
Neo Jun Wei, William Chen, Steven Shi

Fridge Genie

Use Case

Problem

- Keeping track of items in your fridge is tedious and inefficient
- Though smart fridges exist with some similar function, they cost up to \$1000 more than regular models

Solution

- Our product will include a mobile application linked to moveable (actuated) cameras and computer vision models, allowing users to effortlessly monitor what's in their fridge
- The app will also have a suite of functions(recipe recommendations/ grocery list generation)

Areas

- Software Systems(Mobile App)
- Hardware Systems (Embedded Devices)
- Signals and Systems(Computer Vision/ Wireless Communication)

Requirements

Detection and classification accuracy

- 90%
- Correct and reliable item tracking requiring minimal user intervention

Image capture and CV inference pipeline latency

- 15s total
- Minimize time required to generate list of ingredients detected from when image capture is remotely prompted

Recipe retrieval time

- 3 relevant recipes within 2 seconds of request, with >=70% of ingredients being currently available
- Quick, relevant meal suggestions help reduce food waste and saves time

Technical Challenges

Image quality Model suitability Image capture and CV pipeline latency Extrinsic to the CV model quality A performant CV model will be affecting inference Scanning and inferring the fridge necessary to achieve high contents is time-intensive accuracy of image detection Affected by Camera quality Potential chokepoints: The model will need to be Image resolution Wireless transmission to generalizable across variations in Lighting microcontroller to activate Fridge layouts Camera position camera and lighting Package design variations Physical camera Item orientations We will need to install our own movement in capturing Lighting light source when capturing the panorama Item background current fridge contents, especially Image transmission complexity when the fridge is closed latency for cloud-based inference

Solution Approach - CV Model

- Use object detection to classify various ingredients
- We plan to utilize a deep learning CV model written in PyTorch, with cloud-based inference
- OpenCV to handle image processing
- YOLOv5 model trained on existing datasets of fridge ingredients captured under various conditions
- Might require location-specific datasets given regional variations in packaging
 - E.g., butter wrapped in translucent packaging in the U.S. vs foil in Europe

Solution Approach - Motorized Camera Module

- HD1080p cameras with stepper-motor based mounts
- Cameras placed on each shelf at the back of the fridge
- Physically scans the fridge's interior through translating across the fridge width (marked in red)
- Captures images at sufficiently high resolution while minimizing blind spots and item occlusion
- Single camera on motorized mount reduces hardware costs compared to multiple fixed cameras at different locations

Solution Approach - Embedded Device

- Local embedded device, likely a Raspberry Pi
 - Real-time camera control
 - Data transmission to the cloud
 - Can also perform CV inference locally if cloud transmission presents unacceptable delay
- Performs data compression to reduce transmission delay

Solution Approach - Mobile App

- Platform for user input to interact with the embedded system
- Provides other key features
 - User-prompted CV inference
 - Recipe suggestions
 - Grocery list generation
 - Notifications(scan completion/ expiration updates)
- Ensures user convenience and quick data verification

Testing, Verification & Metrics

- We will adopt a unit-testing methodology, testing individual components and modules
- After integrating the various components, we will conduct validation testing with a fridge filled with ingredients
- Robustness testing:
 - Simulate use across a given period of time
 - Varied fridge access patterns
 - Adding and replacing existing items
 - Removing items
 - Placing items in various parts of the fridge
 - Varying object orientations

Tasks and Division of Labor

Team Member	Responsibilities
Jun Wei	Camera, actuator, and microcontroller integration
Will	Mobile app and app features
Steven	CV models for ingredient detection and classification
Everyone	Unit testing and integration of their respective modules

Schedule

Tr Category 🗸	Person	~	Task 🗸	W4	~ W5	~	W6 ~	W7 ~	SB V	W8 ~	W9 ~	10 ~	11 ~	12 ~	13 ~	14 ~
Camera and Mount	Jun Wei	-	Research camera components and panning techniques													
Computer Vision	Steven	-	Research CV libraries and integration methods													
Recommendation System	Will	*	Research recipe recommendation AI													
Computer Vision	Steven	-	Gather dataset for ingredients													
Computer Vision	Steven	-	Develop model in PyTorch													
Computer Vision	Steven	-	Train model with dataset								·		-			
Computer Vision	Steven	-	Adjust model to improve performance													
Camera and Mount	Jun Wei	•	Acquire Camera and Servos													
Camera and Mount	All	•	Design frame to mount cameras and motors													
Camera and Mount	All	Ð	Build frame for camera mount				-									
Camera and Mount	All	•	Mount cameras onto frame													
Camera and Mount	All	Ð	Calibrate cameras to fridge				·									
Mobile App Dev	Will	*	Design App Interface													
Mobile App Dev	Will	-	Implement user login/ scan trigger													
Mobile App Dev	Will	*	Integrate app to cloud													
Embedded Device	Jun Wei	•	Acquire Raspberry Pi													
Embedded Device	Jun Wei	-	Integrate camera with Raspberry Pi													
Embedded Device	Jun Wei	•	Connect Pi to cloud													
Embedded Device	Jun Wei	•	Data processing pipeline design				_									
Embedded Device	Jun Wei	•	Data processing pipeline implementation		- 1		1									
Integration	All	•	Integrate recommendation system to mobile applicatio													
Integration	All	D	Integration of mobile application											0		
Integration	All	•	Full integration													
Integration	All	Ð	Error Checking													
Slack	All	•	Slack Time													