Use-Case & Design Requirements

Use-Case Requirements	Design Requirements
Accurate interaction in real time up to 200 ms delay	 ≤ 200 ms delay in camera movements, making selection ≤ 1s delay to generate 3D face model per user ≥ 15 FPS for displaying AR Filters 2% deviation for AR Filter against head position
Freely select target view of themselves within 90 degrees	 Arduino, stepper motor, rotary push button for camera control Up/down ≤ 11.8 in (~width of display) Pan/rotate ≤ 90 degrees ≤ 5 degrees deviation from desired angle
Screenshot and save ~100 photos of themselves on the display	 Include a "capture" option to take screenshots Screenshots saved automatically to a default directory (or user has an option to make one) PNG or JPEG for image quality
Navigate the menu or make a selection using 4 hand motions	 Swipe up/down/left/right ≤ 200 ms delay Detection range of 0.5-2 m 90% accuracy in gesture cue detection

Solution Approach

Impact of Solution Approach

Public Health, Safety, Welfare	Social Factors	Economic Factors
 Touch-free interaction- reduces the spread of germs Eye-tracking- minimize eye strain & fatigue 	 Transforms are accurate & image filters are reasonable as possible – not promote unrealistic beauty standards/negative self-perception 	 Within \$600 Simple camera control system design Easy to carry, package, ship
Global Factors	Cultural Factors	Environmental Factors
Giobal i actors	Cultural ractors	Linnonmentarractors

Complete Solution – Gesture Input + Camera Control

Camera command

Complete Solution – 3D Rendering + Filter

Without makeup filter

With makeup filter

Gesture Recognition Testing Metrics

Metric	Measured Result	Target / Expectation	Status
Pose Recognition Latency	~25 ms (from camera feed -> pose)	≤ 200 ms delay	🗹 Fast
Input Accuracy	≥ 95% correct (in all possible inputs)	≥ 90% correct	🗹 Accurate
Keypoint Estimation Error	~35 px (max error from stationary pose)	Target: ≤ 20 px	Noisy

Gesture Recognition Trade-Offs

Feature / Metric	Position-based inputs	Velocity-based inputs
Noise	Noisy keypoints due to OpenPose limitations	X Much noisier velocities calculated from keypoints
Latency	Low latency, use keypoint estimates as-is	X Needs additional filtering from keypoint estimates
Robustness	Position based button input more robust to noisy pose estimates	X Difficult to denoise velocities of keypoints
Ease of Use	Better visual feedback (draw position on screen), simply hover over button.	X Difficult for user to perceive gesture velocities

Camera Control System Performance

Metric	Measured Result	Target / Expectation	Status
Speed (steps per second)	48 steps/sec	50 steps/sec	A Slightly lower due to load
Distance per step (inches)	0.031 inches/step	1/32 inches/step	Meets the requirements
Maximum motor current	1.1 A	1.2 A	🔽 Safe operating range
Full travel time (up & down)	12 sec	10 sec	Alight delay due to friction
Camera accuracy (degrees)	3.7 degrees/step	3.75 degrees/step	Vithin expected precision

Camera Control System Design Trade-offs

Design Element	Choice/Approach	Pros	Cons
Stepper Motor Driver	TMC2209 instead of TMC2208	Quieter, smoother operation	Requires rewiring + \$6 more expensive
Control by Ticks vs. Position	Control by Ticks (Steps)	Less complex integration between gesture recognition and camera system	Less smooth movement and flexibility in choosing position
Speed vs. Precision	Slower Motor Speed for Smoothness	Smoother and more precise motion	Takes longer to move the camera

AR Filter + Rendering Performance Metrics

Metric	Measured Result	Target / Expectation	Status
3D Face Model Generation Delay	~20 ms (sparse landmarks)	Target: ≤ 50 ms	🗹 Fast
6DoF Head Pose Identification	~ 2 ms (solvePnP + depth for 68 points)	Target: ≤ 150 ms	✓ Fast (with very sparse point cloud)
AR Filter Rendering Frame Rate	~160 FPS	Target: ≥ 15 FPS	🔽 Real-time
Drift Over Movement Range	Some visible jitter, ∼3−5 px	Target: ≤ 5 px	🔽 Minor drift
Pose Estimation Error Influenced by calibration error	~10-15 рх	Target: ≤ 5 px	▲Less stable

AR Filter + Rendering Trade-offs

Feature / Metric	dlib	OpenCV DNN + LBF	MediaPipe Face Mesh
Detection Backend	HOG or CNN (CPU)	OpenCV DNN (with LBF regressor)	BlazeFace (GPU-accelerated)
Landmark Output	68-point	68-point	468-point dense mesh
Performance (Jetson)	X CPU-bound (~4s)	႔ Partial GPU (~20ms)	✓ Fully GPU (likely faster)
Robustness (Pose/Lighting)	Good (CNN)	Limited	Excellent under varied conditions
Ease of Integration (C++)	Easy	Easy	1 Complex (graph-based, Bazel build)
Customizability	✓ Full access to data and flow	Simple to inject into any pipeline	X Difficult — GL/stream sync difficult (easier with Python API)

Project Management

Today			Final Demo May 1
User Interface (UI) Wireframing • Apr 19 - Apr 22			
UI Frontend Implementation • Apr 19 - Apr 22			
UI Testing & Refinement • Apr 19 - Apr 22			
Software Pipeline Integration & Testing • Apr 19 - Apr 21			
System Integration & Testing • Apr 21 - Apr 26			
	System Perfo	ormance Testing & Refinement • Apr 26 - Apr 30	
			Final Re • May 2 - May 2
			Final Demo • May 1 - May 1

• Need to work on: UI, integration, testing