TransLingualVisionary

Kavish Purani, Neeraj Ramesh, Sandra Serbu Team E6

Use Case

Problem Difficult for deaf or hard of hearing (HOH) individuals to participate in live digital environments (online meetings, live streams, etc.)

Lack of widespread understanding of American Sign Language (ASL) often requires the hearing impaired to rely on assistance from translators to communicate.

Solution A real-time ASL speech to English text translator on a user friendly web application

Design Requirements

<u>Requirement</u>	<u>Metric</u>
Recognize when a user is signing	~95% sign recognition rate
Correctly identify ASL words	Recognize 2000 words at ~80% accuracy
Correctly interpret ASL semantics	Translate identified clusters of words into full english sentences with a BLEU score of $\sim 40\%$
Classification Distance	Recognize and retain accuracy of the classification model up to 4-5 feet away from the camera.
Text Accessibility	Display and collect the ASL Speech in an accessible user format that can be easily found and read.
Overall Latency ~ real time	Present visual feed and translation on web UI within ~3 seconds

Solution Approach

Welfare Accessible Technology serves to foster Autonomy

Health and Safety Data Security Exposure

Important for users to see the accuracy of their intended speech

TLV runs locally, there is low to no risk of a malicious actor overhearing sensitive information

Classification Model LLM Model **Solution Approach** Class ŧ Softmax **JSON File** Linear Encoder Decoder Add & Norm Add & Norm Human Pose Estimation Prompt Context Feed Feed Forward Forward Nx Add & Norm Llama 2 Add & Norm Multi-Head Mx Multi-Head Pose Attention Attention Landmark Detection Model Output Add & Norm Input Sequence Multi-Head Projection Memory ŧ Positional Encoding Class Query flatten flatten flatten Hand Q Hand Crop Landmark Detection to Face Landmark Face Crop Detection My name 100

Trade-offs and Decisions

Overall Pipeline	HPE + Transformer Pipeline	Single Transformer
Pros	 Lightweight transformer (fewer parameters) Removes extra detail 	- Single model \Rightarrow Easier pipeline to train
Cons	- Need to modify data between models	 Can capture extraneous detail Far more model parameters
Classification Architecture	Transformer	RNN
Pros	 Captures short and long term dependencies via self-attention Parallel processing 	- Lighter model - Simpler architecture
Cons	- Heavier model	 Exploding/Vanishing Gradient Sequential Processing

Trade-offs and Decisions (cont.)

HPE	Jetson	FPGA			
Pros	- More CPU processing power - Models on device limits communication latency	 Opportunity to optimize models Splitting models between devices to prevent excessive compute cost 			
Cons	 More models running Jetson could decrease compute speed Tighter space restriction due to multiple models on device 	 Higher performance dependent on quantizability of models Communicating between devices would increase latency 			
FPS	~ 17 fps	Unaccelerated Accelerated			
		~3 fps	~25 fps*		
LLM	Llama 2	GPT-4			
Pros	Free and open source and LLM access	API access \rightarrow Ease of use and offloaded computation			
Cons	Runs locally– computation time may be slower and setup	Requires credits to access model			

*calculated using different HPE model than ours; didn't use said model due to lack of necessary landmarks

Complete Solution and Demonstration

Simple User Display

TLV on Local Resources

Classification

Reporting Quantitative Results

<u>Metric</u>	<u>Tests</u>	<u>Goal</u>	<u>Results</u>
Recognition Rate	Calculate how often the model provides a sign classification when a user is signing. *	~95%	~98%
Word Classification Accuracy	Split data into training and validation sets and then calculate how often the model's output and the desired output is the same.	Training ~95% Validation ~85%	Training ~ 97.82% Validation ~ 72.44%
Inference Accuracy	Calculate accuracy of inference (how often the user's sign and the model's word is the same)	~80%	~55%
Overall Latency	Run timer from beginning of HPE to classification output	~ 3 seconds	~ 2.2 seconds
Unit Latency	Measure latency via inter-component timestamps during live inferencing for various and signs	HPE: ~600 ms Classification: ~800ms	HPE: ~65 ms Classification: ~12 ms

*Tendency towards false positives (preferred over false negatives); optimize to prevent excessive false positive rate

Quantitative Results

Confusion matrix of validation accuracy. Model prediction on the x-axis, true label on the y-axis. Frequency shown through heatmap.

Training ~ 97.82% Validation ~ 72.44%

Technical Challenges

- HPE Model isn't quantizable on FPGA
 - Running on Jetson
- No API access through OpenAI
 - Running LLM locally using Llama 2
- False positives with word recognition
 - Thresholding softmax to prevent classification that the model is not "confident" about
- Extraneous frames in training set affecting classification model
 - Pruning training set based on whether there is a hand in the frame
- Frame count of inferencing
 - Training transformer based on set frame count that we are going to use for inferencing
 - Pruning training should allow for leniency with set frame count

Project Management

	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W13	W13
	2/5	2/12	2/19	2/26	3/11	3/18	3/25	4/1	4/8	4/15	4/22	4/29
Presentation And Report												
Proposal	SKN											
Design Review				SKN								
Final										SKN	SKN	SKN
Hardware												
FPGA Ramp-up	к	к	к	к	к							
Camera I/O		к	к									
Model Verification		к										
Model Implementation			к									
Model Implementation Benchmarking				к								
I/O Testing and Benchmarking					к	к	к					
Mediapipe Implementation								К				
Software												
Find and test datasets	SN											
Mediapipe Implementation on Jetson		SN							к	к		
Testing and Optimization of Mediapipe		-							2	ĸ	к	
Developing Transformer model			SN	SN	N	N	N	N		-		
Testing and Optimization		-		SN					Ν	N	Ν	N
Prompt Engineering LLM		SN	SN	SN	S	S	S	S	S			
Fine Tuning Local LLM Model								S	S	S	S	
Testing LLM From Jestion Word Classification												S
Integration of Word Classification and LLM Models												SKN
Simple Web App												
Developement						К	К					
Testing								К	К	к	К	к
Final Integration												
Testing									KN	KN	KN	SKN
Slack									SKN	SKN	SKN	SKN

SKN	Sandra, Kavish, Neeraj	
к	Kavish	
SN	Sandra, Neeraj	
Ν	Neeraj	
S	Sandra	
KN	Kavish, Neeraj	

Remaining work

- Retrain word classification
- Integration on
 local device
- User interface