EMBELLISHER: TRASH COLLECTING ROBOT

By: Ella Lee, Ritu Pathak & Hirani Sattenapalli

OUR DRIVE USE-CASE DEFINITIONS

PROBLEMS

- Increased pollution
- Sanitization hazards
- Intensive human labor
- High cleaning costs
- Public safety

NEEDS

- Identify garbage on sidewalks
- Pick up and collect garbage
- Navigate autonomously
- Restrictive budget
- Avoiding obstacles

USE-CASE REQUIREMENTS

Object Classification of ML Model	At least 95% mean average precision for Yolo V7 80% mean average precision for tiny Yolo V7
Obstacle Avoidance	At least 95% success rate
Efficiency	At least 90% pick up rate
Object Pickup Speed	Less than 45 seconds
Robot Operation Duration	Within a span of 2 to 4 hours
Voltage Duration	About 2 hours

QUANTITATIVE DESIGN REQUIREMENTS

	At least 15 frames per second rate for inferencing pipeline		
ML Subsystem Performance	Returning bounding boxes at - A confidence interval of 0.68 - A precision of 0.95 - Recall of 1.0		
Movement and Pick-Up Mechanism	Speed of the robot to be roughly 0.92ft/s - max distance of 18.4ft - 20s to reach and pick up the trash		
Coordination/ Path planning	Robot's ability to come back to its starting location - Avg distance from initial to final coordinates < 2-3 ft (~60cm)		
Power Supply	At least 28000 mAH Last approximately 2.9 hours when supplying 5v @ 3a		

SYSTEM APPROACH

OBJECT CLASSIFICATION

Train: YOLOv7 and YOLOv7-tiny Datasets: Soda Cans, Water Bottles, and Crumpled Paper Parts: Jetson Nano Orin, e-CAM50_CUNX (+ Intel Realsense Camera) Software: openCV, PyTorch, TensorRT

MOTOR CONTROL

Robot rotates and navigates to detect trash
Roller pushes garbage in, which is carried by conveyor belt to storage
Parts: RPi 5 (+RPi 4), mecanum wheels, Rollers, linear shafts, stepper motors (+DC motors), rubber belt, ultrasonic sensors
Software: ROS2 Humble, Python

INTEGRATION

Ethernet connection between devices Unit tests for each component Integration tests defined for testing + metrics

COORDINATION/ PATH-FINDING

Define path for robot to return to original location given coordinates **Parts:** Gps module **Software:** VSLAM, Python package

SYSTEM DIAGRAM

COMPLETE SOLUTION

ETHICAL CONSIDERATIONS

• Public Safety & Welfare:

- Avoid collision with humans & street animals
- Ensure operating location is the sidewalk

• Social & Environmental Factors:

- Plan to have the robot during times of the day when the streets are less crowded
- 10am-12am or 1pm-3pm

DESIGN TRADE-OFFS

Subsystem	Definition & objectives	Criteria	Considered Alternatives	
Machine Learning	Classification of trash components	Time Accuracy False Positives	 Pre-Trained vs Custom ML Model Custom Dataset vs Existing Dataset Precision vs Recall 	
Motion Control & Pickup	Movement of robot + collection of trash	Movement & Pick up Speed	 Different types of motors Higher torque, less speed Scoop vs robotic arm vs roller Primary trade off: speed & ease of access Durability & consistency 	
Path Planning Algorithm	Defines robot ability to get back to starting location	Engineering Complexity	 Issac ROS VSLAM AprilTags Distance Matrix Service by Google Maps 	

TEST, VERIFICATION, AND VALIDATION

OBJECT CLASSIFICATION

- CONNECT CAMERA TO JETSON & RUN MODEL
- TEST TRASH & NON-TRASH ITEMS
- RECORD ACCURACY AND FALSE PICK UP RATES

MOVEMENT

- PLACE IN ASSIGNED AREA (ON TRACK) & CHECK MOVEMENT
- TEST OBSTACLE AVOIDANCE
- RECORD # OF OBSTACLES AVOIDED & TIME TO MOVE

INTEGRATION I

- Test pick-up mechanism subsystem
- Record the number of components collected
- Test movement + pick up with object classification

INTEGRATION II

- Test path planning algorithm and rotation of the robot with object classification
- Record the number of objects it detected & reached

INTEGRATION III

- Test object classification, path planning, and picking up component
- Run multiple iterations with varying the number of trash components
- Record time & the number of components

VERIFICATION & VALIDATION

Subsystems	Measurements	Test Inputs	Passing Test Requirements	Results
Machine Learning	Inference speed Conf. Threshold Avg. Precision Avg. Recall	 Camera feed Test dataset False positive visual inspection 	1. Run inferencing @ 15 FPS 2. Conf. Threshold >= 0.68 3. Precision >= 0.95 4. Recall = 1.0	1: ~115 FPS for inferencing, ~103 FPS for full ML pipeline 2 & 3: mAP = 0.978 avg. across classes @ 0.68 conf. threshold 2 & 4: Recall = 0.975 avg. across classes @ 0.68 conf. threshold
Path Planning	Distance to original location	1. Initial coordinates 2. Final coordinates	1. Avg distance between initial and final coordinates < 60-90cm	Ongoing testing
Motion Control + Pick up Mechanism	Pick up speed Items collected Operation Time	1. Trash components	 Pick up Time < 20 seconds Operate for 2 hours > 90% of classified trash items are collected 	Pick up time: 15 seconds Operation time: 2-2.5 hours Success rate: 9 out of 10

PROJECT MANAGEMENT

THE EMBELLISHER

A bot that seeks to purify and depollute our urban areas

Clean & Improve & Vitalize Our Environment