

5.1 Microcontroller Choice for Camera
Control System

When choosing the right microcontroller for our cam-
era control system, there are several important factors and
trade-offs we considered, including clock speed, I/O pin
configuration, memory (flash and SRAM), the number of
PWM pins, size, USB interface, and power supply.

While the Arduino Nano offers a built-in USB port and
more analog pins, the Arduino Pro Mini is better due to its
higher power and energy efficiency. Since the camera will
need to operate for extended periods of time, particularly
when the user is interacting with the mirror, the ability
to minimize power consumption is essential. Additionally,
while the Nano’s built-in USB port could be convenient,
we can instead use an external USB-to-serial adapter for
uploading code, which eliminates the need for the built-in
USB port [5, 20].

The Arduino Mega 2560 has more I/O pins and larger
memory (256 kB of flash memory and 8 kB of SRAM). How-
ever, our mirror does not require a that many I/O pins or
extensive memory capacity. Our system will only have a
few electronic components, such as OLED display, stepper
drivers, switch, and rotary encoder push buttons, and our
code does not need such large memory resources [2, 7].

While the ESP32 offers substantial processing power
with its 240 MHz dual-core processor and built-in Wi-Fi
and Bluetooth, these features are unnecessary for our ap-
plication. The mirror does not require wireless connectiv-
ity or extreme processing power, so the ESP32 would be
overkill for this project, both in terms of complexity and
power consumption [21].

Finally, the Raspberry Pi Zero W and Teensy 4.0 are
also too complex for the relatively simple task of controlling
the camera. These platforms, while more powerful, would
introduce unnecessary complexity and consume more power
than what is required [8, 18].

5.2 Pre-defined Facial Priors for 3D Re-
construction

One key trade-off in 3D face reconstruction is between
the speed of constructing the 3D face model with the ac-
curacy of the final reconstruction. Method that includes
high detail such as iterative volumetric fusion (e.g., Dy-
namic Fusion) [14], offer high flexibility but come at the
cost of increased computational overhead and processing
time. Instead, our system leverages pre-defined facial pri-
ors, wrapping the captured face data onto a structured fa-
cial template using key facial landmarks [11]. This ap-
proach ensures that the 3D model remains structured but
also computationally efficient, meeting the real-time pro-
cessing constraints necessary for AR applications.

Additionally, by directly aligning facial landmarks to
the pre-modeled face structure, our method eliminates the
need for Iterative Closest Point (ICP) registration when

18-500 Design Review Report - 2 March 2025 Page 4 of 13

mapping the reconstructed face onto a rendering model.
This is very important as with experiments, the full point
cloud reconstruction takes far more than 1 second to com-
pute, while the landmark-based reconstruction generates a
3D landmark model within 1 second, satisfying the design
requirement.

Although some details on the face may be lost, this
does not significantly impact our application, as the pri-
mary purpose of the 3D face model is to serve as a reference
for rendering overlays. Since we apply an additive layer on
top of the camera output, minor depth offsets have mini-
mal effect on the final rendered AR output [6]. The overlay
remains visually accurate, ensuring that the AR elements
align correctly with the user’s facial features while main-
taining real-time performance.

5.3 Motion Tracking for AR Alignment

One initial approach considered was performing full 3D
optical flow tracking on the entire face mesh. This method
estimates dense motion across depth variations, allowing
for precise tracking of both rigid and non-rigid facial move-
ments. While highly accurate, this makes it extremely dif-
ficult to meet the design requirement of 15 FPS rendering
with the GPU resources we have.

Another approach we explored was taking advantage
of the facial landmarks we extracted and do pose estima-
tion using the Perspective-n-Point (PnP) [17] method. This
method estimates rigid head motion by tracking facial key-
points such as eyes, nose, and mouth corners, solving for
3D transformations.

While PnP requires less computation, it comes at the
cost of reduced accuracy. One major limitation is that it
treats the head as a rigid body, whereas facial expressions
can cause certain landmarks to shift without actual head
movement, leading to miscalculations. Additionally, rapid
head movements and partial occlusions further impact ac-
curacy, as landmark detection may become unreliable in
these scenarios. These factors introduce errors in head pose
estimation, making PnP alone insufficient for precise AR
filter alignment in dynamic environments.

To improve accuracy, we adjust for these limitations by
categorizing facial landmarks into sub-regions, distinguish-
ing between rigid and non-rigid motion. The nose, facial
contour points, and the outer corners of the eyes and mouth
are used for rigid head motion estimation, ensuring stable
tracking of overall head position. Meanwhile, non-rigid fa-
cial motions, such as eye blinking or mouth opening, are ac-
counted for separately to prevent misalignment caused by
expression changes. This hybrid approach allows for more
precise head pose estimation, making the system more ro-
bust to different head motions while maintaining real-time
performance.

5.4 Dear ImGui for the UI

Dear ImGui is an efficient and flexible immediate-mode
graphical user interface (GUI) framework, making it ideal

for real-time applications. We chose Dear ImGui for its
low power consumption and performance efficiency. It only
processes UI components displayed on the screen, which
conserves resources for more demanding tasks like image
processing, machine learning, and camera control [1, 9].
This is crucial for the mirror, as users will interact with it
for extended periods.

Unlike other GUI frameworks such as Qt or GTK, which
maintain a static UI state and require complex setup, Dear
ImGui renders only the actively displayed elements. This
immediate-mode approach reduces overhead, ensures effi-
cient resource usage, and enables quick rendering with low-
latency updates, essential for real-time feedback on camera
angle controls and filter selection [22].

Fully compatible with Linux-based systems like the Jet-
son Nano, Dear ImGui integrates seamlessly with libraries
such as X11, SDL, and OpenGL, avoiding the need for com-
plex configurations or heavy dependencies [15, 23]. This re-
duces system strain and simplifies maintenance for system
integration.

Additionally, Dear ImGui speeds up UI development,
allowing for rapid prototyping and testing, which is critical
for integrating and optimizing various subsystems within
the camera control and gesture recognition systems [16].

6 SYSTEM IMPLEMENTATION

Figure 2: Overview of gesture recognition and eye tracking
system. (See Fig. 7 for enlargement).

6.1 Gesture Tracking System

The gesture tracking system allows the user to control
the application in front of the mirror without having to
use a controller or touchscreen-based input. This system
will comprise of a computer-vision based pipeline which
transforms a real-time camera feed of a person to applica-
tion input commands (such as filter adjustments, camera
adjustments), as detailed in Fig. 2. To achieve this, Open-
Pose is utilized for body keypoint extraction and a custom
gesture recognition algorithm is written for application in-
put [3].

Image processing, image acquisition, denoising, and
body keypoint extraction will be handled exclusively by
OpenPose’s C++ API (provided via a dynamic library,
which can be dynamically linked to the main application bi-
nary). Using these keypoints, a rolling history of 3D pose

18-500 Design Review Report - 2 March 2025 Page 5 of 13

data (e.g. relative positions of the joints) is stored and
a gesture recognition algorithm can be evaluated on the
stored pose history to classify which gesture input it be-
longs to at the current frame. The gesture algorithm will
be rule-based and inspect relevant features such as angu-
lar velocity of different bones in the estimated pose. For
pipeline output, this system will provide an interface to
other parts of the application (in particular, the UI) in the
form of an API where users can access the gesture at the
current frame.

To meet performance requirements, OpenPose’s CUDA
backend will be used on the Jetson Nano to take advan-
tage of GPU acceleration and reduce keypoint estimation
latency incurred by the underlying ML-based vision mod-
els that the library uses. Moreover, this project opts to
use C++ over Python, as the Jetson Nano is a constrained
device, and using a well-optimized compiled language over
an inefficient interpreted one will make it easier to meet
latency requirements.

Figure 3: Overview of the UI [4].

6.2 User Interface (UI)

Users can navigate the horizontal menu of filters by
swiping left or right, with arrows indicating the direction
of selection. Vertical swipes determine whether they are
adjusting the camera angle or changing the filter.

Since the camera angle selection is at the top of the
screen, users swipe up to adjust the angle. To change the

filter, users swipe down, as the filter menu is located at the
bottom.

For angle control, swiping left rotates the view to the
left. Swiping right rotates the view to the right. In other
words, 0° indicates that the user is looking at the front view
of their face, -30° indicates that the user is looking 30° to
the left side of their face, and +30° indicates that the user
is looking 30° to the right of their face.

This intuitive gesture-based system allows seamless in-
teraction without the need for physical buttons or con-
trollers.

6.3 Eye tracking system

The eye tracking system of the project will make sure
that the camera rig is consistent and level with the user’s
eyes to ensure a comfortable and accurate viewing expe-
rience. To achieve this, this system will work alongside
the gesture recognition pipeline as both will use data from
OpenPose library. In the case of the eye tracking system,
keypoints for the eyes will be extracted from the real-time
camera feed via OpenPose, then projected onto screen-
space coordinates. A PID algorithm will be used to make
sure appropriate feedback is provided to the camera rig so
that the eye positions, in the image received by the camera,
stay at some preset level along the height of the screen.

In addition, the eye tracking system will play a part
in correcting for camera distortion, and transforming the
webcam feed into a perspective which is mirror-like and
comfortable to view for the user.

Figure 4: Overview of depth reconstruction and rendering
system. (See Fig. 8 for enlargement).

6.4 Face Reconstruction System

The 3D face reconstruction and rendering process is re-
sponsible for generating a structured 3D face model of the
user in real time as described in Fig. 4. This process uti-
lizes the Intel Realsense camera and takes input from the
co-located RGB and depth camera within the Realsense
module, which are then transmitted via USB to the Jetson
Nano for processing.

To extract key facial features, dlib [11] is used for fa-
cial landmark detection, using the RGB input from the Re-
alsense camera to identify key facial features and contours.

18-500 Design Review Report - 2 March 2025 Page 6 of 13

These detected landmarks are then projected onto the cor-
responding depth image, ensuring precise feature alignment
between 2D and 3D data. The conversion from 2D image
coordinates to real-world 3D coordinates is performed using
ray marching, leveraging the camera’s intrinsic and extrin-
sic parameters for accurate depth-to-3D mapping.

For visualization and point cloud processing, Open3D
is used to render the reconstructed 3D face model, inte-
grating the extracted 3D landmarks into a cohesive struc-
ture. The Jetson Nano SDK with CUDA acceleration is
employed to optimize depth processing and real-time ren-
dering, utilizing GPU parallelization to enhance computa-
tional efficiency and ensure a smooth user experience.

6.5 AR Overlay Rendering System

The 3D facial landmarks from the prior section are
warped onto a 3D face model, aligning with predefined
facial structures. This ensures that the virtual elements
conform accurately to the user’s facial geometry, providing
a natural and realistic AR experience.

To maintain accurate overlay positioning, the 3D face
model undergoes a coordinate transformation to align with
the webcam’s perspective, the calibration between differ-
ent hardware components are done using OpenCV cali-
bration and Apriltag, and changes is motion during the
process is tracked by operation log of motors. Addition-
ally, real-time head motion tracking is incorporated to en-
sure that the AR filter remains correctly positioned on the
user’s head. This is achieved using PnP [17], which an-
alyzes the motion patterns of key facial features—such as
the eyes, nose, and mouth endpoints—to compute both the
3D rigid motion of the head and the non-rigid transforma-
tions of facial sub-regions. By doing so, the AR filters
remain properly positioned, even as the user moves within
the camera’s field of view.

OpenGL shaders handle real-time texture blending be-
tween the predefined texture map of makeup effect selected
by the user and the webcam feed, with opacity control to
blend naturally with the live video. This process ensures
that AR effects appear seamlessly integrated with the user’s
face, avoiding visual artifacts or misalignment.

6.6 Camera Control System

The camera control system allows users to select and
adjust their viewing angles in real-time, enhancing their
interaction with the AR mirror. The system consists of
two webcams, each mounted on a separate camera rig con-
trolled by stepper motors. Each camera rig is equipped
with two stepper motors: one for enabling up/down mo-
tion and the other for rotation [12].

The Jetson Nano serves as the main processing unit,
determining the appropriate movement based on user in-
put (i.e. angle selection) or through automated tracking
algorithms. The system operates in four modes: pan, ro-
tate, pan & rotate, and track object. To execute these
movements, it utilizes five key parameters: distance, travel

direction, rotation angle, rotation direction, and duration.
Distance specifies how far the camera moves up or down.
Travel Direction determines whether the camera moves up
or down. Rotation Angle defines the degree of camera ro-
tation. Rotation Direction specifies whether the camera
rotates clockwise or counterclockwise. Duration controls
how long the selected movement persists.

The Jetson Nano communicates movement commands
to an Arduino via I2C or UART, which then controls the
stepper motors accordingly. The object tracking mode uses
computer vision techniques, such as face or body tracking,
to automatically adjust the camera angle in real-time, en-
suring users remain properly framed.

For optimal performance, the system will require cal-
ibration to align movement parameters with the physical
constraints of the rig. Additionally, maximum rotation
limits and speed caps will be implemented to prevent me-
chanical strain and excessive motion, ensuring smooth and
reliable operation.

Figure 5: Overview of camera control system [12].

7 TEST & VALIDATION

These tests ensure that the system meets real-time
performance constraints, maintains accurate tracking, and
provides a reliable user experience. Through risk manage-
ment strategies, we mitigate potential hardware failures,
computational delays, and user interaction inconsistencies,
ensuring a robust and efficient AR system. We will be con-
ducting a 2 hour stress test to ensure that the mirror is
functional for the two full hours.

7.1 Tests for Accurate Interaction in Real-
Time

One of the critical aspects of our system is ensuring ac-
curate and responsive real-time interaction. We will test
this by using high-speed logging scripts to get the exact
time stamps.

There will be continuous depth map feed and user head
motion as test inputs. The expected outputs are less than
a 1 second delay in generating 3D face model per user.
Furthermore, the 6DoF head transform must be computed
in ≤ 200 milliseconds, enabling accurate alignment of AR
overlays. The 3D reconstruction error is expected to have

18-500 Design Review Report - 2 March 2025 Page 7 of 13

an average RMSE threshold of ≤ 5 mm (after transform
from camera coordinates to world coordinates), to ensure
the generated 3D model to the full point cloud of head
reconstructed from depth map.

To evaluate the performance of AR filter rendering,
there will be continuous real-time camera feed and filter
selection as input. The system must maintain a minimum
frame rate of ≥ 15 FPS to ensure smooth and immersive
visual effects. Furthermore, to measure the stability of the
filter in natural head movement, ≤ 10 pixels of drift (for
1920 * 1080 resolution) should be guaranteed for motion
within the system’s field of view, and the overlay should
maintain a deviation of ≤ 5° compared to the orientation
of the detected head.

7.2 Tests for Screenshots and Photos

We aim for a 100% success rate of screenshots saved
and to verify file creation and image quality. To do so, we
will take multiple screenshots all at once (simulating it as
if the user is having a one-time experience).

7.3 Tests for Selecting Target Views

We want a 95% accuracy of camera orientation and
frame stabilization. Additionally, we want at most 5° devi-
ation from the desired angle. We can test this by moving
the camera in all directions and getting exact camera de-
gree from Arduino print statements. In terms of time it
takes to react to selections made by user, with continuous
real-time camera feed as input, we want to guarantee the
camera reacts within a 200 millisecond delay.

7.4 Tests for Gesture Recognition & Nav-
igating Menus

We want the mirror to clearly distinguish between the
up, down, left, right swiping motion. Tests will be man-
ually performed, where one repeatedly makes a series of
gestures. The expected time for the system to identify and
react to user motion in UI should be less than 200 millisec-
ond end to end. Classification accuracy will be measured
via a confusion matrix. Moreover, we will perform these
tests at various distances away from the mirror to ensure
that our system is tolerant under diverse conditions. We
want a detection range of 0.5-2 meters, and a 90% accu-
racy in gesture cue recognition. We will use a series of
hand gestures under various conditions, including reverse
action.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Fig. 9.

8.2 Team Member Responsibilities

Steven will be responsible for the development and im-
plementation of the gesture recognition and eye tracking
systems for the AR mirror. His primary task will be de-
signing and optimizing algorithms that enable the mirror
to accurately detect and interpret user gestures in real-
time. Additionally, Steven will oversee the integration of
eye tracking technology to track the user’s gaze and focus,
ensuring that the AR content is dynamically adjusted based
on the user’s perspective. This functionality will enhance
the user experience by providing intuitive control and en-
suring the AR display responds accurately to gestures and
eye movements.

Anna will manage the camera control system and de-
velop the UI for the AR mirror. Her responsibilities will
include overseeing the configuration and calibration of the
camera system to ensure optimal image capture and track-
ing. She will also be in charge of designing and implement-
ing a user-friendly interface, ensuring that interactions with
the AR mirror are intuitive and visually appealing. Anna
will work closely with the rest of the team to ensure that
the camera system integrates seamlessly with the gesture
recognition, eye tracking, and AR filters, and that the UI
provides clear, interactive elements for the user to engage
with.

Shengxi will be responsible for 3D reconstruction and
the development of AR filters for the AR mirror. Her role
will involve creating accurate 3D models of the user’s en-
vironment and incorporating them into the AR system to
enhance the realism of the AR experience. She will develop
algorithms for real-time 3D scanning and rendering, ensur-
ing that virtual objects or effects blend seamlessly with the
physical environment. In addition to 3D reconstruction,
Shengxi will design and implement AR filters that provide
users with customizable and interactive visual effects. Her
work will be critical to ensuring the AR mirror delivers a
polished and immersive augmented reality experience.

8.3 Bill of Materials and Budget

Please refer to Table 1 for a full list of items and its
associated costs. The capacitors will be supplied by the
ECE receiving offices, therefore amounting to $592.80.

8.4 TechSpark Usage Plans

Techspark will be 3D printing the camera tripod shoes,
motor coupling, and timing belt clamp for the camera con-
trol system.

8.5 Risk Mitigation Plans

To ensure the system operates reliably under real-world
conditions, we have identified potential risks and developed
mitigation strategies.

18-500 Design Review Report - 2 March 2025 Page 8 of 13

8.5.1 Head Motion Tracking and 3D Reconstruc-
tion

To mitigate inaccuracies in head motion tracking and
3D reconstruction, we introduce motion smoothing tech-
niques to prevent jitter, ensuring stable tracking results.
Additionally, fallback strategies are implemented for cases
where facial landmarks are occluded or missing, allow-
ing the system to compensate for data loss and main-
tain tracking accuracy. To ensure a consistent response
to user engagement, a gesture cue is incorporated to trig-
ger face model reconstruction, reducing errors caused by
unexpected system delays.

8.5.2 AR Filter Stability and Rendering Perfor-
mance

To maintain stable AR filter placement and rendering
performance, GPU-based rendering pipelines are optimized
to sustain consistent frame rates for real-time interaction.
Adaptive resolution scaling is also employed to dynamically
balance performance and rendering quality, preventing pro-
cessing overload while preserving visual fidelity. Further-
more, motion-based correction methods are used to mini-
mize AR filter drift when users move, ensuring that overlays
remain accurately positioned throughout interactions.

8.5.3 Screenshot Capture and Image Storage

To address potential failures in screenshot capture and
image storage, robust error-handling mechanisms are im-
plemented to detect and correct file I/O issues. Addition-
ally, real-time feedback warnings are integrated to alert
users of storage or saving failures, preventing unexpected
data loss and enhancing the reliability of the system’s
screenshot functionality.

8.5.4 Camera Orientation and Stabilization

To improve camera positioning accuracy, an automatic
feedback loop is introduced to detect and correct mechani-
cal or software-based misalignment, ensuring precise orien-
tation adjustments. Additionally, manual user controls are
provided to allow fine-tuning of the camera position, giv-
ing users greater control over their preferred viewing angles
while maintaining stability.

8.5.5 Gesture-Based Navigation

To improve the robustness of gesture recognition, exten-
sive testing is conducted under various lighting conditions
and distances to ensure reliable operation across different
environments. Additionally, a fallback mechanism using
mouse control is incorporated to provide an alternative in-
teraction method in cases where gesture recognition fails.
To enhance gesture detection accuracy, the system is tested
under multiple conditions, including reversed actions, en-
suring that hand motions are consistently and correctly in-
terpreted.

9 RELATED WORK

Recent advancements in computer vision have signifi-
cantly improved the quality and effect of Augmented Re-
ality (AR) filter overlays, enabling more immersive and re-
alistic visual effects for many applications. Both academic
research and industry innovations have focused on real-time
face tracking, 3D reconstruction, and AR-based visualiza-
tion, which closely align with the technicals and goals of
our project.

One widely adopted application of AR filters is seen
in mobile applications like Instagram filters, which apply
2D overlays to users’ faces in real-time. Similarly, ded-
icated applications like Sephora Virtual Artist [10] dedi-
cates specifically at virtual makeup try-ons, allowing users
to preview cosmetic products through AR-enhanced facial
mapping. While these applications offer real-time virtual
effects, they primarily rely on single-camera setups with
limited range, whereas our system aims to provide a more
immersive multi-view AR mirror experience.

For integrating these AR effects into a hardware-based
interactive system, Wang et al. [24] introduced the
Perspective-Aligned AR Mirror with Under-Display Cam-
era, an AR mirror system designed to dynamically adjust
the user’s viewpoint for an enhanced immersive experience.
Their approach leverages real-time computer vision tech-
niques to refine AR overlay accuracy, similar to our sys-
tem’s focus on precise filter alignment and real-time re-
sponsiveness.

10 SUMMARY

In brief, UsAR Mirror is an augmented reality system
that enhances makeup application by displaying multiple
viewpoints of a user’s face. Unlike traditional mirrors or
existing AR solutions, this system incorporates two web-
cams on either side of the display and allows users to ad-
just their viewing angle, enabling them to see their left and
right profiles in real time. Real-time AR overlays allow fil-
ters and virtual makeup to be applied to the user’s face
with minimal deviations. Users will be able to control the
interface entirely through intuitive hand gestures, handling
operations including capture images of themselves, switch-
ing between filters and adjust camera angles.

Our team faces several implementation challenges
ahead. Regarding performance of our application, main-
taining less than 200 ms of latency for camera movements
while simultaneously processing depth data, facial land-
mark detection, and AR overlay rendering on the Jetson
Nano will be computationally demanding. Generating a
3D face model within one second per user while maintain-
ing high fidelity for the AR overlay requires careful per-
formance fine-tuning of the face reconstruction pipeline.
Achieving 90 % accuracy in gesture recognition across var-
ious lighting conditions and distances (0.5 to 2 m) will re-
quire robust algorithm development and testing.

18-500 Design Review Report - 2 March 2025 Page 9 of 13

Coordinating multiple subsystems to work together
seamlessly will be the our most significant challenge, es-
pecially given the accuracy and real-time performance re-
quirements. The careful consideration of design trade-offs
and risk mitigation strategies should help address these
challenges as implementation proceeds.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• AR - Augmented Reality

• VR - Virtual Reality

• I2C - Inter-Integrated Circuit

• I/O - Input/Output

• PRWM - Pulse Width Modulation

• SRAM - Static Random Access Memory

• TX/RX - Transmit/Receive

• UART - Universal Asynchronous Receiver Transmit-
ter

References

[1] K. Akira. “A study on real-time performance of Im-
mediate Mode GUI (ImGui) framework”. In: Jour-
nal of Real-Time Software Engineering 15.2 (2020),
pp. 85–95. doi: DOIlink.

[2] Arduino. Arduino Mega 2560. Accessed: 2025-03-02.
2024. url: https://www.arduino.cc/en/Main/
ArduinoBoardMega2560.

[3] Z. Cao et al. “OpenPose: Realtime Multi-Person 2D
Pose Estimation using Part Affinity Fields”. In: IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence (2019).

[4] Jun-Yan Chang et al. Photorealistic Image Synthe-
sis for Unreal Engine. 2018. url: https://gfx.cs.
princeton.edu/pubs/Chang_2018_PAS/index.php.

[5] PCB Copy. Arduino Pro Mini vs Nano: A Com-
prehensive Comparison. https://pcb- copy.com/
arduino-pro-mini-vs-nano-a-comprehensive-

comparison/. 2024.

[6] echo3D. Unity AR Foundation Face Makeup Demo.
Accessed: March 2, 2025. 2025. url: https : / /

github . com / echo3Dco / Unity - ARFoundation -

echo3D-demo-Face-Makeup.

[7] Arrow Electronics. Arduino Uno vs Mega vs Micro.
https : / / www . arrow . com / en / research - and -

events / articles / arduino - uno - vs - mega - vs -

micro?. Accessed: 2024-03-02. 2024.

[8] Raspberry Pi Foundation. Raspberry Pi Zero W.
Accessed: 2025-03-02. 2024. url: https : / / www .

raspberrypi.org/products/raspberry-pi-zero-

w/.

[9] Dear ImGui. Dear ImGui: Bloat-free Graphical
User Interface for C++ with minimal dependencies.
https://github.com/ocornut/imgui. Accessed:
2025-03-02. 2024.

[10] Business Insider. Sephora’s Virtual Artist App Fea-
ture Teaches How to Apply Makeup Using AI. Ac-
cessed: March 2, 2025. 2017. url: https://www.
businessinsider.com/sephora-visual-artist-

app- feature- teaches- how- to- apply- makeup-

using-ai-photos-2017-3.

[11] Davis E. King. Dlib C++ Library: Machine Learn-
ing and Computer Vision. Accessed: March 2, 2025.
2025. url: https://dlib.net/.

[12] Michael Klements. DIY Motorised Camera Slider
with Object Tracking. Accessed: March 2, 2025. 2024.
url: https : / / www . the - diy - life . com /

diy- motorised- camera- slider- with- object-

tracking/.

[13] Moody Mattan. AR Mirror Technology in 2024:
Transforming the Retail Landscape. 2024. url:
https : / / www . brandxr . io / ar - mirror -

technology-in-2024-transforming-the-retail-

landscape.

[14] Richard A. Newcombe, Dieter Fox, and Steven M.
Seitz. “DynamicFusion: Reconstruction and Tracking
of Non-rigid Scenes in Real-Time”. In: Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2015, pp. 343–352. doi:
10.1109/CVPR.2015.7298631. url: https://doi.
org/10.1109/CVPR.2015.7298631.

[15] O. O’Cornut. Dear ImGui: A Bloat-Free GUI for
Real-Time Applications. https://www.siggraph.
org/. 2018.

[16] O. O’Cornut. Dear ImGui and Its Application in Em-
bedded Systems. https://www.siggraph.org/. Ac-
cessed: 2025-03-02. 2024.

[17] OpenCV. solvePnP: Camera Calibration and Pose
Estimation. Accessed: March 2, 2025. 2025. url:
https://docs.opencv.org/4.x/d5/d1f/calib3d_

solvePnP.html.

[18] PJRC. Teensy 4.0. Accessed: 2025-03-02. 2024. url:
https://www.pjrc.com/teensy/teensy40.html.

[19] Reflecting Trends: AR Mirrors in Marketing and Re-
tail. 2024. url: https://blog.lenslist.co/2024/
02 / 29 / reflecting - trends - ar - mirrors - in -

marketing-and-retail/.

[20] SparkFun Electronics. Arduino Comparison Guide:
Mega’s, Arms, YNsoh, My. https : / / learn .

sparkfun.com/tutorials/arduino-comparison-

guide/megas. 2024.

18-500 Design Review Report - 2 March 2025 Page 10 of 13

[21] Espressif Systems. ESP32 Technical Specifications.
Accessed: 2025-03-02. 2024. url: https : / / www .

espressif.com/en/products/socs/esp32.

[22] Unknown. Immediate Mode GUI: A simplified UI de-
sign for real-time applications. https://www.ics.
uci.edu/~eppstein/161/IMGUI/. Accessed: 2025-
03-02. 2024.

[23] Unknown. SDL – Simple DirectMedia Layer. https:
//www.libsdl.org/. Accessed: 2025-03-02. 2024.

[24] Jian Wang et al. “Perspective-Aligned AR Mirror
with Under-Display Camera”. In: ACM Transactions
on Graphics (TOG) 43.6 (Nov. 2024). issn: 0730-
0301. doi: 10.1145/3687995. url: https://doi.
org/10.1145/3687995.

18-500 Design Review Report - 2 March 2025 Page 11 of 13

Figure 6: Enlargement of Figure 1.

Figure 7: Enlargement of Figure 2.

18-500 Design Review Report - 2 March 2025 Page 12 of 13

T
ab

le
1:

B
il
l
of

M
at
er
ia
ls

D
e
sc
ri
p
ti
o
n

M
o
d
e
l
#

M
a
n
u
fa
c
tu

re
r

Q
u
a
n
ti
ty

C
o
st

@
T
o
ta

l
P
in

H
e
a
d
e
r
S
tr
ip

fo
r
A
rd

u
in
o

L
J
Q
-4
0
P
-Z

P
Z
-P

M
-T

C
-2
.5
4
-2
0

C
H
A
N
Z
O
N

1
$9

.9
9

$9
.9
9

R
o
ta

ry
E
n
c
o
d
e
r
C
o
d
e
S
w
it
ch

D
ig
it
a
l
P
o
te
n
ti
o
m
e
te
r

a
1
9
0
1
2
6
0
0
u
x
0
5
9
3

u
x
c
e
ll

1
$8

.8
9

$8
.8
9

U
C
T
R
O
N
IC

S
0
.9
6
In

ch
O
L
E
D

M
o
d
u
le

1
2
8
6
4

U
6
0
2
6
0
2

B
ro

a
d
c
o
m

1
$6

.9
9

$6
.9
9

3
D

P
ri
n
te
r
S
te
p
p
e
r
M

o
to

r
D
ri
v
e
r

T
M

C
2
2
0
9
V
1
.3

B
IG

T
R
E
E
T
E
C
H

D
ir
e
c
t

1
$2

2
.9
9

$2
2
.9
9

S
w
iv
e
l
M

in
i
B
a
ll

H
e
a
d

S
c
re
w

T
ri
p
o
d

M
o
u
n
t

4
3
3
2
0
5
0
6
8
3

A
K
O
A
K

2
$6

.9
7

$1
3
.9
4

M
5
S
li
d
e
in

T
N
u
t
T
e
e
S
li
d
in
g
N
u
t

B
R
-T

N
-0
0
1
5

B
o
e
ra
y

1
$7

.9
9

$7
.9
9

S
ta

in
le
ss

S
te
e
l
N
u
ts

a
n
d

B
o
lt
s

N
/
A

S
h
e
n
z
h
e
n

H
o
n
g
k
a
n
g
m
in

W
u
ji
n

Y
o
u
x
ia
n

G
o
n
g
si

1
$1

8
.9
9

$1
8
.9
9

V
G
a
n
tr
y
P
la
te

3
D

P
ri
n
te
r
P
a
rt
s
w
it
h

M
in
i
V
-W

h
e
e
ls

N
/
A

3
D
m
a
n

2
$9

.9
9

$1
9
.9
8

B
e
lt

P
u
ll
e
y
W

h
e
e
l
A
lu
m
in
u
m

T
B
L
6
M

M
2
0
5

W
IN

S
IN

N
T
e
ch

n
o
lo
g
y
L
td

1
$6

.9
9

$6
.9
9

G
T
2
O
p
e
n

T
im

in
g
B
e
lt

Z
R
-0
1
1
1
0
1
-c
a

3
D

P
ri
n
te
r
B
e
lt

1
0
m

1
$1

3
.9
9

$1
3
.9
9

2
P
C
S

3
0
0
m
m

2
0
4
0
V

S
lo
t
A
lu
m
in
u
m

E
x
tr
u
si
o
n

N
/
A

Iv
e
rn

te
ch

1
$1

6
.9
9

$1
6
.9
9

X
-A

x
is

S
y
n
ch

ro
n
o
u
s
B
e
lt

S
tr
e
tc
h

S
tr
a
ig
h
te
n

T
e
n
si
o
n
e
r

A
E
1
9
6
0
0

A
E
D
IK

O
2

$7
.9
9

$1
5
.9
8

N
e
m
a
1
7
S
te
p
p
e
r
M

o
to

r
N
/
A

Y
E
J
M

K
J

1
$3

9
.9
9

$3
9
.9
9

A
rd

u
in
o
P
ro

M
in
i

0
3
-0
1
-2
0
0
3

H
iL

e
tg

o
1

$1
3
.9
9

$1
3
.9
9

P
C
B

W
9
8
4
0
2
2
A
S
5
D
2

P
C
B
W

a
y

1
$2

6
.9
1

$2
6
.9
1

1
0
0
m
ic
ro

F
a
ra

d
C
a
p
a
c
it
o
rs

N
/
A

N
/
A

4
$5

.4
8

$0
.0
0

H
iL

e
tg

o
F
T
2
3
2
R
L

M
in
i
U
S
B

to
T
T
L

S
e
ri
a
l
C
o
n
v
e
rt
e
r
A
d
a
p
te
r
M

o
d
u
le

3
-0
1
-0
6
6
1
-1

H
iL

e
tg

o
2

$6
.4
9

$1
2
.9
8

C
a
m
e
ra

T
ri
p
o
d

S
h
o
e
s

N
/
A

T
e
ch

sp
a
rk

2
$5

.1
9

$1
0
.3
7

M
o
to

r
C
o
u
p
li
n
g

N
/
A

T
e
ch

sp
a
rk

2
$2

.0
2

$4
.0
4

T
im

in
g
B
e
lt

C
la
m
p

N
/
A

T
e
ch

sp
a
rk

2
$0

.2
4

$0
.4
8

M
o
n
it
o
r

S
2
4
2
5
H
S

D
e
ll

1
$1

0
6
.0
0

$1
0
6
.0
0

R
e
a
ls
e
n
se

C
a
m
e
ra

D
4
5
5

In
te
l

1
$0

.0
0

$0
.0
0

R
e
a
ls
e
n
se

C
a
b
le

U
3
S
1
A
0
1
C
1
1
-0
1
0

N
e
w
n
e
x

1
$4

5
.8
7

$4
5
.8
7

J
e
ts
o
n

O
ri
n

N
a
n
o

9
4
5
-1
3
7
7
6
6
-0
0
0
0
-0
0
0

N
V
ID

IA
1

$0
.0
0

$0
.0
0

W
e
b
c
a
m

C
9
2
2

L
o
g
it
e
ch

2
$7

9
.9
9

$1
5
9
.9
8

D
P

to
H
D
M

I
C
a
b
le

H
L
-0
0
7
2
6
3

A
m
a
z
o
n

B
a
si
c
s

1
$8

.4
9

$8
.4
9

T
o
t
a
l

$5
9
2
.8
0

18-500 Design Review Report - 2 March 2025 Page 13 of 13

Figure 8: Enlargement of Figure 4.

Figure 9: Enlargement of Schedule.

