TransLingualVisionary

Team E6 Kavish Purani, Neeraj Ramesh, Sandra Serbu

Recap – Use Case

Problem:

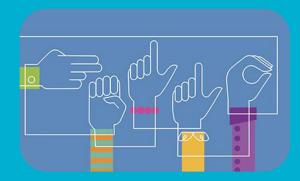
- Difficult for deaf or hard of hearing (HOH) individuals to participate in live digital environments (online meetings, live streams, etc.)
- Lack of widespread understanding of American Sign Language (ASL)
- Often require assistance from translators to communicate

Solution:

• A real-time ASL speech to English text translator on a user friendly web application

Recap - Our Solution

TransLingualVisionary (or TLV) is an ASL-to-Text translator that includes:


- Live translation of ASL to text
- Accelerated FPGA pre- and post- image processing
- User-friendly web app to visualize processed ASL input and text output

TLV will allow ASL users to:

- Quickly communicate to non-ASL users
- Document their speech in a simple and efficient manner

ECE Focus Areas:

- Software Systems
- Hardware Systems

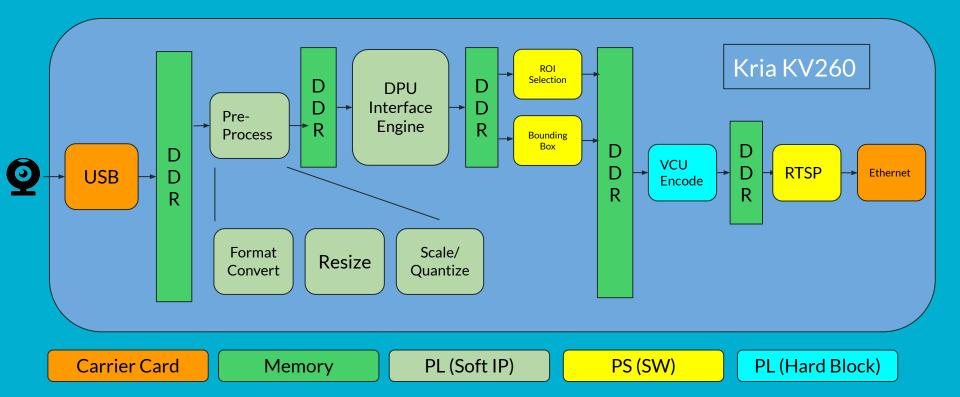
Recap - Design Requirements

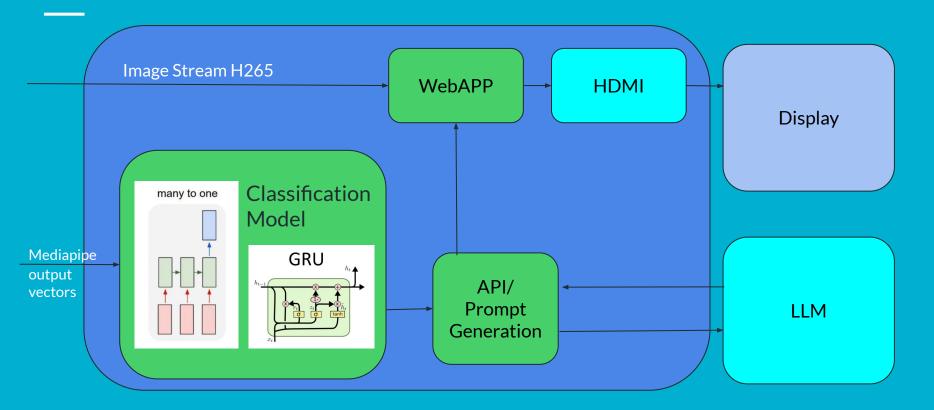
<u>Requirement</u>	<u>Metric</u>
Recognize when a user is signing	~95% sign recognition rate
Correctly identify ASL words	Recognize 2000 words at ~80% accuracy
Correctly interpret ASL semantics	Translate identified clusters of words into full english sentences with a BLEU score of ~40%
Classification Distance	Recognize and retain accuracy of the classification model up to 4-5 feet away from the camera.
Text Accessibility	Display and collect the ASL Speech in an accessible user format that can be easily found and read.
Overall Latency ~ real time	Present visual feed and translation on web UI within ~3 seconds

Solution Approach

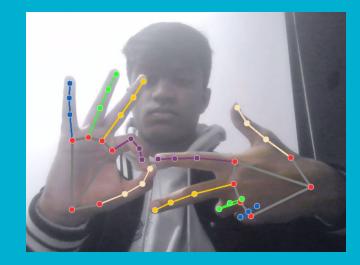
Increase accessibility to online spaces

- Increased community involvement via increasing range of communication
- Reduce digital isolation





Block Diagram - MediaPipe on FPGA


Block Diagram - Jetson

Implementation Plan

Logitech C920S (pre-owned)

- USB Interface
- Kria KV260 (pre-owned)
 - PL (Soft IP) will be developed ourselves using Vitis AI
 - Will rely on pre-trained MediaPipe model and Vitis model zoo
- PS (SW) will be built using open source libraries Jetson Nano (from inventory)
 - Self-train RNN model using WLASL dataset
 - Personalized GUI to view overlaid text and video
 - Use ChatGPT4 API to do prompt generation

Testing & Verification

Latency	 Unit component latency testing Create benchmarking set and measure latency via inter-component timestamps Overall inference latency ~3 seconds
Accuracy and Correctness	 Calculate validation accuracy of RNN and LLM RNN Tuning Target: 85% accuracy Prompted LLM Target: BLEU Score ~45% Calculate inference accuracy of RNN and LLM RNN Target: 80% accuracy Prompted LLM Target: BLEU Score ~40% Method correctness of FPGA accelerated operations Accuracy comparison with CPU generated results of ~100%
Usability and Accessibility	• System Usability Scale score of over 85%

Risks & Unknowns

• Porting Human Pose Estimation on FPGA

- Could significantly improve latency and space flexibility for RNN
 - Test FPGA vs Jetson HPE compute time
- Test feasibility early to pivot to Jetson in case of failure
- Using Mediapipe's Hand Pose Estimation
 - Captures intricacies of hand position relative to image space, but not relative to person
 - Randomly modify the size of training videos to train for variance in distance
 - Test accuracy over variant distances

• GRU RNN

- Light model that captures short term temporal data; might not capture patterns between frames
 - Test alongside LSTM model to check for validation accuracy and latency

Division of Labour

	Kavish	Neeraj	Sandra		
FPGA MediaPipe Implementation	*				
RNN Model	×	×	×		
Prompt Generation & LLM		*			
Web Application			×		
Testing & Integration	*	*	×		

Gantt Chart

Sandra, Kavish, Neeraj

Kavish

Sandra, Neeraj

	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13
	2/5	2/12	2/19	2/26	3/11	3/18	3/25	4/1	4/8	4/15
Presentation										
Proposal	SKN									
Design Review				SKN						
Final				1111						SKN
Hardware										
FPGA Ramp-up	к	к	к	к	к	<				
Camera I/O		к	к							
Model Verification	$ \longrightarrow $	К								
Model Implementation		>	к							
Model Implementation Benchmarking			└>	к						
I/O Testing and Benchmarking					К	2				
Mediapipe Implementation						к				
Testing and Debugging Mediapipe						└>	к			
Real-time latency benchmarking and debugging							$ \longrightarrow $	к		
Integration				$ \longrightarrow $	SKN -		>	SKN -		
Software										
Find and test datasets	SN									
Mediapipe Implementation on computer (testing)	\rightarrow	SN								
Developing RNN model		$ \longrightarrow $	SN							
Training and testing			$ \longrightarrow $	SN						
Prompt Engineering LLM	$ \longrightarrow $	SN	SN	SN						
Testing LLM				$ \longrightarrow $	SN					
Integration				1	$ \longrightarrow $	SN				
Simple Web App										
Developement							SN			
Testing						1	$ \longrightarrow $	SN	¥	
Final Integration										
Testing									SKN	SKN
Slack									SKN	SKN