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Abstract—The first iteration of a system capable of
detecting, interpreting, and displaying live ASL speech
to English text. TransLingualVisionary is a novel sys-
tem that enables hearing impaired ASL users to better
participate in virtual streaming environments. Using
a live video stream, MediaPipe’s human pose estima-
tion, a SPOTER word classification model, and a LLM
to perform sign language translation, TLV contributes
to developing sign language processing systems using
machine recognition and translation.

Index Terms— ASL, Gesture Recognition, HPE,
LLM, NVIDIA Jetson Nano, MediaPipe, NLP, RNN,
SLT, SPOTER, STGCN, TLV, Video Processing

1 INTRODUCTION

For many deaf or hard of hearing (HOH) individuals,
sign language is a faster and more efficient way to communi-
cate than written text. Written text can be inaccessible to
deaf individuals due to its speed and the difficulty of learn-
ing a written language without it’s phonetic component.
For many hearing impaired, lack of widespread knowledge
of American Sign Language (ASL) often requires them to
rely on assistance from translators to communicate with
non-ASL users.

Many digital environments today feature video/audio
communication platforms that create this same challenge
for anyone who uses ASL as their primary method of com-
munication. Deaf individuals participating in live digital
environments, such as online meetings and live streams,
don’t have the autonomy to engage in any digital environ-
ment without the aid of a translator. Our project seeks to
be a step towards bridging that communication gap closer
together through the development of ”TransLingualVision-
ary” (TLV), a real-time ASL to English text translation
platform.

TLV addresses these issues head-on by offering a user-
friendly web application that enables live translation of
ASL into text, promoting inclusivity and reducing digital
isolation. We plan to do this using computer vision and ma-
chine learning to transcribe a live video feed into written
English text in real time. A MediaPipe Human Pose Esti-
mation (HPE) and word classification models detect ASL
from a video feed input and pass signed words to a Large
Language Model (LLM) that interprets ASL-syntax sen-
tences into natural English text. The output text will then
be displayed on a web application, enabling efficient two-
way communication on audio/video streaming platforms.

Any hearing impaired individual who prefers communi-
cating via ASL but interacts with non-ASL users virtually
could benefit from TLV.

2 USE-CASE REQUIREMENTS

The primary objective of this project is twofold: to in-
crease accessibility to community involvement by expand-
ing the range of virtual communication ASL users have ac-
cess to and to reduce digital isolation felt by those within
deaf and HOH communities. By achieving these objectives,
TLV aims to set a new standard for inclusivity in digital
communication platforms. These are the use-case require-
ments to guarantee the best user experience:

• Speed – The user will need their signed speech trans-
lated at an approximately real-time pace to provide
fluid translation in a conversational setting. Thus the
product must have minimal latency; we aim to detect
signs at speeds of 120 words per minute at minimum
[14], which matches the average speed at which a flu-
ent ASL speaker signs.

• Accuracy – For our product to be functional, it
must reliably translate the majority of a user’s signed
speech accurately. A user should not need to re-sign
or type out words/phrases to effectively communi-
cate. Thus, we aim for ∼40% BLEU score[7] for sen-
tence translation (see section 7.2 for metric details)
for sentence translation on a dataset of 2000 words.

• Recognition Distance – Our design must work within
a distance range that any user of a digital environ-
ment may want to use. The system must successfully
recognize full-upper body signs captured at a distance
up to 4-5 feet away from the camera.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our architecture breaks down this ASL translation task
into 3 main components:

• Human pose estimation model: generates human
skeleton landmarks of significant body points given
a video input.

• Classification model: classifies a sequence of skeletal
landmarks to a certain gesture class.

• LLM model: performs sign language translation
(SLT) by interpreting a sequence of transcribed ASL
words with high lexical similarity to spoken English
but low syntactic similarity.
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Figure 1: System diagram. Each component and its overarching tasks within the system’s flow of information. User
video input is captured by an external camera that’s sent to human pose estimation. HPE vectors are sent to the word
classification model to generate an English word or phrase. Generated text is used by an LLM to perform SLT and
generate a natural language English sentence that can be sent to the application display to be seen by users.

Figure 2: A closer look at the Word Classification model through a block diagram. The word classification model utilizes
HPE landmarks to detect and predict it’s most-confident word classification.

Overall system information flow can be seen in Figure 1,
which displays how components interact within the sys-
tem. The system architecture integrates three main com-
putational modules using a Logitech C920S camera and an
NVIDIA Jetson Nano Developer Kit.

Since the system will all be running on a single de-
vice, we need to ensure that each component is efficient
and can run in real-time. The HPE model processes each
video frame to extract the skeletal landmarks. These land-
marks are then filtered and processed to be fed into the
classification model, which will output the recognized ASL
words. The sequence of words will then be passed to an
LLM API call, which performs SLT and generates a mean-
ingfully analogous English sentence. This sentence will feed
into a web application that displays translated text.

One of the core engineering principles employed in
our ASL translation system is the divide-and-conquer ap-
proach. We break down the complex problem of translating
ASL videos into English text into smaller, more manageable
sub-problems: pose estimation, gesture classification, and

language translation. Each of these sub-problems is tack-
led by a specialized model tailored for that specific task.
This modular design not only simplifies the overall system
but also allows for easier optimization, maintenance, and
potential upgrades to individual components without af-
fecting the entire pipeline. Another engineering principle
we leveraged is abstracting low-level data into higher-level
representations. The pose estimation model abstracts the
raw video data into a sequence of skeletal landmarks, which
serves as a more compact and informative representation
for the downstream gesture classification model. Similarly,
the classified gestures are further abstracted into a sequence
of ASL glosses or sign labels, which the language model can
interpret more effectively.

The human pose estimation component of our system is
grounded in principles of computer vision. Techniques like
convolutional neural networks (CNNs) and object detection
algorithms are used to locate and track body landmarks
across video frames. These methods leverage concepts like
feature extraction, edge detection, and pattern recognition
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to identify human forms and extract meaningful skeletal
representations. The language translation component uti-
lizes principles from the field of natural language processing
(NLP). While we did utilize a general LLM API, which is
not inherently trained for NLP tasks, the size of these mod-
els and their datasets, along with a transformer architecture
and self-attention mechanisms allows them to understand
the structure and context of ASL sign sequences and gen-
erate coherent English translations [11].

Mathematically, linear algebra plays a crucial role in
various components of our system. The neural network
models, including the pose estimation, gesture classifica-
tion, and language models, rely heavily on linear algebraic
operations like matrix multiplications, convolutions, and
transformations. These operations are fundamental to the
propagation of data through the network layers and the
learning of weight parameters during training. Addition-
ally, our classification model is trained using principles of
probability and statistics. Optimization objective func-
tions, such as cross-entropy loss or mean squared error, are
grounded in statistical concepts and techniques like back
propagation, stochastic gradient descent, and regulariza-
tion methods used to adjust model parameters are based
on the principles of probability and statistical inference.
Both our human pose estimation and gesture classification
model also employ principles from signal processing. Tech-
niques like filtering, normalization, and temporal modeling
are used to preprocess and analyze the spatio-temporal pat-
terns in the landmark data.

4 DESIGN REQUIREMENTS

The design specifications established below will ensure
our product’s engineering design solution meets all use-case
requirements defined in Section 2’s Use-Case Requirements.

4.1 Speed

To ensure overall latency will be approximately real-
time, we aim to present visual feed and translation on
web UI within 3 seconds. The average English sentence
is between 15–20 words long and, 3 seconds would pro-
vide enough time to group words into an approximation
of sentence-length clusters for an average-paced ASL user.
The text generation LLM can use context past a 3-second
window to re-format sentences in the light of new infor-
mation, like an eyebrow raise which could indicate a ques-
tion or confusion, but some estimation of sentence content
should be displayed in this time frame.

The 3-second timing requirement will need to be dis-
tributed across all system components. The distribution of
component latencies necessary to meet this timing require-
ment is described in Section 7.1.

4.2 Accuracy

To achieve a sentence translation BLEU[7] score of 40%
minimum, we’ve created 3 quantitative design requirements
to meet. Our system will need to recognize when a user is
signing, correctly identify ASL words, and correctly inter-
pret ASL semantics. To gauge these metrics, our system
will meet these 3 requirements across 3 separate compo-
nents:

• ∼95% sign recognition rate. That is, the classification
model will be able to detect when a user is signing
at least 95% of the time. Airing on the side of cau-
tion, our system may allow for false positives if a user
motions in a way that is similar to signed speech.

• We originally aimed to recognize 2000 signed words
at ∼85% accuracy. Given the limitations and scope
of our project, we ultimately found that 2000 word
classifications was unrealistic as seen by current re-
search [5]. As a result, our final model was trained
on 100 words. Word classification must be able to
correctly classify all words included in the training
dataset with about 80% accuracy. Classifications will
be detected and modified in the LLM text generation
process, allowing for a slight margin of error in our
classification model.

• Translate identified clusters of words into full english
sentences with a BLEU[7] score of ∼40%. Given syn-
tactically ASL word sequences, the LLM text gener-
ation must produce a natural english sentence with a
BLEU[7] score of ∼40%.

4.3 Classification Distance

To ensure all users are guaranteed a useful product, our
system must recognize and retain the speed and accuracy
metrics of the classification model for users up to 4-5 feet
away from the camera input. The HPE model should be
able to pass information that is equally useful for the word
classification model.

5 DESIGN TRADE STUDIES

5.1 Human Pose Estimation

5.1.1 Mediapipe vs OpenPose

OpenPose and MediaPipe are both open-source libraries
for detecting 2D and 3D human pose estimation from image
and video data. However, there are a few key differences
that make MediaPipe a more suitable solution for Ameri-
can Sign Language (ASL) translation purposes.

A core distinction is that MediaPipe has been opti-
mized for real-time performance on mobile and edge de-
vices, enabling faster and more responsive pose tracking.
This allows MediaPipe models to pick up rapid transitions
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between ASL signs more accurately compared to Open-
Pose, which is built for maximixing precision while sac-
rificing speed. We can see this in the research paper by
Kien Nguyen Phan et al., in which they have researched
and detailed the comparisons between the two HPE models
[16]. Additionally, MediaPipe natively supports tracking of
hand landmarks and face mesh - both crucial components
to identify individual signs and facial expressions in ASL.
The hand and face modeling in MediaPipe captures more
fine-grained details like finger curls and eye gaze direction.
Finally, MediaPipe’s model-building process is more cus-
tomizable to target the specific use case of ASL transla-
tion by tuning appropriate semantic thresholds and heav-
ier loss weights. The optimized models use less computing
for inference - an advantage over OpenPose when deploying
translation apps on low-power devices.

We also had the choice of decidign between various Me-
diapipe models, namely between the hand-only estimation
model [12] and the holistic estimation model [13]. On one
hand, just landmarking the hand gives us fewer outputs,
which could make our pipeline infer faster and take in fewer
vectors as the input for our classification model. However,
this has downsides in that it only captures the hand’s po-
sition relative to the image frame, meaning that this could
potentially cause a distance issue or could miss out on im-
portant facial expressions that could indicate important
ASL semantics. As such, we made the decision to utilise the
holistic model and limit what landmarks we do use in order
to minizmize the number of parameters that we need. Since
the holistic model is comprised of Mediapipe’s hand, face
mesh, and pose estimation models, we decided to use the
the hand landmarks and a subset of the pose landmarks.
This not only provides useful classification indicators, but
also acts as points of normalization for our other points.

5.1.2 FPGA v. Jetson v. Computer

The main consideration between these two devices is
which one would hold the Human Pose Estimation model
and how that would impact the latency of the overall
pipeline. FPGAs provide a parallel architecture that can be
optimized for deep learning inference workloads, enabling
extremely low latency predictions even on larger models.
As per Farhad Fallahlalehzari, who quoted Xlinx research
comparing FPGAs and GPUs, ”FPGAs result in signifi-
cantly higher computer capability”, while also being far less
power-hungry, ensuring more cost-efficient and stable oper-
ation when deployed [8]. Additionally, by running pose es-
timation directly on the FPGA, the landmark location vec-
tors can be transferred to the main application processor
without needing intermediate serialization. This reduces
overall system latency and allows for faster processing of
the pose data, important for real-time requirements. There
is also the consideration of space. Both of the models we
are considering for human pose estimation can be fit on an
FPGA and a Jetson, but the Jetson will also be holding our
classification model as well. As such, running human pose
estimation on the Jetson might mean that we would have

to reduce the size of our classification model, decreasing
the number of parameters that we have and risking lower
accuracy numbers or classify on a smaller overall class set.

However, the FPGA is only worth it if we are able to
quantize the human pose estimation model on the FPGA
because otherwise, we are just running human pose esti-
mation on the ARM processor of the FPGA board and we
would not get any of the benefits of FPGA optimization.
In this case, a Jetson would be far superior considering
the processing difference between both the Jetson and the
FPGA. Unfortunately, Mediapipe’s holistic model was not
able to be quantized and thus could not necessarily be op-
timized on the FPGA given our resources. As such, we
had decided to use the Jetson for our overall system. Ul-
timately, the Jetson Nano Developer kit is no longer sup-
ported and is in the process of being discontinued. All
Jetson modules and developer kits are supported by Jet-
Pack SDK, but due to the Jetson Nano’s EOL status, the
latest JetPack image that’s compatible with our model has
deprecated dependencies that are not compatible with the
dependencies required to run the Mediapipe version that we
wanted. Additionally, we did not have ethernet access to
internet so it was difficult showcase our working LLM API
on the jetson. As a result, we needed to use a computer’s
CPU to present the work that we out into our project for
the final demo.

5.2 Classification Model

A crucial component of our ASL-to-English translation
pipeline is the gesture classification model, which takes
the sequence of skeletal landmarks from the pose estima-
tion stage and classifies them into individual ASL signs or
gestures. For this task, we evaluated three different deep
learning architectures: Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNNs), Transformers (specif-
ically the SPOTER model), and Spatial-Temporal Graph
Convolutional Networks (ST-GCN).

5.2.1 LSTM RNN

LSTM RNNs have been widely used for sequence classi-
fication tasks, including gesture recognition. They process
the input sequence of skeletal landmarks sequentially, while
maintaining an internal hidden state that captures the tem-
poral context from previous time steps. This recurrent na-
ture allows LSTMs to model the dynamics and dependen-
cies within the gesture sequences effectively. One advantage
of using LSTMs for gesture classification is their ability to
handle variable-length input sequences, which is crucial as
different ASL signs may have varying durations. Addition-
ally, LSTMs can capture relatively long-term dependencies
within the gesture sequences in comparison to their Gated
Recurrent Unit (GRU) RNN counterparts. This is espe-
cially important for recognizing complex signs that involve
multiple movements or transitions. However, LSTMs suffer
from some limitations that led us to not choose an LSTM
model. Difficulty in parallelization results in slower training
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and inference times, which can be problematic for real-time
applications like our ASL translation system. Furthermore,
LSTMs are susceptible to the exploding gradient problem,
which occurs when the gradients become extremely large
during backpropagation, causing the weights to update in
an unstable manner, leading to poor convergence or diver-
gence. Standard GRU RNNs also suffer from the vanish-
ing gradient problem, which is when the gradients become
increasingly smaller as they are backpropagated through
many layers, making it difficult for the model to learn
long-term dependencies effectively. The vanishing gradi-
ent problem arises due to the repeated multiplication of
small values during backpropagation, causing the gradients
to shrink exponentially over long sequences. While the ar-
chitectural difference between an LSTM and a GRU model
handles this, an LSTM is still susceptible to the exploding
gradient problem where the gradient grows exponentially
over time, which would heavily hinder performance.

5.2.2 Transformer: SPOTER

Transformer models are a powerful alternative to RNNs
like LSTMs for sequence modeling tasks. Instead of re-
lying on recurrent computations, transformers utilize self-
attention mechanisms to capture long-range dependencies
within the input sequence. The self-attention mechanism
allows each element in the sequence to attend to all other
elements, enabling the model to capture dependencies re-
gardless of their distance in the sequence. Compared to
LSTMs, Transformers offer several advantages for gesture
classification:

• Parallelization: Transformers are parallelizable, as
the computations for different positions in the se-
quence can be performed independently. This par-
allelization capability allows for faster training and
inference times, which is crucial for real-time appli-
cations like our ASL translation system.

• Long-term Dependencies: The self-attention mecha-
nism in transformers allows them to capture long-
term dependencies more effectively than LSTMs,
without suffering from the vanishing/exploding gradi-
ent problem. This property is especially beneficial for
recognizing complex ASL gestures that involve mul-
tiple movements or transitions over an extended du-
ration.

• Structural Modeling: While traditional transformers
do not explicitly model the structural relationships
between body joints, they can be adapted to incorpo-
rate such information through techniques like spatial
or graph-based attention mechanisms.

The model that we ended up using for this was the
SPOTER model [2]. The SPOTER (Sign POse-based
TransformER) is a transformer architecture proposed for
word-level sign language recognition from video. It takes
sequences of 2D skeletal landmarks extracted by pose es-
timation as input. A novel normalization scheme projects

these landmarks onto the ”signing space” in front of the
signer to focus on relevant spatial relationships. Augmenta-
tions like rotations and perspective transforms are applied
to the skeletal data for better generalization. At its core
is a transformer encoder-decoder, where the decoder has
a single ”class query” vector that attends to the encoded
landmark sequence to predict the sign language gesture
class. SPOTER achieves state-of-the-art performance on
datasets like WLASL and LSA64 for the pose-based recog-
nition setting. Being skeletal-based, it is computationally
efficient compared to models using full image/video inputs.
It can achieve good accuracy even from limited training
data, benefiting from the informative pose representation
and augmentations tailored for sign language.

SPOTER was one one of the two models that we ex-
plored and tested for our pipeline, as it worked as a step
forward progression from an LSTM. Both this paper and
an embeddings exploration of the SPOTER model [10] had
relatively high accuracy numbers for the WLASL dataset
[6] compared to other architectures. When training the
SPOTER model, we were able to achieve a validation ac-
curacy of about 73% for a 100 class dataset and a validation
accuracy of about 91% for a 10 class dataset. However, dur-
ing inference time, we were only able to reach an accuracy
of approximately 5̃5% for our 10 class dataset.

5.2.3 ST-GCN

The final model that we considered and ended up using
for our demo was the ST-GCN model. ST-GCN (Spatial-
Temporal Graph Convolutional Networks) is a graph-based
approach that leverages the structural information of the
human body to learn spatial and temporal patterns for ges-
ture recognition. It represents the human skeleton as a
spatial-temporal graph, where nodes correspond to joints,
and edges encode the physical connections between them.
ST-GCN applies graph convolutional operations to capture
the spatial and temporal dependencies within this graph
representation, allowing for gesture classification. The key
advantage of ST-GCN for ASL gesture recognition is its
ability to explicitly model the anatomical constraints and
relationships between body joints, which is useful for rec-
ognizing hand shapes and precise hand-body interactions.
Additionally, ST-GCNs have demonstrated superior perfor-
mance on datasets tailored for sign language recognition,
outperforming other methods like LSTMs and conventional
convolutional models. However, an ST-GCN can be more
computationally expensive due to the graph convolutions,
especially for larger graph structures representing the hu-
man skeleton [19].

We utilized the ST-GCN architecture of Microsoft’s
ASL Citizen Dataset [5], the open-source code for which
was developed by Alex Lu and Microsoft [1]. One of the
issues we had with the SPOTER model was the WLASL
dataset; since we installed it locally, we noticed that there
were a lot of videos missing, resulting in some gesture
classes having an uneven number of training videos to work
with, and we believe that this impacted the misclassifica-
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tion rate of our SPOTER model. As a result, we ended
up using Microsoft’s ASL citizen dataset, created through
community sourced clips fo ASL gestures and an ST-GCN
model architecture. Training this led to a validation accu-
racy around 82%, which is lower than that of the SPOTER
model. But during inference time, we were able to achieve
a much higher value sitting around 70%, which is far closer
than that of the SPOTER model.

5.3 OpenAI GPT3.5 v. Meta Llama2

For our LLM, we were considering two different mod-
els - OpenAI’s GPT3.5 model and Meta’s Llama2. We
chose these because we have access to both and have ex-
perience using both for past projects. Based on research,
we were able to determine that this tradeoff is similar to
that of the GRU v. LSTM tradeoff from earlier. From Di-
ana Cheung, we were able to learn that Llama2 is overall
a lighter model in comparison to GPT3.5, meaning that
there is a chance that it is faster, but GPT3.5 does have
higher performance and accuracy. She also mentions that
the decision is heavily influenced by the risk tolerance of
our use case requirements [3]. Additionally, we also real-
ized that Llama2 does not necessarily have an easy to use
API like that of GPT3.5, meaning that we would have to
run Llama2 locally, which could impact the performance
of our other components. GPT3.5 having a simpler library
and API call structure made it the better choice.

6 SYSTEM IMPLEMENTATION

6.1 Human Pose Estimation

The first subsystem we developed is our Human Pose
Estimation model using Mediapipe’s holistic model and
OpenCV. AS mentioned earlier, Medaipipe is an open
source library provided by Google for on-device machine
learning purposes, including vision and land marking for
our use case. OpenCV is another open source library cen-
tered around providing user with computer vision technol-
ogy, which we used for frame and video capture for indi-
vidual frame analysis.

Our human pose detection model first begins by using
OpenCV’s frame reader to keep pulling frames form our
camera for processing. This brings us to the Mediapipe
model itself, which handles the human pose estimation.
At its core, Mediapipe’s holistic model integrates separate
machine learning models that are each specialized in their
respective domains: pose estimation, facial landmark de-
tection, and hand tracking. The pose estimation model,
known as BlazePose, operates on a lower, fixed resolution
to efficiently capture the overall human form. It serves as
the foundation upon which the other models build, pro-
viding critical information about the position and orienta-
tion of the body. Once the pose is detected, the Holistic
model employs a multi-stage pipeline to refine the detection
of hands and face. It generates regions of interest (ROIs)

based on the pose landmarks, which are then re-cropped us-
ing a dedicated model to ensure high-resolution inputs for
the subsequent stages. This re-cropping is essential because
the initial pose estimation operates at a lower resolution,
which is not sufficient for the detailed articulation required
for hands and face. For the facial landmarks, the Holistic
model applies a task-specific model that can detect up to
468 points on the face, providing a detailed map of facial
features. Similarly, for hand tracking, the model identifies
21 landmarks for each hand, allowing for precise detection
of hand movements and gestures. Additionally, we have 32
landmarks that are classified for the overall pose itself [15].

Initially, when we were using the SPOTER model, we
only held on the hand and a few of the pose landmarks, as
those were the main points of interest when considering sign
language. However, for the ST-GCN, we utilized the entire
holisitc suite, due to the nature of how they work (covered
in section 6.2). As once we get the landmarks themselves,
we process the landmarks such that they fit the data stric-
ture of the appropriate model. During training time, we
store these in npy files for later reference so that we can
preprocess and train the model separately. Additionally, in
order to improve real time recognition, we decided that we
only would save the landmark data for frames that had at
least one hand in the, as we did not want to influence either
model with hand-less frames that are not relevant to the
sign itself. For inferencing, we were able to determine that
the overall latency of running human pose estimation and
the classification model sequentially was negligibly similar
to that of running them in parallel, hence allowing us to
simply plug the processed HPE data during inference time.

6.2 Classification

Our classification model works using ST-GCN model
that we mentioned earlier. An ST-GCN (Spatial Tempo-
ral Graph Convolutional Networks) model is designed for
skeleton-based action recognition from sequences of body
joint coordinates. The first step is to construct a spatial-
temporal graph representation of the input skeleton data.
The node set of this graph contains all the body joints
across all frames of the input sequence. The edge set is
divided into two subsets - spatial edges that connect joints
within each frame based on the natural skeletal connectiv-
ity, and temporal edges that link the same joints across
consecutive frames, representing their motion over time.
This spatial-temporal graph explicitly models the spatial
and temporal relationships present in the skeleton sequence
[19].

The core of the ST-GCN model is the spatial-temporal
graph convolution operation performed on the constructed
graph. For each node (body joint), the convolution com-
putes a weighted sum of the feature vectors from its spatial-
temporal neighboring nodes, determined by spatial and
temporal kernel sizes. The weight matrices for combin-
ing neighbor features are partitioned into subsets based on
strategies like distance partitioning or spatial configuration
partitioning. The spatial configuration strategy separates
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neighbors into the root node itself, nodes closer to the skele-
ton’s center (centripetal), and nodes farther from the cen-
ter (centrifugal) to model concentric and eccentric body
motions. Learnable edge importance weights scale the con-
tributions of different spatial edges [19].

The ST-GCN has multiple layers of these spatial-
temporal graph convolution units, with increasing out-
put channels in higher layers. Residual connections and
dropout are used for regularization. The final feature rep-
resentation is fed into a softmax classifier to predict action
class probabilities. The entire model is trained end-to-end
using stochastic gradient descent to minimize the cross-
entropy loss. Data augmentation techniques like random
affine transformations and fragment sampling are applied
to the input during training [19].

For action recognition on a test example, the spatial-
temporal graph is first constructed from the input skeleton
sequence. This graph is then fed through the trained ST-
GCN model to extract feature representations, which are
passed to the softmax classifier to obtain action class prob-
abilities. The class with the maximum probability is output
as the predicted action class [19].

For training, we utilized Microsoft’s ASL Citizen
database [5], which had been preprocessed using Medi-
apipe’s Holistic model, as we mentioned earlier, which in
total contains about 84,000 videos over 2,700 classes. Given
our time frame resources, we focused on 10 common classes
to train on. The reason for this is that, when looking at
the provided metrics by Microsoft, as classification goes up,
accuracy significantly drops. We can see this with the 32%
accuracy that the 2700 class model gets. While this is
good in a vacuum for research purposes, it did not hold up
for our use case requirements. As such, we decided it would
be better to focus on accuracy over class size for now and
focused on 10 common classes and expand from there in
the future, as it would just be a matter of improving the
model.

During inference, we take the weights that we saved
from training and instantiate a new model. This then gets
skeletal data from human pose estimation passed though
it to obtain a word classification for a given input. As
more sequences come into the video itself, we collect these
words and pass it onto the LLM API. One of the main
challenges of inferencing however is the number of frames
to include in an inference. When we are training and test-
ing static videos, we know the number of frames that we
are passing into the model. However, this is not the case
in a real-time scenario, as we just have an endless stream
of frames. As such, we have to decide how many frames to
input into the model at a time for classification. Using a
static count of frames occasionally works, but often results
in signs being classified part way through the sign, result-
ing in misclassification. Using overlapping batches, where
some frames from the previous batch are kept and the re-
mainder of the batch being filled with new batches results
in latency issues when inferencing. A solution that works
is have a start and stop capability so that we can start and

stop when we are recording a batch of frames be pushed
into the model. This can either be done using a button
that control when we start and stop recording. A more
creative approach is start recording when a hand is in the
frame and stop recording otherwise. The issue with both
of these is that a fluent ASL speaker would have to break
their normal signing style in order to either start and stop
the recording or to put their hands in and out of frame.

6.3 LLM API

Figure 3: LLM. The output from the classification model
is passed into OpenAI’s API, where SLT takes place. The
natural language English sentence that’s generated is then
passed to the web application that displays this text along-
side the user’s video.

The LLM utilizes OpenAI’s GPT3.5 model in order
to translate between ASL words and an English sentence.
ASL grammar and sentence structure is heavily different
than English, despite the similar vocabulary. As such, we
decided to employ prompt engineering for GPT3.5 to gen-
erate an English sentence using the outputs of our classifi-
cation model. After we get a sequence of comma-separated,
translated words from the classification model, we can ap-
pend that sequence to the prompt below:

You will receive a list of comma separated words di-
rectly transcribed from signed ASL speech. Your objective
is to act as an ASL sign language interpreter and perform
sign language translation. Sign language translation (SLT)
translates between spoken and signed speech that use the
same language, which tend to show high lexical similarity
but low syntactic similarity. You should correctly interpret
all the user’s words in their given order to create full nat-
ural English sentences that maintain the user’s intended
meaning. Knowledge of ASL grammar and syntax rules
should be used when constructing natural language English
sentences. Parts of speech like copulas, articles, adverbs,
pluralization, and tense markers should be inserted into the
interpreted sentences when appropriate. Please return only
the SLT sentence and no other text.

This gets passed into the GPT3.5 API, returning a
translated English sentence. This sentence then gets placed
at the bottom of a viewing screen, which is also presenting
the landmarks of the human pose estimation model.

The LLM API architecture has also been attached to
a webapp for further implementation, which was based on
another ASL translator utilizing a different system architec-
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ture [9]. The webapp utilizes Flask, a Python microframe-
work for web app development, to allow users to start and
stop recording while also viewing themselves. Additionally,
given a sequence of ASL translated words, it can utilize the
LLM API code to translate the sequence into an Enlgish
sentence.. This can be tied the start and stop portion of our
classification algorithm to allow users to generate transla-
tions for ASL signs.

7 TEST & VALIDATION

7.1 Latency Testing

The main goal of testing our latency is to meet the over-
all use case requirement of a three-second maximum delay.
To test this, it suffices to measure the time it takes from
right after the sign is finished to when the translated text is
generated and ensure that not only the average time is be-
low three seconds, but that the time three standard devia-
tions above the average time is also within the three-second
latency mark. Under the assumption that the distribution
of the times follows a normal distribution, if the third stan-
dard deviation from the mean time is also underneath our
use case threshold, we can also assume that 99.85% of our
translation times over some arbitrary n number of runs will
also be under three seconds. We determined this as a rea-
sonable threshold since this would mean that only 15 runs
out of 10 thousand runs will be above 3 seconds, which we
believe holds to our use case requirements.

That said, we also need to verify our component laten-
cies to reach this overall latency requirement. As we out-
lined in our design requirements, the component latencies
chart out to the following:

• Image pre-processing: 5% ≈ 150 milliseconds

• FPGA Human Pose Detection: 10% ≈ 300 millisec-
onds

• Classification Model: 50% ≈ 1.5 seconds

• Prompt Generation and LLM: 30% ≈ 900 millisec-
onds

• Webapp Display: 5% ≈ 150 milliseconds

We would similarly test these to that of the overall latency
test; we want to use a timer to calculate the time from
data entering the component to data leaving said compo-
nent, and make sure that the third standard deviation is
underneath the unit component latency requirement. This
virtually ensures that we do not have a bottleneck for any
component.

We also want to test the latency between two different
design choices that we were considering. The first option
is our current design. The second is where we our Hu-
man Pose Estimation model on the Jetson or the computer
alongside the RNN. As of right now, we believe that having
the Human Pose Estimation model on the FPGA will result
in a significant speed-up, but we want to verify that, so we

want to compare the latency between the two pipeline ar-
chitectures. If there is no significant speed-up, we also want
to test our classification accuracy (which we will mention in
the next section) to see if containing everything on the Jet-
son will result in a lower accuracy due to requiring smaller
models.

We would also test the latency between using GPT3.5
and Llama2, which would involve simply determining the
time it takes to send out and receive a response from either
API using an arbitrary prompt. Running this over multiple
prompts will allow us to do a chi-squared test to determine
if there is a significant difference in latency times that we
should consider when deciding on an LLM or not.

7.2 Accuracy Testing

Testing our classification models is a matter of accu-
racy. To achieve this, we want to split our data into train-
ing, validation, and testing sets. For this, we are currently
looking at using a 70-20-10 split for our data. The 70%
training split allows us to use the majority of our dataset
for training, which boosts accuracy. The main choice comes
with the 20% and 10% validation and testing splits. Having
more validation splits allows us to focus more on improving
our model’s hyperparameters. Considering the large size of
our dataset, a 10% testing split gives us enough data points
overall to test our model’s final generalization. This 10%
testing set would be run through the HPE-Classification
pipeline in order to get our inference accuracy. Using these
data splits, we can calculate accuracy by evaluating the
percentage of classified words to their true labels and then
represent these accuracies using a precision matrix.

To make sure that we can optimize the parameters of
our classification models, we are going to be using our afore-
mentioned validation data. Since we are not directly train-
ing our model through reevaluating our model weights us-
ing this validation data, as we do with the training data,
we can get a general idea of how our data is generalizing
using this validation set. We can therefore use this to tune
our hyperparameters to find parameters that produce the
best possible accuracy for this validation data, which we are
aiming for at least 90%. This value of 90% in validation
accuracy allows us a buffer for our use case requirement of
85% for our testing classification. This testing set would be
a separate set that we have not shown to our classification
model giving us the best possible representation for how
generalized our model is.

Additionally, we need to test the impact of distance. To
do so, we are planning on creating our dataset where we
sign various words at different distances. We want to make
sure that the accuracy of word classification over these dis-
tances does not change significantly. To do this, we can
simply calculate the accuracy per word per distance and
utilize a chi-squared test to determine if there is a statisti-
cally significant difference between the accuracies at differ-
ent distances.

Finally, as we mentioned before, we want to test the
accuracy of our classification model when given different
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HPE inputs. One of them with a hand-only detection in-
put and the other with hand-and-face input. We will be
calculating the verification accuracy on these as well given
the same data to train to determine which model is better
suited for translation.

As we mentioned earlier, we want to validate our words-
to-sentence translation LLM component utilizing BLEU
score, which is defined as the following equations [7]:

BLEU = min(1, exp(1− reference-length

output-length
)(

4∏
i=1

precisioni)
1
4

where

precisioni =

∑
snt ∈ Cand-Corpus

∑
i∈snt min(mi

cand,m
i
ref )

wi
t =

∑
snt’ ∈ Cand-Corpus

∑
i∈snt,m

i
cand

This score, in essence, tells us the geometric mean of the
precision of our candidate translation corpus compared
to the reference translation, taking into account n-gram
matches up to length 4. By utilizing BLEU[7], we have an
automated and universal methodology for evaluating the
accuracy of our translation LLM, rather than solely rely-
ing on human evaluation and opinion. However, unlike for
word classification where we are using a train-validate-test
split, we are instead going to just be using a train-test split
because there is no model to train - we are just modify-
ing our prompt to get the best possible results out of our
LLM. However, since the accuracy of our LLM is depen-
dent on our classification model, we determined that for
the classification validation set, we want to get a validation
BLEU score[7] of around 45% and a testing BLEU score of
about 40%. There is also a need to verify which LLM be-
tween GPT3.5 and Llama2 is more suited to our use case,
and as such, we plan on calculating validation BLEU scores
given the same overall prompt for each LLM. We can run
a chi-squared test on this as well to determine if there is
a significantly better option between either model to make
our decision.

7.3 Results for Latency Test

As we can see in Figure 4, our overall latency is about
2.2 seconds, which is considerably faster than our use case
requirement of 3 seconds. The main reason for this speedup
is due to the latency of our human pose estimation model
and our classification model being far lower than we ex-
pected. Our HPE model can receive an input and gen-
erate skeletal data in approximately 65 milliseconds. On
the other hand, our ST-GCN model can classify a word
in about 9 milliseconds. Both of these estimates are quite
fast. The HPE model is this fast due to the fact that Me-
diapipe is built to be a robust system that can be deployed
on edge or IoT devices, meaning it should be able to run
faster on a computer. We also know that the structure
of an ST-GCN is a convolutional neural network utilizing
spatio-temporal graphs. Therefore, its architecture allows

for efficient feedforward computation through techniques
like sparse connectivity, weight sharing, parallelization, di-
mensionality reduction, and being optimized for grid-like
data like video. This allows the ST-GCN to compute fea-
tures from the skeletal data inputs very quickly during in-
ference time.

Additionally, we can also note the frames per second
we were able to achieve on both the computer and the
FPGA. As aformentioned, we were unable to quantize, and
thus accelerate, the HPE model n the DPGA, resulting in
the approximately 3 frames per second that we achieved
while running human pose estimation on it. However, we
were able to find that using other HPE models, we can
reach speeds of about 25 fps or greater, as using Xilinx’s
pretrained hourglass pose estimation model [17]. However
this model uses far less datapoints than we need for either
model, so we chose not to use it and stick with Mediapipe
instead. As a result, wera it on a computer and was able
to get a consisten 17 frames per second, which is far more
usable for our use case.

7.4 Results for Accuracy Test

The main tests that we ran in terms of accuracy were
in order to compare the SPOTER and ST-GCN models.
As we can see below in Figure 5, we were able to reach
higher validation accuracies with the SPOTER model than
we were able to with the ST-GCN model. While nor-
mally this would indicate using the SPOTER model, the
ST–GCN model had far etter inference numbers, as the
SPOTER model get around 50%-55% on our own infer-
ence test set compared to the St-GCN’s top-1 accuracy of
63.27%. While this may not met our use-case standard,
our top-3 accuracy does, showing that the model is always
almost right, but not necessarily completely right all the
time. More specifically, the correct answer always ends up
in the top 3 classifications, but not always as the top an-
swer for classification. This could be because of the signs
that we chose and the dimensionality of our HPE model in-
puts. A lot of the signs we chose were similar, such as good,
afternoon, and thank you beign almost the same sign, re-
sulting in overlap between our 10 classes. Additionally, our
HPE model only gives us 2 dimensional landmarks, thus
meaning that we are missing out on the third dimension of
depth that could have helped in classifying these better, es-
pecially since an ST-GCN can somewhat understand depth
due to its architecture. The high top-3 accuracy shows that
the model is able to perceive the differences in the frame se-
quences and can generally distinguish them, but maybe not
so much on a smaller scale when comparing similar signs.
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Figure 4: This table summarizes our primary results of the system in both accuracy and latency metrics

Figure 5: This graph details the difference of validation ac-
curacy between our two classifications models: SPOTER
and STGCN

Figure 6: This figure illustrates the confusion matrix of 100
class SPOTER model

Another reason we chose to move away from the
SPOTER model was that it got confused too often, as
we can see in Figure 6. As we can see along the diago-
nal of the matrix, there are a lot of instances in which it
did get confused, and a deeper dive into this showed us
that the SPOTER model is very overconfident in its de-
cision, leading to a subpar top-3 accuracy as well. While
this could also be a similar sign issue, we believe it could
also be how the points are normalized around the shoulders
for the SPOTER model. Because of this, we have an issue
where the 2 dimensional skeletons of signs that are around
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the shoulders have similar frame structures, confusing the
model further. We also believe it was a dataset issue with
the WLASL dataset beng incomplete [6]. This could have
also led to skewed dependencies within the model, resulting
misclassification.

Taking a look at the BLEU score, we can see that the
prompted LLM API on its own returns decent translations
on its own during unit tests, almost reaching our BLEU
score target. Not meeting our benchmark could be at-
tributed to the generalization of modern LLMs, since their
purpose is not strictly language translation. Being able to
perform as well as it did is most probably due to the massive
training set and model size of GPT3.5, but not finetuning
the model for language translation has probably resulted
in falling short of the desired BLEU score. However, our
entire model does not achieve the same rate. This is most
likely due to the top-1 accuracy issues of our model, which
would be sending the wrong words to the LLM, resulting
in sentence mistranslation. There are a good amount of
times in which the LLM picks it up and is able to recover,
but that is most likely due to the fact that the classifica-
tion model has a limited number of classes which are all
relatively topic-related.

As for classification distance, we were able to find that
distance was not really an issue. Mediapipe is robust to the
point in which it is able to still detect landmarks at a dis-
tance with minimal accuracy differential. The main source
of variability came from the ST-GCN model, but even then,
the accuracy differently was sub 5% as intended. This is
most likely because the ST-GCN model is designed to be
spatially aware, allowing it to maintain high levels of accu-
racy even when the subject is not in close proximity. The
architecture of the model, which integrates spatial config-
uration and temporal dynamics, is adept at handling the
variability in human movements. Since it leverages the con-
nections between joints to predict activity rather than the
joints themselves, it is less susceptible to distance-related
accuracy issues. Furthermore, the robustness of the Medi-
apipe framework in detecting landmarks provides a stable
input for the ST-GCN model, ensuring consistent perfor-
mance across various distances.

8 PROJECT MANAGEMENT

8.1 Schedule

For this section please refer to our schedule labeled
Fig. 8: Gantt Chart. Due to problems with quantization,
we realized that FPGA was not a feasible option a few
weeks after the Design Review. Since we had allocated
enough slack time, Kavish had enough time to transition
to developing the HPE model on the Jetson rather than
the FPGA. Additionally, the testing and optimization of
the classification model took longer than expected; how-
ever, with enough slack time initially allocated, we met our
milestones before the deadline.

8.2 Team Member Responsibilities

Kavish Purani: Kavish was initially responsible for
the development of the Human Pose Estimation model on
the FPGA; however, after the change in design due to quan-
tization difficulties, he transitioned to developing the Me-
diapipe model on the Jetson. After the HPE development,
he was also responsible for the full integration of all the
subsystems. His secondary responsibility was working with
Neeraj to test and debug the classification model, and help
him with implementing the integration with other submod-
ules.

Neeraj Ramesh: Neeraj was primarily responsible for
the development and testing of classification models. He
first researched and trained the SPOTER model and later
worked on developing the STGCN model. His secondary
responsibilities included helping with the integration of the
subsystems and the development of the Mediapipe model
before FPGA and Jetson testing.

Sandra Serbu: Sandra was primarily responsible for
developing the prompt generation code and interactions
with the OpenAI API. Her secondary responsibilities in-
cluded working with Kavish to integrate API call code and
developing the web application that can overlay the camera
stream with sentence outputs from the LLM.

8.3 Bill of Materials and Budget

Please refer to the Table 1 to look at the bill of materi-
als. Nothing was bought and left unused. We didn’t origi-
nally plan to purchase OpenAI API credits in our original
system design but successful SLT was much more effective
and simple for integration relative to Meta’s open-source
Llama2 LLM.

8.4 AWS Usage

This project did not use any AWS resources.

8.5 Risk Management

Some of the risks that we had initially anticipated were
FPGA implementation of the HPE model and the accu-
racy of the classification model. We had planned that if
the FPGA was not feasible for any reason, we would quikly
switch to implementing the HPE model on the Jetson. This
plan was very helpful when we realized that the Mediapipe
model was not eaisly quantizable on the KV260 board. This
did not impact our timeline and schedule by a large amount
since we had planned for this in our slack time.

In the case of poor classification from our initial plan
of RNN for both the GRU and LSTM, we planned to look
into the feasibility of using a transformer and seeing if that
architecture can give us a better response, considering that
transformers have also been used for machine translation.
This plan was also very helpful since our early preperation
allowed us to pivot to the SPOTER (a transformer model)
and intergate our project using that. It also allowed us
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Table 1: Bill of Materials

Description Model # Manufacturer Quantity Source @ Cost
Jetson Nano 0022 Nvidia 1 inventory $0.00
Logitech C920S (Camera) - Logitech 1 pre-owned $0.00
Display (Monitor) - Dell 1 pre-owned $0.00
OpenAI GPT3.5 API - OpenAI 1 Cloud $2.00

$2.00

enough slack time to notice new problems and also imple-
ment the STGCN model for our final demo.

Finally, when implementing the LLM SLT component
of our design, there was risk involved with integrating and
fine-tuning an open source LLM model that is only offi-
cially supported on very limited platforms. In the case of
unsuccessful integration, we preliminarily worked with and
tested OpenAI’s free API components to ensure there was
a simple and effective backup LLM model that could be
accessed.

9 ETHICAL ISSUES

The underlying objective of our project serves to in-
crease accessibility for the hearing impaired community.
Systems that increase an individual’s autonomy are power-
ful tools that broaden the scope of how we can meaningfully
engage in the world around us. This reality shaped our use
case as we took ethical considerations into account. We felt
it’s incredibly important for the users to see the correctness
of their intended speech As a result, our output is displayed
on screen in real-time so the user can see their communi-
cated speech. Without a sanity check, a user could be ren-
dered unable to meaningfully communicate if our system’s
translation doesn’t maintain the user’s intended meaning
upon translation. Upon scaling a ASL-to-text system like
TLV, there raises the risk of data security exposure if the
translation isn’t happening locally on a users device. There
can be many sensitive contexts that users might choose to
utilize TLV for communication and, if that sensitive in-
formation is necessarily passed over a network, the risk
of being overheard must be taken into consideration. In
our current implementation, TLV runs on local machines
so there is little to no risk of a malicious actor overhearing
sensitive information. As such, few data security have been
taken to mitigate the risk of a malicious actor.

10 RELATED WORK

We have also looked at another experiment conducted
by Nir David, Alexey Konev, and Jia Ying, in which they
delve into various architectures that they use for translat-
ing ASL videos. This paper is what originally inspired us to
use the WLASL dataset, as well as offered some overarching
ideals for the general pipeline for translation. It also pre-
sented the issue with using raw images as inputs, resulting
in their model training on extraneous unnecessary factors,

and using HPE to counter that [4]. We are implementing
our pipeline a bit differently, in that we are experimenting
with variations of the pipelines that they used, their work
provided us with a strong foundation to base our work.

As for overall models doing similar work, we know both
the SPOTER and ST-GCN models and their associated
papers work to classify videos into gestures, as we utilized
both in our pipeline [19] [2]. As such, they hold a a lot of
similarity in majority of their goals. The key distinction is
that these works do not focus on a real time product and
instead work on optimizing accuracy for set video inputs,
thus strictly focusing on the model itself. That being said,
we found somone named Simone Finelli try to do gesture
to word real time translation [9]. However, we also add
the LLM component on the end to get fully translated sen-
tences, which neither Finalli or either of the classification
models touch upon. We also differentiate from Finalli in
our classification model itself, as he chose to use an I3D
model, which does not necessarily rely on human pose es-
timates and takes in entire frames instead.

In addition to the demonstration by Peter Quinn, the
research by Masaru Yamada on optimizing machine trans-
lation through prompt engineering provides useful insights
for our project [18]. Yamada investigated how incorporat-
ing aspects like the purpose of the translation and target
audience into prompts for ChatGPT can improve transla-
tion quality. His findings showed that adding this contex-
tual information helps guide the model to produce more
natural and human-sounding translations suited for the in-
tended use case. This approach of using prompts to spec-
ify high-level goals, constraints, and users aligns well with
our aim of generating accurate and natural translations
for ASL. As we develop prompts for our translation mod-
els, Yamada’s techniques on translation prompt engineer-
ing can inform effective ways to frame the task, provide
examples, and indicate the target output style. His work
demonstrates the power of prompts to direct large language
models, which we can potentially leverage for specialized
ASL translation.

11 SUMMARY

Our system utilized a combination of Human Pose Es-
timation, Classification model, and Large Language Model
to perform real-time American Sign Language to English
Language Translation. All of our subsystems met our ini-
tial design requirements and goals in terms of accuracy and
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latency. However, our final integrated product struggled to
completely meet the use case requirement. More specifi-
cally, due to problems with determining the accurate batch-
size to capture each sign individually and lack of 3-D land-
marks, we had relatively high confusion between different
signs. This resulted in many similar classes being misclas-
sified as the same sign during the inference stage of the
system. If we had more time, we would work on improv-
ing the classification model by training on a large dataset
with 3-Dimensional landmarks. In order to do so, we would
build our own model based-off the STGCN model that we
implemented above.

11.1 Future work

In addition to the listing above, our further work on
this project would prioritize incorporating MediaPipe’s face
mesh landmarks into our classification algorithm to better
inform the predicted speech of the user through their fa-
cial expression in tandem with their signs. Due to time
and technical limitations, our final system is less extensive
than we’d originally hoped despite the group’s background
knowledge. We would also build our own human pose es-
timation model which is quantizable on the FPGA to fur-
ther accelerate the system. This would allow use to run
the two models (pose estimation and classification) con-
currently and overcome the latency bottleneck.

11.2 Lessons Learned

One of the big lessons we learned was that it is impor-
tant to leave enough slack time when planning the project,
since it is inevitable that the tasks will take longer than you
expect them to. Additionally, successfully training and im-
plementing a modified ML classification model posed more
of a challenge than originally expected. There were a lot
of unexpected variables that affected our models’ results,
which are difficult to anticipate early on. When work-
ing with the FPGA - in particular developing models on
the Deep Processing Units using Vitis AI - it is important
to check if your model is quantizable. Depending on the
FPGA, the amount and type of models that the DPU can
support are often quite limited.

Glossary of Acronyms

• ASL - American Sign Language

• BLEU - Bilingual Evaluation Understudy

• CNN - Convolutional Neural Network

• HOH - Hard of Hearing

• HPE - Human Pose Estimation

• LLM - Large Language Model

• NLP - Natural Language Processing

• RNN - Recurrent Neural Network

• RTSP - Real-Time Streaming Protocol

• SLT - Sign Language Translation

• SPOTER - Sign Pose-based Transformer

• STGCN - Spatio-Temporal Graphical Convolutional
Networks

• SUS - System Usability Scale

• TLV - TransLingualVisionary (this project!)
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