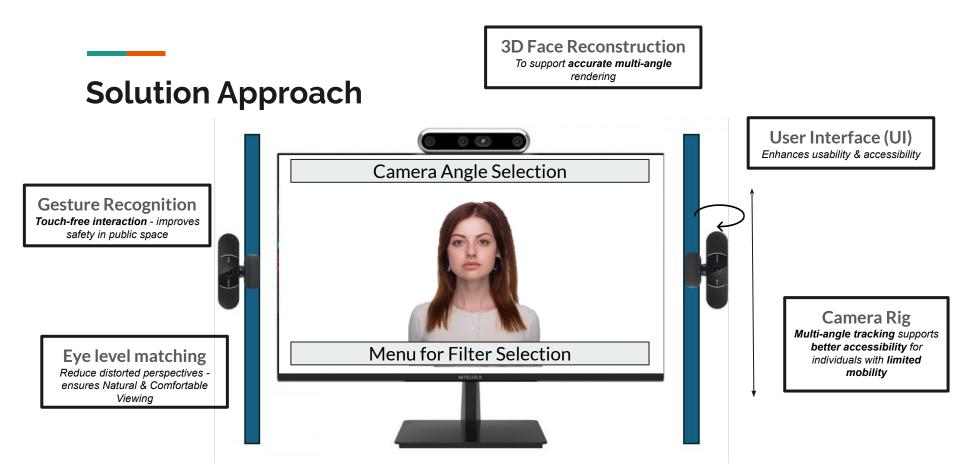
UsAR Mirror Design Presentation

Steven Lee, Anna Paek, Shengxi Wu

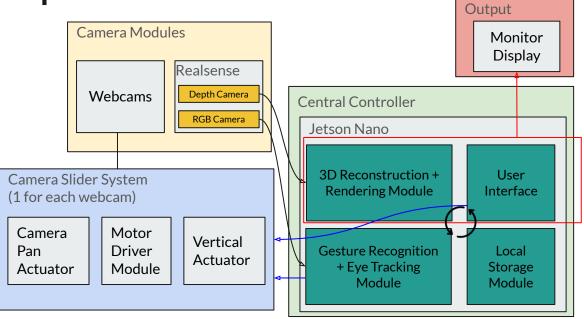
Use case

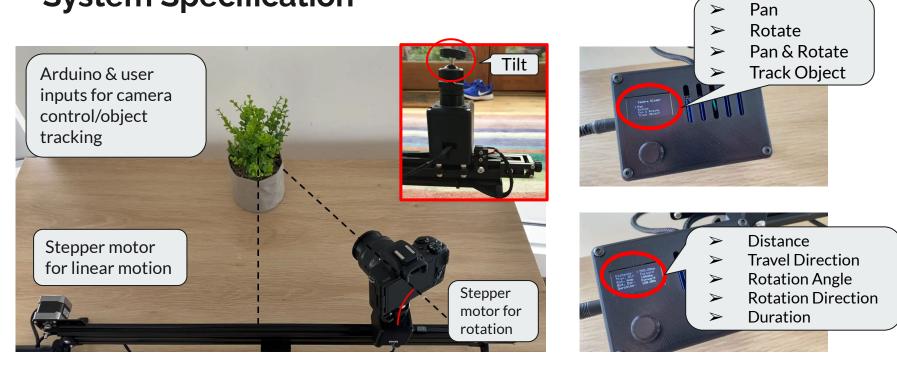
Problem:

- Applying makeup is time-consuming, and there's no way to preview the final look before application.
- Mirrors provide a limited view, making it difficult to see the sides of the face.
- Existing apps apply 2D filters, which don't adapt well to different angles or facial movements.

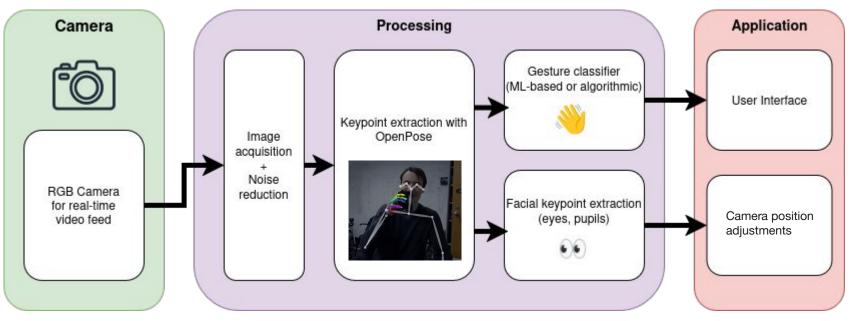

Solution:

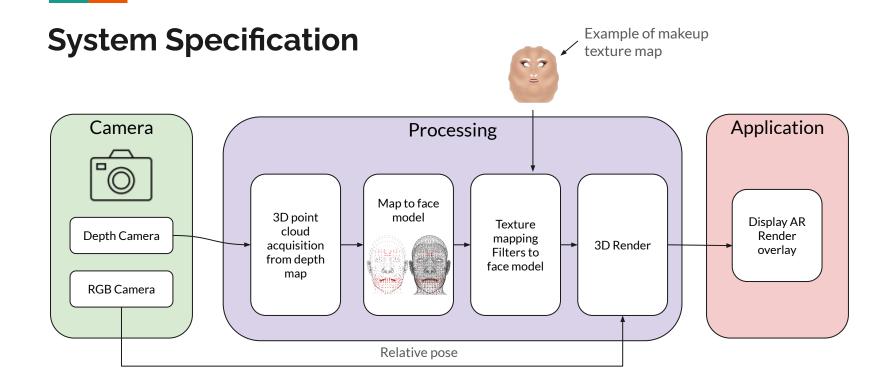
- An AR-enabled display that uses RGB and depth sensors to generate real-time, 3D makeup previews.
- Dynamic rendering allows users to view themselves from multiple angles.
- Gesture recognition enables hands-free control, allowing users to adjust makeup styles, switch views, and navigate the interface effortlessly.




Use Case Requirements		Hardware	Software	Design Requirements
1	Accurate Interaction in real time			 ≤ 200 ms delay in camera movements, making selection ≤ 1s delay to generate 3D face model per user ≥ 15 FPS for displaying AR Filters 2% deviation for AR Filter against head position
2	Freely select target view of themselves			 Arduino, stepper motor, rotary push button for camera control Up/down ≤ 11.8 in (~width of display) Pan/rotate ≤ 90 degrees ≤ 5 degrees deviation from desired angle
3	Screenshot and save photos of themselves on the display		\checkmark	 Include a "capture" option to take screenshots Screenshots saved automatically to a default directory (or user has an option to make one) PNG or JPEG for image quality
4	Navigate the menu or make a selection using hand motions			 Swipe up/down/left/right ≤ 200 ms delay Detection range of 0.5-2 m 90% accuracy in gesture cue detection

System Specification




System Specification

 \succ

System Specification

Implementation Plan

Things we Design & Develop:			
Hardware & System Integration			
Multisystem Interfacing			
Arduino-Controlled Camera			
System			
Perception & Interaction			
Gesture Control System			
Eye Tracking Feedback			
System			
3D Processing & Rendering			
3D Face Reconstruction			
AR Rendering Pipeline			
User Interface			

Test, Verification, Validation

Accurate Interaction in real time

Test Input:

- Continuous real-time camera feed
- Gesture input

Expected Output:

• ≤ 200 ms delay in camera movements, making selections

Test input:

- Continuous depth map feed
- User head motion

Expected Output:

- ≤ 1s delay to generate 3D face model per user
- << 200 ms delay in identifying 6DoF head transform
- ≤ 5mm RMSE for 3D reconstruction

Risk management:

 Include gesture cue to reconstruct face model

Test input:

- Continuous real-time camera feed
- Filter selection

Expected Output:

- ≥ 15 FPS for displaying AR filters
- ≤ 2 mm drift over movement range
- ≤ 2° deviation compared to detected headpose

Test, Verification, Validation

Screenshot and save photos of themselves on the display

- 100% success rate of screenshots saved
- Verify file creation & image quality

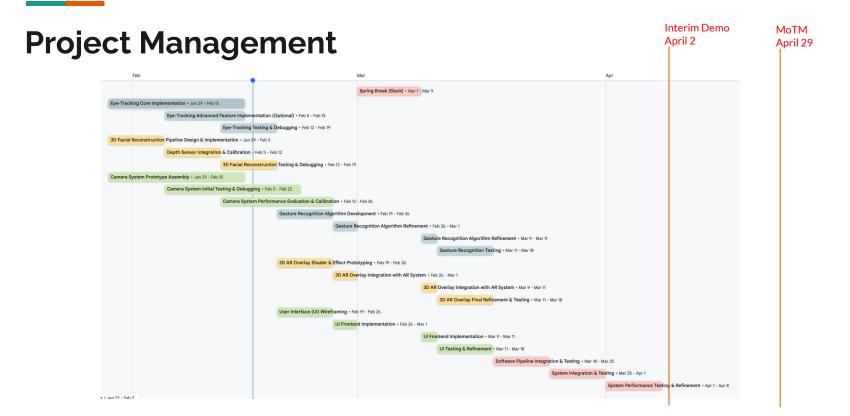
Risk management:

- 1. Screenshot commands & file creation
- 2. File I/O failures or storage issues \rightarrow error handling/warnings

Freely select target view of themselves

- 95% accuracy of camera orientation & frame stabilization
- ≤ 5 degrees deviation from desired angle

Risk management:


- 1. User commands for camera vertical motion, rotate, pan,
- Mechanical or software-based misalignment → feedback loop for auto-correction

Navigate the menu or make a selection using hand motions

- Clearly distinguishes between up/down/left/right
- Detection range of **0.5-2 m**
- 90% accuracy in gesture cue recognition

Risk management:

- Series of hand gestures under various conditions (include reverse action)
- 2. Include mouse control in case gesture recognition fails

