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Abstract— A system capable of detecting, interpret-
ing, and displaying live ASL speech to English text. Us-
ing a camera to capture a live video stream, an FPGA to
accelerate MediaPipe’s human pose estimation, a Jet-
son Nano to classify words, and an LLM to generate en-
glish text, we will develop a novel platform that enables
hearing impaired ASL users to better participate in vir-
tual streaming environments. TransLingualVisionary
will contribute to developing sign language processing
systems using machine recognition and translation.

Index Terms—Accessibility, ASL, FPGA, Gesture
Recognition, LLM, NVIDIA Jetson Nano, MediaPipe,
RNN, Video Processing

1 INTRODUCTION

In today’s rapidly advancing digital world, the necessity
to bridge communication gaps has never been more critical,
especially for communities that face inherent challenges in
standard communication methods. Our team presents a
pioneering solution aimed at dismantling these barriers for
the hearing-impaired community through the development
of ?TransLingualVisionary” (TLV), a real-time American
Sign Language (ASL) to English text translation platform.

The inspiration behind this project stems from the
recognition of the difficulties faced by deaf or hard of hear-
ing (HOH) individuals in participating in live digital envi-
ronments, such as online meetings and live streams. The
lack of widespread understanding and accessibility to ASL
interpretation exacerbates these challenges, often necessi-
tating reliance on translators for communication.

TLV addresses these issues head-on by offering a user-
friendly web application that enables live translation of
ASL into text, promoting inclusivity and reducing digi-
tal isolation. We plan to do this using computer vision
and machine learning to instantly transcribe a live video
feed into written English text. A Kria KV260 FPGA edge
device detects ASL from a video feed input and passes de-
tected words to an AI model, hosted on a Jetson Nano,
that will convert ASL-syntax sentences into natural En-
glish text. The output text will then be displayed on a web
application, enabling efficient two-way communication.

Any deaf or hard-of-hearing individual who prefers com-
municating via ASL but interacts with many non-ASL
users virtually regularly could benefit from TLV. We hope
to mitigate the need for human translator assistance often
required to communicate in visual/audio online environ-
ments for the hearing impaired.

2 USE-CASE REQUIREMENTS

The goal of this project is twofold: to increase acces-
sibility in community involvement by expanding the range
of virtual communication for ASL users and to reduce the
digital isolation felt by many within the deaf and HOH
communities. By achieving these objectives, TLV aims to
set a new standard for inclusivity in digital communication
platforms. These are the use-case requirements to guaran-
tee the best user experience:

e Speed — The user will need their signed speech trans-
lated at an approximately real-time pace to provide
fluid translation in a conversational setting. Thus the
product must have minimal latency; we aim to detect
signs at speeds of 120 words per minute at minimum
[9], which matches the average speed at which a fluent
ASL speaker signs.

e Accuracy — For our product to be functional, it
must reliably translate the majority of a user’s signed
speech accurately. A user should not need to re-sign
or type out words/phrases to effectively communi-
cate. Thus, we aim for ~40% BLEU score[5] for sen-
tence translation (see section 7.2 for metric details)
for sentence translation on a dataset of 2000 words.

e Recognition Distance — Our design must work within
a distance range that any user of a digital environ-
ment may want to use. The system must successfully
recognize full-upper body signs captured at a distance
up to 4-5 feet away from the camera.

e User Interface — The display must be accessible and
simple to use. The user interface should display the
output text with accurate overlay of video and trans-
lated text. The translation must be easily and clearly
viewable on the web application, which will be mea-
sured through more qualitative methods.

3 ARCHITECTURE AND
PRINCIPLE OF OPERATION

Physical design components include a Logitech C920S
camera, a Kria KV260 FPGA, and an NVIDIA Jetson
Nano Developer Kit. Overall system information flow can
be easily seen in Figure 1, which displays which compo-
nents interact within the system. The system architecture
integrates three main computational modules: the FPGA,
the Jetson, and the LLM text generator.
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Figure 1: System diagram. Each component and its overarching tasks display the system’s flow of information. User
input is captured by an external camera that’s then sent to the FPGA for human pose estimation. HPE vectors are
sent to the Jetson Nano to generate English text. Captured video and generated text are then sent to the application

display to be shown to the user.
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Figure 2: Zoom in of Kria KV260 FPGA block diagram. Displayed is the human pose estimation process running on
the Kria KV260 FPGA. The video input stream is loaded to memory through a USB peripheral port. Programmable
Logic (PL), reconfigurable logic, will be used to accelerate computation-intensive workloads. Processing Systems (PS)

handle general-purpose computing tasks.
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Figure 3: Zoom in of Jetson Nano block diagram. The
output from the HPE model is passed into the Jetson,
where our RNN classification model will generate a cluster
of words. This will get passed to an LLM API to create a
proper English sentence, which then gets displayed through
our web app on a given display.

For the entire system to operate correctly, the camera
will capture and send a live video stream of a user’s upper
body to the FPGA via USB port to accelerate MediaPipe’s
human pose estimation (HPE) models. HPE gesture and
expression vectors will be sent to the Jetson Nano to per-
form word classification. The Jeston Nano will also deploy
an API to run a RNN model on grammatically ASL word
clusters and translate them to full english sentences. The
Jetson will then output the video feed and generated text
to a virtual web application for display.
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4 DESIGN REQUIREMENTS

The design specifications established below will ensure
our product’s engineering design solution meets all use-case
requirements defined in Section 2’s Use-Case Requirements.

4.1 Speed

To ensure overall latency will be approximately real-
time, we aim to present visual feed and translation on web
UI within 3 seconds. ASL uses many non-manual markers
to communicate aside from the hands, like facial expres-
sions, body language, and gesture movement. The average
English sentence is between 15-20 words long and, since
ASL uses non-manual markers to express many words or
phrases, 3 seconds would provide enough time to group
words into approximately sentence-length clusters for an
average-paced ASL user. The text generation LLM can
use context past a 3-second window to re-format sentences
in the light of new information, like an eyebrow raise which
could indicate a question or confusion, but some estimation
of sentence content should be displayed in this time frame.

The 3-second timing requirement will need to be dis-
tributed across all system components. The distribution of
component latencies necessary to meet this timing require-
ment is described in Section 7.1.

4.2 Accuracy

To achieve a sentence translation BLEUI5] score of 40%
minimum, we’ve created 3 quantitative design requirements
to meet. Our system will need to recognize when a user is
signing, correctly identify ASL words, and correctly inter-
pret ASL semantics. To gauge these metrics, our system
will meet these 3 requirements across 3 seperate compo-
nents:

e ~95% sign recognition rate. That is, the FPGA will
be able to detect when a user is signing at least 95%
of the time. Airing on the side of caution, our system
may allow for false positives if a user motions in a
way that is similar to signed speech.

e Recognize 2000 signed words at ~85% accuracy. The
Jetson’s word classification RNN must be able to cor-
rectly classify all 2000 words included in the train-
ing dataset with about 80% accuracy. Classifications
will, ideally, be detected and modified in the LLM
text generation process, allowing for a slight margin
of error in our classification model.

e Translate identified clusters of words into full english
sentences with a BLEU[5] score of ~40%. Given syn-
tactically ASL word clusters, the LLM text genera-
tion must produce a natural english sentence with a
BLEUI5] score of ~40%.

4.3 Classification Distance

To ensure all users are guaranteed a useful product, our
system must recognize and retain the speed and accuracy
metrics of the classification model for users up to 4-5 feet
away from the camera input. The FPGA’s pose estimation
model should be able to pass information that is equally
useful for the word classification model on the Jetson Nano.

4.4 User Interface

Ease of use and accessibility of text is a qualitative met-
ric that will be quantitatively measured through user feed-
back surveys, as described in Section 7.4. To achieve this,
our display must receive a minimum SUS score[13] of 80%
when gauging display accessibility and ease of use.

5 DESIGN TRADE STUDIES

5.1 Jetson v. FPGA for Human Pose Es-
timation

The main consideration between these two devices is
which one would hold the Human Pose Estimation model
and how that would impact the latency of the overall
pipeline. FPGAs provide a parallel architecture that can be
optimized for deep learning inference workloads, enabling
extremely low latency predictions even on larger models.
As per Farhad Fallahlalehzari, who quoted Xlinx research
comparing FPGAs and GPUs, "FPGAs result in signifi-
cantly higher computer capability”, while also being far less
power-hungry, ensuring more cost-efficient and stable oper-
ation when deployed [6]. Additionally, by running pose es-
timation directly on the FPGA, the landmark location vec-
tors can be transferred to the main application processor
without needing intermediate serialization. This reduces
overall system latency and allows for faster processing of
the pose data, important for real-time requirements.

There is also the consideration of space. Both of the
models we are considering for human pose estimation can
be fit on an FPGA and a Jetson, but the Jetson will also
be holding our RNN as well. As such, running human pose
estimation on the Jetson might mean that we would have
to reduce the size of our RNN, decreasing the number of
parameters that we have and risking lower accuracy num-
bers. Being able to host human pose estimation on the
FPGA gives us more flexibility with the size of the RNN
model, possibly giving us a higher accuracy.

5.2 Mediapipe v. Openpose

OpenPose and MediaPipe are both open-source libraries
for detecting 2D and 3D human pose estimation from image
and video data. However, there are a few key differences
that make MediaPipe a more suitable solution for Ameri-
can Sign Language (ASL) translation purposes.

A core distinction is that MediaPipe has been opti-
mized for real-time performance on mobile and edge de-
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vices, enabling faster and more responsive pose tracking.
This allows MediaPipe models to pick up rapid transitions
between ASL signs more accurately compared to Open-
Pose, which is built for maximixing precision while sac-
rificing speed. We can see this in the research paper by
Kien Nguyen Phan et al., in which they have researched
and detailed the comparisons between the two HPE models
[11]. Additionally, MediaPipe natively supports tracking of
hand landmarks and face mesh - both crucial components
to identify individual signs and facial expressions in ASL.
The hand and face modeling in MediaPipe captures more
fine-grained details like finger curls and eye gaze direction.
Finally, MediaPipe’s model-building process is more cus-
tomizable to target the specific use case of ASL transla-
tion by tuning appropriate semantic thresholds and heav-
ier loss weights. The optimized models use less computing
for inference - an advantage over OpenPose when deploying
translation apps on low-power devices.

As mentioned, Mediapipe also offers numerous options
for detection models, namely in what exactly we want to
landmark. As of right now, we are looking through the dif-
ference between using a hand-only estimation model [7] and
a hand-and-face estimation model (inspired by the holistic
model given by Mediapipe) [8]. On one hand, just land-
marking the hand gives us fewer outputs, which could make
our pipeline infer faster and take in fewer vectors as the
input for our RNN. However, this has downsides in that
it only captures the hand’s position relative to the image
frame, meaning that this could potentially cause a distance
issue or could miss out on important facial expressions that
could indicate important ASL semantics. On the other
hand, the hand-face model can capture these details and
the position of the face gives us a relative body position,
which could lead to higher classification accuracy, along
with capturing important facial expressions. We plan to
test this as well and lean with the HPE landmarks that
give us the best verification accuracy.

5.3 RNN Architecture

Our RNN has a few design considerations in terms of
overall architecture.

5.3.1 Input to Output Mapping

RNNs used in sequence transduction tasks like video-
to-text in this case can model different input-output rela-
tionships. One-to-one mapping means every input frame
is translated to an output word. Many-to-one compresses
many frames down into one output. One-to-many is the
reverse, generating descriptions from sparse inputs. Fi-
nally, many-to-many flexibly map arbitrary video segments
to phrases.

For our use case of ASL translation, many-to-one se-
quence mapping proves most effective. This is because
signs and sentences have differing temporal structures. In-
dividual signs convey meaning over hundreds of millisec-
onds, containing motion and transition phases. In con-

trast, words last only briefly. Many-to-one networks handle
this asymmetry. They aggregate information over the full
sign before predicting an output, encapsulating the com-
plete semantics. One-to-one mapping fails here as signs
get fragmented across outputs. One-to-many risks incom-
plete context when attempting to describe mid-sign frames.
Many-to-many provides flexibility but requires large data
and model capacity. For accessible and robust ASL in-
terfaces, many-to-one with encoded memory of the full
sign performs best despite its simplicity. The consolidation
of visual evidence informs more accurate word production
without making fragile assumptions.

5.3.2 GRU vs LSTM

Recurrent neural network architectures like gated recur-
rent units (GRUs) and long short-term memory networks
(LSTMs) offer complementary strengths and weaknesses
when applied to sequence transduction problems such as
translating sign language video into text. Both model types
process input streams incrementally, encoding state and
context about previous elements to inform future outputs.
This allows the capture of the temporal structure critical
for mapping motions into words.

A key difference lies in the complexity of internal mem-
ory modeling. LSTMs utilize more moving pieces - various
gates control input, output, and forgetting alongside short
and long-term cell states to preserve information over ex-
tended sequences. This mechanical depth empowers the
representation of long-range dependencies often present in
real-world sequence data. GRUs take a more minimalist
approach, reducing the machinery down to a single update
gate and context vector. This consolidated design still han-
dles short-term dependencies but may falter at multi-phase
sequences exceeding the capacity of a single-state vector.
However, GRUs counteract with better generalization from
fewer parameters, more efficient training, and overall faster
inference times.

As such we are learning to use a GRU architecture for
now since it is a lighter model. However, we are going to
be testing both due to the similarity in developing them.
There is a chance that the latency difference between the
hidden state structures is negligible, we will most likely use
an LSTM model instead due to its better long-term mem-
ory.

5.3.3 Tensorflow vs Pytorch

There are two predominant libraries that we have ex-
perience with when creating neural networks: TensorFlow
and PyTorch. Both provide rich tooling for building and
training neural network architectures. However, for im-
plementing recurrent neural networks (RNNs), TensorFlow
offers some advantages over PyTorch that motivated our
choice.

A key benefit of TensorFlow is the high-level API which
simplifies the configuration of complex RNN architectures
[10]. Layers like LSTM and GRU can be cleanly stacked
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with fully connected and output layers through simple func-
tion calls rather than manual tensor operations. This helps
quick prototyping of different RNN arrangements. An-
other useful aspect is that distributed training of graph-
based models like RNNs can be set up in TensorFlow. We
utilize this during hyperparameter searches to parallelize
model training. Finally, accessing low-level deployment op-
timizations in TensorFlow like quantization-aware training,
pruning, and other model compression techniques is more
straightforward. These allow our team to readily translate
trained RNNs into efficient production implementations.
Additionally, through Tensorboard, we can easily visualize
the training of our model, which can also help with model
debugging as well [10]. This combination of features makes
it more scalable for our purposes and gives us more freedom
to experiment with different RNN architectures.

5.3.4 MUSE-RNN

We are currently also exploring utilizing MUSE-RNN|,
an architecture that combines LSTM-based encoders and
decoders with an additional set of multilinearly modulated
latent states. This allows for the modeling of complex mul-
timodal distributions in sequencing tasks, helping address
uncertainty and noise. The multilinearly modulated units
can capture subtle visual nuances and variations across re-
peated signs or gestures. Additionally, the latent states
can account for inherent ambiguities in isolated sequences
that rely heavily on contextual information [2]. By sam-
pling from these latent variables, MUSE-RNN can repre-
sent multiple potential translations to mitigate risks during
decoding. We believe this stochastic three-way architecture
provides useful capabilities for the challenges of translat-
ing sign language video, where both subtleties in motion
and ambiguity are present. The modular components also
facilitate conditioning the sequential translation on other
modalities beyond just the signing motions.

5.4 OpenAl GPT4 v. Meta Llama2

For our LLM, we were considering two different models
- OpenAl’'s GPT4 model and Meta’s Llama2. We chose
these because we have access to both and have experience
using both for past projects. Based on research, we were
able to determine that this tradeoff is similar to that of the
GRU v. LSTM tradeoff from earlier. From Diana Che-
ung, we were able to learn that Llama2 is overall a lighter
model in comparison to GPT4, meaning that there is a
chance that it is faster, but GPT4 does have higher perfor-
mance and accuracy. She also mentions that the decision is
heavily influenced by the risk tolerance of our use case re-
quirements [1]. Since there might not be a large difference
in latency between the models, we are leaning towards the
GPT4 model, as there is more research backing its higher
performance in comparison to Llama2. We intend to test
both options in both accuracy and latency to verify which
model better for our use case.

5.5 Ultrag9e v. KV260

For our FPGA, we were considering one of two boards:
the Ultra96 and the KV260.

The Ultra96 FPGA development board offers an afford-
able and accessible option for exploring FPGA-accelerated
applications, with its Zynq UltraScale+ MPSoC. However,
for more advanced computer vision pipelines, the KV260’s
dedicated AT engine and additional resources make it bet-
ter suited. Specifically, the KV260 features a built-in Deep
Processing Unit (DPU) - an AI accelerator optimized for
CNN inference. This eliminates the need to develop cus-
tom CNN accelerators in programmable logic, streamlin-
ing deployment. The KV260 also provides higher memory
bandwidth with its HBM2 stacks as well as faster commu-
nication channels like 100G Ethernet. These facilitate fast
streaming of high-resolution image and video feeds.

In contrast, the Ultra96’s more limited DDR memory
and bandwidth can cause data movement bottlenecks for
CV workloads. While the Ultra96’s ease of development
with IP libraries and lower cost are advantages, complex
vision pipelines will be constrained in terms of performance
versus the KV260. For local training and prototyping, the
Ultra96 offers a usable platform. But for high-resolution,
low-latency video analytics, the KV260’s DPU, memory,
and communication resources provide uncompromised ac-
celeration without the development overhead. The KV260
is therefore better positioned for demanding computer vi-
sion applications - enabling rapid prototyping while also
supporting seamless deployment thanks to its production-
ready capabilities.

6 SYSTEM IMPLEMENTATION

As mentioned before there are three main computa-
tional modules within the project: the FPGA, the Jetson,
and the Web App. The FPGA will be used to process
the incoming video stream from the camera and run a hu-
man pose estimation model (MediaPipe) and send the out-
puts to the Jetson. The Jetson will run the classification
model (RNN) and use GPT4 API with prompt generation
to finalize the sentence structure. The Webapp will host a
viewing application which is responsible for overlaying the
video stream and text output and displaying them on the
viewing platform.

6.1 FPGA
6.1.1 Carrier Card and Hard Blocks

The Kria KV260 FPGA comes with a built-in carrier
card which has a working implementation of the USB and
Ethernet interface. This allows us to connect the Logitech
C920S camera through the USB port and capture the video
stream directly into the DDR memory. Similarly, the en-
coded video stream and MediaPipe output vectors can be
easily transmitted to the Jetson using the Ethernet port.
There also exists built-in hard blocks like VCU Encoder
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which can be utilized to encode the output video stream
into a H265 video compression stream for fast and efficient
data transfer. We will try to leverage the built-in capabil-
ities as much as possible before attempting to modify the
hard blocks for alternate use.

6.1.2 Programmable Logic (Soft IP)

Programmable logic is the logic that is directly imple-
mented on the FPGA fabric. There are two main sections of
the pipeline that rely on this: Image pre-processing and the
CNN model running on the Data Processing Unit (DPU).
We will primarily rely on Vitis Al tool to generate HLS for
these two purposes. More specifically, there exists a Vitis
model zoo which we can use to build the backbone of our
model and write custom HLS for specific steps when nec-
essary. Most common pre-processing step logic is available
through Xilinx libraries (ex. Format Convert, Resize, Scal-
ing etc.), thus we will mainly be focused on stitching these
blocks together with deeper pipe-lining to achieve better
performance.

6.1.3 Programmable Software

Programmable software is the logic that runs on the
ARM Cortex-Ab3 processor, which we will boot with
Ubuntu to have an easy development experience with a fa-
miliar Linux environment. This part of the logic is responsi-
ble for overlaying the outputs of MediaPipe with the images
in the memory and passing them into the VCU Encoder to
create a H265 stream. It then collects the H265 stream and
runs the RTSP protocol to send the data through the Eth-
ernet. These pieces of software will be written in C++ to
maintain high throughput, but we will rely on the OpenCV
library for image processing functions. As of right now, we
have developed a testing script in Python utilizing both
OpenCV and Mediapipe, inspired by that of Owen Talmo
[14], which can generate landmarks in real-time to eventu-
ally be passed into the VCU Encoder.

6.2 Jetson
6.2.1 Classification Model

Our classification model will be a many-to-one GRU-
RNN. We will be using the TenserFlow framework to de-
velop this RNN. It will be trained on the outputs from the
MediaPipe model, from which we will run the images and
video clips from the WLASL dataset, which is a labeled
dataset of videos containing a total of about 2000 common
words in ASL [4].

6.2.2 Prompt Generation

The prompt generation module is a key component re-
sponsible for interfacing with the GPT-4 API to enhance
the translation outputs. Specifically, it takes the raw trans-
lated words produced by the classification model and for-
mulates prompt requests to be sent to the GPT-4 API.

These prompts will provide context about the translation
task and specify that the goal is to output an English-
corrected version of the sentence. The prompt generation
handles queuing up all of these prompt requests and throt-
tling them appropriately to stay within API limits. As re-
sults start coming back from the powerful GPT-4 model, it
collects them, stores them temporarily, and outputs the en-
hanced translations to the main web application controller
and display.

6.2.3 Web Application

The web application’s primary responsibility is to take
the final output from the prompt generation module and
overlay the text onto the video stream from the FPGA. It
needs perform this process in a real-time environment and
deal with any latency delays or mismatches between the
video stream and the generated result. For testing pur-
poses we will rely on OpenCV'’s image processing functions
to easily view the outputs and debug the system. During
this time, we will rely on the HDMI interface to view the
image stream on a display. Eventually, for better user ex-
perience, we will switch to modern frameworks like React
for our final product.

7 TEST & VALIDATION

7.1 Latency Testing

The main goal of testing our latency is to meet the over-
all use case requirement of a three-second maximum delay.
To test this, it suffices to measure the time it takes from
right after the sign is finished to when the translated text is
generated and ensure that not only the average time is be-
low three seconds, but that the time three standard devia-
tions above the average time is also within the three-second
latency mark. Under the assumption that the distribution
of the times follows a normal distribution, if the third stan-
dard deviation from the mean time is also underneath our
use case threshold, we can also assume that 99.85% of our
translation times over some arbitrary n number of runs will
also be under three seconds. We determined this as a rea-
sonable threshold since this would mean that only 15 runs
out of 10 thousand runs will be above 3 seconds, which we
believe holds to our use case requirements.

That said, we also need to verify our component laten-
cies to reach this overall latency requirement. As we out-
lined in our design requirements, the component latencies
chart out to the following:

e Image pre-processing: 5% = 150 milliseconds

e FPGA Human Pose Detection: 10% =~ 300 millisec-
onds

o RNN Classification: 50% =~ 1.5 seconds

e Prompt Generation and LLM: 30% = 900 millisec-
onds
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e Webapp Display: 5% =~ 150 milliseconds

We would similarly test these to that of the overall latency
test; we want to use a timer to calculate the time from
data entering the component to data leaving said compo-
nent, and make sure that the third standard deviation is
underneath the unit component latency requirement. This
virtually ensures that we do not have a bottleneck for any
component.

We also want to test the latency between two different
design choices that we were considering. The first option
is our current design. The second is where we our Human
Pose Estimation model on the Jetson itself alongside the
RNN. As of right now, we believe that having the Human
Pose Estimation model on the FPGA will result in a sig-
nificant speed-up, but we want to verify that, so we want
to compare the latency between the two pipeline architec-
tures. If there is no significant speed-up, we also want to
test our classification accuracy (which we will mention in
the next section) to see if containing everything on the Jet-
son will result in a lower accuracy due to requiring smaller
models.

We would also test the latency between using GPT4
and Llama2, which would involve simply determining the
time it takes to send out and receive a response from either
APT using an arbitrary prompt. Running this over multiple
prompts will allow us to do a chi-squared test to determine
if there is a significant difference in latency times that we
should consider when deciding on an LLM or not.

7.2 Accuracy Testing

Testing our classification models is a matter of accu-
racy. To achieve this, we want to split our data into train-
ing, validation, and testing sets. For this, we are currently
looking at using a 70-20-10 split for our data. The 70%
training split allows us to use the majority of our dataset
for training, which boosts accuracy. The main choice comes
with the 20% and 10% validation and testing splits. Having
more validation splits allows us to focus more on improving
our model’s hyperparameters. Considering the large size of
our dataset, a 10% testing split gives us enough data points
overall to test our model’s final generalization. Using these
data splits, we can calculate accuracy by evaluating the
percentage of classified words to their true labels and then
represent these accuracies using a precision matrix.

To make sure that we can optimize the parameters of
our classification models, we are going to be using our afore-
mentioned validation data. Since we are not directly train-
ing our model through reevaluating our model weights us-
ing this validation data, as we do with the training data,
we can get a general idea of how our data is generalizing
using this validation set. We can therefore use this to tune
our hyperparameters to find parameters that produce the
best possible accuracy for this validation data, which we are
aiming for at least 90%. This value of 90% in validation
accuracy allows us a buffer for our use case requirement of
85% for our testing classification. This testing set would be

a separate set that we have not shown to our classification
model giving us the best possible representation for how
generalized our model is.

Additionally, we need to test the impact of distance. To
do so, we are planning on creating our dataset where we
sign various words at different distances. We want to make
sure that the accuracy of word classification over these dis-
tances does not change significantly. To do this, we can
simply calculate the accuracy per word per distance and
utilize a chi-squared test to determine if there is a statisti-
cally significant difference between the accuracies at differ-
ent distances.

Finally, as we mentioned before, we want to test the
accuracy of our classification model when given different
HPE inputs. One of them with a hand-only detection in-
put and the other with hand-and-face input. We will be
calculating the verification accuracy on these as well given
the same data to train to determine which model is better
suited for translation.

As we mentioned earlier, we want to validate our words-
to-sentence translation LLM component utilizing BLEU
score, which is defined as the following equations [5]:
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This score, in essence, tells us the geometric mean of the
precision of our candidate translation corpus compared
to the reference translation, taking into account n-gram
matches up to length 4. By utilizing BLEU[5], we have an
automated and universal methodology for evaluating the
accuracy of our translation LLM, rather than solely rely-
ing on human evaluation and opinion. However, unlike for
word classification where we are using a train-validate-test
split, we are instead going to just be using a train-test split
because there is no model to train - we are just modify-
ing our prompt to get the best possible results out of our
LLM. However, since the accuracy of our LLM is depen-
dent on our classification model, we determined that for
the classification validation set, we want to get a validation
BLEU score[5] of around 45% and a testing BLEU score
of about 40%. There is also a need to verify which LLM
between GPT4 and Llama2 is more suited to our use case,
and as such, we plan on calculating validation BLEU scores
given the same overall prompt for each LLM. We can run
a chi-squared test on this as well to determine if there is
a significantly better option between either model to make
our decision.

7.3 Hardware Testing

The main hardware test that we are going to conduct is
the correctness of optimized operations that would apply to
our Human Pose Estimation model. Since a Human POSE
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estimation is a type of CNN, there is a lot of operation op-
timization that can be done to ensure that running HPE
on an FPGA will give us a significant speed up. Validating
correctness for this would just come down to comparing the
output of each optimized operation with the output from
a CPU for multiple different possible values. We need vir-
tually 100% accuracy here, as we cannot afford to be mis-
calculating values when trying to optimize the necessary
operations.

7.4 Website and User Interface Testing

The System Usability Scale is a staple universal method
for evaluating the usability of a web app via surveying
users. The average SUS score that marks above-average us-
ability for a web app is 68% [13]. The scope of this project
mainly focuses on the translation of ASL to text, as this is
a product we intend to tie into APIs that we do not have
access to yet, such as Zoom or Skype. As such, we want
to spend more time optimizing our translation pipeline and
want our web app to be usable to the extent that it works
well for users in an accessible and usable manner, but not
at the top of our priorities. Hence, we are targeting around
80% for our SUS score, which we will obtain by asking
those who do know ASL to test our product and ask them
to complete the System Usability Scale survey.

8 PROJECT MANAGEMENT

8.1 Schedule
The schedule is shown in Fig. 4.

8.2 Team Member Responsibilities

In terms of workload, Kavish is responsible for the
FPGA development, Neeraj is responsible for Prompt gen-
eration and LLM communication, and Sandra is respon-
sible for building the Web Application. All three team
members will work on building and helping with the RNN
model since that is the core of our project. Finally, all
team members will come together and test the integration
of individual components into the final product.

8.3 Bill of Materials and Budget

Please refer to the Table 1 to look at the bill of materi-
als.

8.4 Risk Mitigation Plans

The main plan to mitigate a lot of our risks would be in
the form of completing tests as soon as we can. The first
big risk is in the FPGA vs Jetson choice. We want to make
sure that the FPGA is feasible as soon as possible because,
if not, we would have to pivot to the Jetson regardless,
which would impact our RNN if we pivot too late.

Additionally, there is also a risk in whether our classifi-
cation model will detect intricacies in hand gestures if the
user is too far away, since for a hand-only pose estimation
model, the landmark positions are relative to the image
frame rather than relative to the person signing. This is
something we also have to test, as we mentioned earlier,
and have a pivot accounted for, being the hand-face esti-
mation model.

Finally, in the case of poor classification from the RNN
for both the GRU and LSTM, we are also looking into
the feasibility of using a transformer and seeing if that ar-
chitecture can give us a better response, considering that
transformers have also been used for machine translation.
This is a pivot we need to make early if necessary, so we
are in the process of developing our RNN to test as soon
as possible.

9 RELATED WORK

As seen in the Peter Quinn demonstration of imple-
menting human pose estimation (including MediaPipe)
models on the Kria KV260, his methods and steps are very
similar to what we aim to achieve [12]. His work provided a
solid foundation for our development as we aim to replicate
his efforts and further improve our performance to meet our
desired goals.

We have also looked at another experiment conducted
by Nir David, Alexey Konev, and Jia Ying, in which they
delve into various architectures that they use for translat-
ing ASL videos. This paper is what originally inspired us to
use the WLASL dataset, as well as offered some overarching
ideals for the general pipeline for translation. It also pre-
sented the issue with using raw images as inputs, resulting
in their model training on extraneous unnecessary factors,
and using HPE to counter that [3]. We are implementing
our pipeline a bit differently, in that we are experimenting
with variations of the pipelines that they used, their work
provided us with a strong foundation to base our work.

In addition to the demonstration by Peter Quinn, the
research by Masaru Yamada on optimizing machine trans-
lation through prompt engineering provides useful insights
for our project [15]. Yamada investigated how incorporat-
ing aspects like the purpose of the translation and target
audience into prompts for ChatGPT can improve transla-
tion quality. His findings showed that adding this contex-
tual information helps guide the model to produce more
natural and human-sounding translations suited for the in-
tended use case. This approach of using prompts to spec-
ify high-level goals, constraints, and users aligns well with
our aim of generating accurate and natural translations
for ASL. As we develop prompts for our translation mod-
els, Yamada’s techniques on translation prompt engineer-
ing can inform effective ways to frame the task, provide
examples, and indicate the target output style. His work
demonstrates the power of prompts to direct large language
models, which we can potentially leverage for specialized
ASL translation.
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Table 1: Bill of Materials

Description Model # Manufacturer Quantity  Source @  Cost
KRIA KV260 Vision AT Kit (FPGA) KV260 AMD (Xilinx) 1 pre-owned  $0.00
Jetson Nano 0022 Nvidia 1 inventory  $0.00
Logitech C920S (Camera) - Logitech 1 pre-owned  $0.00
Display (Monitor) - Dell 1 pre-owned  $0.00
OpenAl GPT4 LLM - OpenAl 1 pre-owned  $0.00
Meta Llama2 LLM - Meta 1 pre-owned  $0.00

$0.00

10 SUMMARY

Our design utilizes a Logitech C920S camera, a Kria
KV260 FPGA, an NVIDIA Jetson Nano Developer Kit,
and an off-site LLM to implement a live ASL-to-text system
in virtual environments. Our real-time ASL translation
project has the potential to profoundly impact accessibility
for the hearing-impaired community in virtual spaces. By
enabling effective communication across non-fluent hear-
ing individuals and hearing-impaired ASL users in popular
digital environments like video calls, live streams, and con-
ferences, we can promote fuller inclusion to a wider array
of individuals.

Risk mitigation may provide challenges as we progress
in our system’s development. In hosting and accelerating
HPE on the FPGA, we’re aware there may be unforeseen
hurdles that block or limit the scope of the FPGA’s abili-
ties. Although we’re confident in the selected FPGA’s abil-
ity to accomplish effective HPE, if any insurmountable is-
sues were to come up further down the line we would plan to
remove the FPGA from our system altogether. In this case,
HPE would need to run on the Jetson Nano in addition to
its current tasks. This would substantially shift the struc-
ture and capacity of our current system plan and the Jet-
son’s ability to perform all its required tasks. The FPGA
has the potential to significantly improve system latency
and space flexibility for Jetson Nano’s RNN model but isn’t
integrally necessary to accomplish our project goals.

TransLingualVisionary seeks to increase accessibility to
digital environments for those who are hard of hearing to
promote an increased sense of community within the grow-
ing online space.

Glossary of Acronyms

ASL - American Sign Language
e BLEU - Bilingual Evaluation Understudy
DPU - Deep Processing Unit

FPGA - Field Programmable Gate Array
GRU - Gated Recurrent Unit

HOH - Hard of Hearing

HPE - Human Pose Estimation

LLM - Large Language Model

LSTM - Long Short-Term Memory
RNN - Recurrent Neural Network
RTSP - Real-Time Streaming Protocol

SUS - System Usability Scale
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