
Use-Case & Design Requirements

Use-Case Requirements Design Requirements

Accurate interaction in real time up to 200 ms
delay

● ≤ 200 ms delay in camera movements, making selection
● ≤ 1s delay to generate 3D face model per user
● ≥ 15 FPS for displaying AR Filters
● 2% deviation for AR Filter against head position

Freely select target view of themselves within
90 degrees

● Arduino, stepper motor, rotary push button for camera control
● Up/down ≤ 11.8 in (~width of display)
● Pan/rotate ≤ 90 degrees
● ≤ 5 degrees deviation from desired angle

Screenshot and save ~100 photos of
themselves on the display

● Include a “capture” option to take screenshots
● Screenshots saved automatically to a default directory (or user has

an option to make one)
● PNG or JPEG for image quality

Navigate the menu or make a selection using 4
hand motions

● Swipe up/down/left/right
● ≤ 200 ms delay
● Detection range of 0.5-2 m
● 90% accuracy in gesture cue detection

Solution Approach

Menu for Filter Selection

Camera Angle Selection

Camera Rig
Multi-angle tracking supports

better accessibility for
individuals with limited

mobility

Gesture Recognition
Touch-free interaction - improves

safety in public space

User Interface (UI)
Enhances usability & accessibility

3D Face Reconstruction
To support accurate multi-angle

rendering

Eye level matching
Reduce distorted perspective -

ensures natural & comfortable
viewing

Impact of Solution Approach

Public Health, Safety, Welfare Social Factors Economic Factors

● Touch-free interaction–
reduces the spread of germs

● Eye-tracking– minimize eye
strain & fatigue

● Transforms are accurate &
image filters are reasonable
as possible– not promote
unrealistic beauty
standards/negative
self-perception

● Within $600
● Simple camera control

system design
● Easy to carry, package, ship

Global Factors Cultural Factors Environmental Factors

● Robust and secure–
adheres to industry
standards

● Able to deploy in different
regions

● Considers different religious
values in makeup styles

● Affordable & reusable–
commonly found parts
(off-the-shelf computer
monitors & webcams) and
basic depth sensors

Complete Solution – Gesture Input + Camera Control

Stepper motor for
linear motion

Stepper
motor for
rotation

Arduino & user
inputs for camera
control

Built-in tilting
feature from
webcam

Camera command

“ru 100”

With makeup filter Without makeup filter

Complete Solution – 3D Rendering + Filter

https://docs.google.com/file/d/15fP5qQUi6uY8qFxRqIT3pdq6usqW6l3N/preview
https://docs.google.com/file/d/1vGtNjWXnYmEdnqOKp4FsJ8yB88bZTfvN/preview

Metric Measured Result Target / Expectation Status

Pose Recognition Latency
~25 ms (from camera
feed -> pose)

≤ 200 ms delay ✅ Fast

Input Accuracy
≥ 95% correct (in all
possible inputs)

≥ 90% correct ✅ Accurate

Keypoint Estimation Error
~35 px (max error from
stationary pose)

Target: ≤ 20 px ⚠Noisy

Gesture Recognition Testing Metrics

Gesture Recognition Trade-Offs

Feature / Metric Position-based inputs Velocity-based inputs

Noise ⚠ Noisy keypoints due to OpenPose
limitations

❌ Much noisier velocities calculated
from keypoints

Latency ✅ Low latency, use keypoint
estimates as-is

❌ Needs additional filtering from
keypoint estimates

Robustness ✅ Position based button input more
robust to noisy pose estimates

❌ Difficult to denoise velocities of
keypoints

Ease of Use ✅ Better visual feedback (draw
position on screen), simply hover
over button.

❌ Difficult for user to perceive
gesture velocities

Camera Control System Performance

Metric Measured Result Target / Expectation Status

Speed (steps per second) 48 steps/sec 50 steps/sec
⚠ Slightly lower due to
load

Distance per step (inches) 0.031 inches/step 1/32 inches/step
✅ Meets the
requirements

Maximum motor current 1.1 A 1.2 A ✅ Safe operating range

Full travel time (up & down)
12 sec 10 sec

⚠Slight delay due to
friction

Camera accuracy (degrees)
3.7 degrees/step 3.75 degrees/step

✅ Within expected
precision

Camera Control System Design Trade-offs

Design Element Choice/Approach Pros Cons

Stepper Motor Driver
TMC2209 instead of
TMC2208

Quieter, smoother operation
Requires rewiring + $6 more
expensive

Control by Ticks vs.
Position

Control by Ticks (Steps)
Less complex integration
between gesture recognition
and camera system

Less smooth movement and
flexibility in choosing position

Speed vs. Precision
Slower Motor Speed for
Smoothness

Smoother and more precise
motion

Takes longer to move the
camera

Influenced by calibration error

Metric Measured Result Target / Expectation Status

3D Face Model Generation Delay ~20 ms (sparse landmarks) Target: ≤ 50 ms ✅ Fast

6DoF Head Pose Identification
~ 2 ms (solvePnP + depth
for 68 points)

Target: ≤ 150 ms
✅ Fast (with very
sparse point
cloud)

AR Filter Rendering Frame Rate ~160 FPS Target: ≥ 15 FPS ✅ Real-time

Drift Over Movement Range
Some visible jitter,
~3–5 px

Target: ≤ 5 px ✅ Minor drift

Pose Estimation Error ~10-15 px Target: ≤ 5 px ⚠Less stable

AR Filter + Rendering Performance Metrics

Feature / Metric dlib OpenCV DNN + LBF MediaPipe Face Mesh

Detection Backend HOG or CNN (CPU) OpenCV DNN (with LBF
regressor)

BlazeFace (GPU-accelerated)

Landmark Output 68-point 68-point 468-point dense mesh

Performance (Jetson) ❌ CPU-bound (~4s) ⚠ Partial GPU (~20ms) ✅ Fully GPU (likely faster)

Robustness
(Pose/Lighting)

Good (CNN) Limited Excellent under varied conditions

Ease of Integration (C++) Easy Easy ⚠ Complex (graph-based, Bazel build)

Customizability ✅ Full access to data
and flow

✅ Simple to inject into
any pipeline

❌ Difficult — GL/stream sync difficult
(easier with Python API)

AR Filter + Rendering Trade-offs

Project Management
Final Demo
May 1

Today

● Need to work on: UI, integration, testing

