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Abstract—Unclean streets in urban and underde-
veloped areas lead to increased pollution, sanitization
hazards, intensive human labor, high cleaning costs,
and public safety concerns. This paper presents a
robotic system capable of identifying garbage on side-
walks, picking up and collecting said garbage, navigat-
ing autonomously, and avoiding obstacles. Although
there exist commercialized automated robot cleaners
in water settings, for land there does not yet exist a
solution beyond proof of concept. We aim to provide
a solution using object detection providing 0.95 mAP,
navigation and pickup processes at 90% efficiency, and
successfully perform trash pickup within 45s.

Index Terms—Design, Robot, Object Detection,
Object Collection, Path Planning, Obstacle Avoidance

1 INTRODUCTION

Unclean streets in urban and underdeveloped cities and
towns are normal to where residents in such areas no longer
view such areas with antipathy, but rather ambivalence.
We observe these roads and sidewalks are often littered with
trash, mud, and plant waste. Pedestrians have to deal with
discomfort from unpleasant smells and sights of garbage on
top of safety issues posed by slippery roads. Subsequently,
we saw the urgency of promoting a more pedestrian friendly
environment. We aim to develop a prototype of a cleaning
robot that can autonomously navigate streets and pick up
trash.

The robot will be engineered to navigate sidewalks while
also being able to identify and clean up the streets along the
way. Our robot is targeted to local and state governments,
the authority in charge of street cleaning programs, who
not only have to deal with the increased pollution present
in the streets, but must delegate intensive human labor
to help mitigate the existing amount of pollution. The
costs for cleaning programs which delegate these tasks are
high[2], but of course, it must be done because the trash
is a sanitation hazard to the public. This robot can target
these needs by identifying garbage on sidewalks and picking
up and collecting garbage to reduce pollution, navigating
autonomously to decrease the level of human labor, work
within a restrictive budget to reduce cleaning costs, and
avoid obstacles to maintain public safety.

There are a couple existing solutions which try to do
this, but have not reached commercial success. One such
example is DustClean; however, it is not widely deployed
due to high manufacturing costs. Furthermore, its primary
use is for small particles rather than large pieces of trash.
Our robot aims to have manufacturing costs under $600

while having a trash storage compartment that is more
scalable to various loads of trash. For the purposes of this
design, we specify our trash components to be soda cans,
plastic water bottles, and crumpled paper.

2 USE-CASE REQUIREMENTS

To resolve the problems mentioned in the previous sec-
tion, we see the need for a robot that is able to au-
tonomously identify garbage on the streets, pick it up, and
collect it while avoiding obstacles. To achieve these goals,
we aim to define the following use-case requirements:

First, The robot should be able to identify trash objects
with at least 95% mean average precision for YOLOv7 and
80% for tiny YOLOv7. For reliable operations, which we
claim to be two standard deviations away from the mean,
a high precision of at least 95% is needed to classify trash
objects. However, the reason the Tiny YOLOV7 can have
less precision is that it can run inferences faster than the
standard YOLOv7 due to its compact size. This sacrifice
is necessary for high performance to identify trash objects
quickly and collect them. However, both would have 100%
recall rates because having no false negatives would avoid
misclassification of living creatures as trash items and fur-
ther safety issues such as injuries and psychological distress.
This will promote public health, in particular for pedes-
trians and animals within the environments the robot is
operating in.

Then, the robot must avoid obstacles with a 95% suc-
cess rate and navigate the streets without disrupting hu-
mans or animals. As mentioned above, public health and
safety are the most crucial factors to consider when design-
ing a street-cleaning robot as it should not put pedestrians
into risks of injuries or property damage. 95% represents
two standard deviations away from the mean. By main-
taining performance within this parameter, the robot will
be able to operate reliably and consistently in normal con-
ditions without unexpected interference. This predictable
behavior ultimately elevates the user experience and in-
creases user comfort during interactions with the robot.

The robot should pick up the given trash items at least
90% of the time. Reaching a 100% pick-up rate was un-
realistic as the process slows down with the robot double-
checking that the item is properly picked up. For real-world
use purposes, a 90% success rate with some small error mar-
gins captures most trash while also maintaining a relatively
efficient work pace. In effect, the robot can promote public
satisfaction while also raising awareness of hygienic living
conditions and public health through clean-up tasks.

In addition, the robot should be able to operate in ar-
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eas bigger than 4 feet by 8 feet. These testing spaces model
the rectangular shapes of real-life streets, which enables an
expansion of experimentation to full-scale in future deploy-
ments. Additionally, testing at a smaller scale is practical
in terms of project time and budget and ensures an applica-
tion that benefits the communities once it is commercially
designed and produced.

The robot must pick up trash in less than 45 seconds
to maximize cleaning efficiency and minimize disruptions to
the environment. The robot will be situated in the bustling
streets with heavy foot traffic in real life. If it spends too
much time picking up the objects and completing the tasks,
it may block people passing through the area and cause in-
convenience. Also, optimizing the robot’s pickup time helps
reduce unnecessary power consumption and the recharging
time of batteries, which decreases overall operational costs.

Also, the robot must be operated within a span of 2 to
4 hours. We want the robot to be unobtrusive but able
to collect sufficient amounts of trash at the same time to
deposit all at once within the given timeframe limit so that
it does not have a prolonged presence on the streets.

Finally, the battery should last about 2 hours. The ex-
isting commercial cleaning robots, such asDeebot X1 Omni
[6] and Roomba by iRobot [7], have a maximum capacity of
running for 2 to 3 hours. A battery life of at least 2 hours
will ensure high performance in cleaning tasks, where the
robot can operate without needing to swap batteries in the
middle of the shifts and complete the cleaning tasks without
long-term idling to recharge the battery. This also avoids
any possible inconvenience to the general public, as the idle
robot sitting on the street could disrupt any activities going
on in the spaces.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

The block diagram provided in the Appendix, Figure
4, gives a diagram of the computation devices that we are
using, interconnections, and all of the hardware and soft-
ware components. The Jetson Nano Orin will be running
the object classification pipeline. The Nano takes in cam-
era feed from the e-CAM50 CUNX and is connected to the
Raspberry Pi 4 via ethernet. The Raspberry Pi will use
a dc stepper motor hat to connect the four motors used
for motion, 3 motors used for the pick up mechanism (con-
veyor belt and rotating device), and the ultrasonic sensor.
The provided legend gives details on the specifics of the
components used.

The flow chart, as referred to in Figure 1, shows an
overview of the robot’s operation. First, it starts in sleep
mode. Then, it rotates the camera, and if it detects the
trash component, it centers itself around the trash object,
initializing the motors of the roller and conveyor belt to
go straight towards the garbage component by increasing
speed. Then, it confirms the object has been collected by
checking whether the component is invisible in the cam-

era feed, then moves back to its original reset state. If no
trash is detected, on the other hand, the robot moves 3
feet forward while incrementing the counter. During this
movement, if an obstacle is detected, then the robot should
move in a straight direction to avoid the obstacle. If the
counter hits 4, then it automatically goes into sleep mode.

Figure 1: Flow chart for the system.

4 DESIGN REQUIREMENTS

Our design requirements are derived from our use case
requirements.

Our first requirement is based on our ML subsystem
performance, namely, we want our inferencing pipeline to
support a camera frames per second (FPS) rate of at least
15 and return bounding boxes surrounding trash objects at
a confidence interval of 0.68, a precision of 0.95, and recall
of 1.0. These metrics are very important and reflect what
we want our user experience to be like. For example, we
want to support 15 FPS because we want our object detec-
tion to be as fast as possible, especially if the robot will be
spinning in space to find other objects. We would rather
be limited by physical spin ability than compute power,
and 15 FPS seems like a good metric for that. We want
the confidence interval to be at least 0.68 so that we are
not accidentally detecting non-trash objects, and 0.68 is
roughly one standard deviation above the mean. Our pre-
cision and recall metrics are consistent with our use case
requirements.

An additional design requirement based on our Move-
ment and Pick-Up Mechanism subsystems is that we want
the speed of our robot to be roughly 0.92ft/s when nav-
igating to a detected trash object. We use the equations
below to justify our quantitative metric.

c =
√
a2 + b2 (1)

where a and b are sides of a right triangle and c is the
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hypotenuse, which is also the longest possible distance the
robot may have to travel. Since our largest testing envi-
ronment is 4ft x 18ft, from (1) we get the longest possible
distance to cross to be approximately 18.4ft. To stay within
our time bounds, we need to allocate some time to reach
the trash and to pick up the trash. We allocate 20s to
reach the trash and 25s to pick up the trash and account
for obstacles which may be in the path.

S =
D

T
(2)

where S is the speed in ft/s, D is the distance in ft
and T is the time in s. We thus calculate our speed as
S = 18.4ft

20s = 0.92ft/s.
Another design requirement we made note of is that the

power supply must supply at least 28000 mAH to last ap-
proximately 2.9 hours when supplying 5V @ 3A to both the
Jetson Nano Orin and the RPi4. This is important because
both devices need 5V @ 3A of input to run successfully. We
refer to (3) as to how we built this relation.

mAH

1000 ∗Amps
= Hours (3)

where mAH is the battery capacity, Amps is the cur-
rent and Hours is the overall time, where each variable
reflects their units as well. We note (3) holds in systems
where the input and output voltage are the same. Based
on (3), we see if we have 28000 mAH and need to supply
a current of 3A, we end up with roughly 2.9 hours. 28000
mAH is a fairly common battery capacity which results in
a battery life of at least 2 hours and thus will allow the
robot to roam for at least 2 hours, leaving room for energy
lost due to heat dissipation.

5 DESIGN TRADE STUDIES

During the design of our product, we considered multi-
ple options for each aspect of the robot, before making the
most appropriate design choice. The primary features that
we ran trade studies for are split into hardware, software,
and construction/ build components. They are detailed
below:

5.1 Hardware

5.1.1 Computation Device

When considering the computation device meant to run
the object classification, we looked at several different prod-
ucts. Inspired by the tech talks released near the beginning
of the capstone project, we thought heavily about the AMD
Kria KR260 robotics starter kit. The Kria KR260 starter
kit provides users with an Arm Cortex processor that can
run up to 1.5GHz and a dual core Arm Cortex R5F real-
time processor up to 600MHz [1]. It also provides a 4GB
64-bit system memory, 4 gigabit ethernet RJ45 ports, 4 usb
interfaces, and also includes expansions referring to a 40-pin
raspberry pi hat header with 26 input/ output ports. We

also considered different Jetson Series. First, we looked at
the Jetson Xavier and compared it against the AMD Kria
KR260. Comparisons have shown that the Kria KR260 has
a 5x productivity gain and up to 8x better performance per
watt against the Jetson Xavier AGX[8]. The primary draw-
back with the Kria KR260 was the cost: it would take up a
bit more than half of our allotted budget ($350). This was
a heavy drawback, especially when we had to consider the
budget needed for the construction of the robot.

As there were several Jetson Series in inventory, we de-
cided to consider some of the other starter kits. The Jetson
Orin Nano delivers up to 70 and 100 TOPS of AI perfor-
mance, especially in the smallest Jetson form factor. The
Orin Nano performs almost 3 times better than the Jet-
son AGX Xavier and the Jetson Xavier. The Jetson Nano
Orin uses an 8-core Arm Cortex 64-bit CPU[8]. The Jet-
son Agx Xavier has an AI performance value of around 32
TOPs and provides an 8-core ARM Carmel. We also con-
sidered the Jetson AGX Orin, which had a much higher AI
performance value (275 TOPS); however, it is priced at a
significantly higher rate ($2000). Hence, we chose to use
the Jetson Nano Orin as it was the most optimal choice
considering cost, performance, and computational power.

5.1.2 Motor control Computation Device

The motor control computation device is meant to con-
trol the movement of the robot overall (the four motors
that will be used to move the robot), avoid obstacles in the
process (control the sensors needed to detect obstacles),
and the motors needed for the pick-up mechanism (three
motors are used for this and will be detailed in the con-
struction section)[3]. We primarily considered three main
devices: the Raspberry Pi, Arduino, and the Jetson Nano
Orin. With the Jetson, the idea was to run all computa-
tion in parallel with the object classification. Running all
of the computation on one device (the Jetson Nano Orin)
did not seem ideal as this would slow down performance
significantly and could lead to lags/ delays and higher la-
tencies. Hence, we decided to avoid using the Jetson for
motor control, and instead use a separate compute device
- either the Raspberry Pi or Arduino.

Once it came down to the Arduino/ Raspberry Pi, this
was a fairly straightforward decision. In addition to be-
ing able to control seven motors and one sensor, we re-
quired our additional computational device to run ROS.
The Robot Operating System is a very useful set of soft-
ware libraries and tools meant to build robot applications.
As part of our capstone project, we wanted to use ROS to
add complexity, provide additional software for us to learn,
as well as simplify part of the motor control and robot in-
terface as prior research demonstrated that ROS is a great
way to work with and build robot applications. Arduinos
work well controlling motors and provide a simple micro-
controller, but significantly limit our scope for extended
robotics applications. Raspberry Pis have great processing
power (around 1.6 GHz) while the Arduino runs at around
16MHz[13]. Hence, as Raspberry Pis can run ROS and
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provide their own operating systems, we decided to move
forward with the Pi.

Once we decided on using the Pi, our main considera-
tions were between the Raspberry Pi 5 and Raspberry Pi 4.
The trade offs, in terms of computation and performance,
between the two are that the Pi 5’s CPU runs at a higher
clock rate, and supports a GPU at 800 MHz (compared at
500 MHz for the Pi4)[5]. The CPU and GPU of the Pi 5
are noticeably more efficient than the Pi 4’s. The Pi 4 does
have a lower power consumption (which would be a pro
in terms of increasing battery life)[4]. However, after test-
ing out the Pi 5, we realized that the Ubuntu distribution
that is supported by ROS versions that have been released,
are not compatible with the Pi 5 (only supports Ubuntu
23.10). The ROS distributions that have been released are
compatible with Ubuntu 22.04 and below; however, there is
no planned ROS release for Ubuntu 23.10. From research,
we noticed that ROS works really well on Ubuntu Linux;
hence we decided not to look for another operating system.
Overall, we decided to use the Pi 4 for our motor control
computation device as it can support ROS distributions.

5.1.3 Sensors:

The robot is meant to avoid obstacles while it is moving
in its defined environment. Obstacles, earlier, have been
defined to be larger than 1.5 ft which is the approximate
height of the robot. A sensor is needed to detect these ob-
stacles and we considered several different types of sensors
while choosing the most suitable sensor. Our first choice
was to use object classification (the tiny yolo v7 model) to
detect objects in the environment.

There are several difficulties with the option of using
Object classification to avoid obstacles. Most object de-
tectors, including the Tiny Yolo models, are trained for a
specific resolution of input and do not support multi-scale
training. As there is unpredictability in terms of the obsta-
cles that the robot will encounter on a daily basis, training
the model to ensure the use case requirement of 95% ob-
stacle avoidance is an exceedingly difficult task. This will
also require large datasets and computational power, and
there could be imbalances in the different categories of the
objects that the model must be trained on (to cover all the
ranges of obstacles the robot will potentially encounter -
human beings, buildings, large boxes etc.).

As the usage of object classification for obstacle avoid-
ance is highly unrealistic considering our time to train and
the computational power of our compute devices, we de-
cided to consider the usage of sensors to detect objects (of
¿ 1.5”). We chose to use an ultrasonic sensor which uses
sound waves to measure the distance to an object. This
works efficiently to detect objects at distances from 7 inches
to around 11 feet (this can change depending on the sensor
used). Other sensors we considered include: An electrome-
chanical light switch, which requires physical contact with
the target object (inefficient in defined environment). A
pneumatic which uses compressed air and a sensitive di-
aphragm valve to detect the presence of objects (this is

not always reliable as the instruments must be functioning
perfectly well to detect objects). Magnetic sensors that are
actuated by the presence of a permanent magnet within a
sensing range.

The sensors described above and others do not precisely
give a distance measurement and are not perfectly reliable.
Hence, we decided to use an ultrasonic sensor.

5.2 Software

5.2.1 Object Classification Model Architecture

We settled on the Tiny YOLOv7 model over other mod-
els, since it’s designed to run on lightweight compute de-
vices, which is helpful for keeping our costs low. How-
ever, because it’s compressed to a lower size, its accuracy
is lower when compared to other pre-trained models, such
as R-CNN and non-tiny YOLO models. We felt this was an
appropriate trade to make for our use case however, since
the model is still empirically ¿90% accurate with a recall
¿70%. Ideally we want this model to reach 100% recall
sacrificing some amount of precision to avoid false nega-
tives as much as possible. Since our robot just needs to
be autonomous and perform reasonably well at picking up
surrounding trash, we feel these metrics are sufficient. Fur-
thermore, we will use the YOLOv7 after the Tiny YOLOv7
detects something, to keep our false positive rate low with-
out sacrificing too much detection speed. We also could
have trained a TensorFlow model, and then used TFLite
for the model to be optimized on edge devices; however,
research during one of our member’s internships showed
the speed of TFLite models to be substantially slower than
Tiny YOLOv4 ( 30 FPS vs 20 FPS), and the Tiny YOLOv4
has been shown to be slower and less accurate than the Tiny
YOLOv7. Additionally, unlike TensorFlow models, YOLO
models are able to detect several objects in one image pass,
which is useful for trash detection. Aside from the Jetson
Nano Orin, we were considering other lightweight edge de-
vices, mainly the Raspberry Pi. However, the Jetson Nano
Orin has a more powerful GPU unit, making it more suit-
able to ML projects requiring high performance compute.
We were additionally thinking of using AMD products, but
similarly the Jetson Nano Orin seemed more suitable to our
purposes with more readily available resources.

5.3 Construction/ Build

5.3.1 Pick-up mechanism

The type of pick up mechanism to use for the robot
was an important component of the project as this defines
a major portion of the time it would take to collect a sin-
gle object. The primary mechanisms we considered include
the scoop mechanism, a robotic arm, and a roller mech-
anism (that consisted of some rotating device that would
pull components into the robot).

The scoop mechanism consists of a rectangular box that
is close to the ground. It is connected to the robot with a
few motors that will control its movement. Once a trash



18-500 Design Review Report - 1 March 2024 Page 5 of 10

component is located, the robot will move towards it, and
the scoop will move outwards (away from the robot) and
pull the trash component into the storage area. The pri-
mary drawbacks with this mechanism are that it has high
latency (takes a significant amount of time for all motors to
be moved accurately - around 90 seconds to 2 minutes) and
has greater complexity in terms of attaching the motors in
specific locations to have the scoop move in properly. There
is also the potential error of not catching the trash object
in the scoop (ex. pushing away the object).

The robotic arm mechanism consists of a robotic arm
used to pick up each trash component. There is a high la-
tency associated with the robotic arm (around 2-3 minutes)
to have the arm move to the object, pick it up, and place
it in the storage area. This mechanism also faces similar
drawbacks of potentially being unable to pick up the ob-
ject or missing the object (due to its shape). The timings
for the mechanisms were approximated from past projects
that used a scoop/ robotic arm for different applications.

The final mechanism we considered was the roller/ ro-
tating device. There were several types of implementations
we saw of this. One of the implementations was the use
of several Caster wheels that sit close to the ground. The
rotor moves these wheels and pulls in the trash components
from underneath. Due to the force of the wheels, they are
shot back to the storage compartment. This mechanism
takes around 20 to 30 seconds to collect the component.
However, the primary drawback is the danger it presents
to small animals/ young children near the robot. The other
implementation we considered was to use a rotating shaft
(which is provided in our design sketch), that will roll in the
trash and be placed in the storage compartment through
a conveyor belt. We are expecting the trash to be col-
lected inside the robot around 20-30 seconds, and around
20 seconds more for the trash to be placed in the storage
area via the conveyor belts. The roller has a three inch ra-
dius and does not move as fast as the Caster wheels, and so
presents a safer intake mechanism. This design is described
in greater detail in the implementation section.

Overall, we decided to use the rotating shaft mecha-
nism as it takes less time to collect trash components, in
reference to the other mechanisms described, and is a safer
mechanism that can be justified for use in the real world.

5.3.2 Types of Wheels

The types of wheels we used for the robot were an im-
portant consideration primarily when thinking about real
world applications of the capstone. Although this project
is intended to be used as a proof of concept and meant
for immediate deployment, we thought it necessary to con-
sider types of wheels for different terrains. Our primary
considerations were tracked wheels and Mecanum wheels.

Tracked wheels: run on continuous tracks instead of
wheels and work well with soft, low friction, and uneven
ground. They provide good traction on soft surfaces, but
aggressive tracks can damage paved surfaces and are prone
to a higher set of failure modes (snapped/ derailed tracks).

Mecanum wheels: provide traction and stability for om-
nidirectional movement (rotation around a fixed axis). Us-
ing a variable wheel size can provide flexibility with the size
of the robot.

After considering the defined environment and recog-
nizing that most of the places we targeted in our use-case
requirements had street trash on paved roads, we decided
to use Mecanum wheels. In addition, mecanum wheels pro-
vide greater flexibility in terms of design as they are less
prone to different failures and can be tested well in our
defined testing environments.

5.3.3 Build Material

In terms of the actual construction of the robot, we con-
sidered several different materials. We looked through past
deployed and prototyped street and waterway trash col-
lecting robots, and recognized that most were made out of
plastic/ were custom made through a manufacturing com-
pany. As this posed difficulties in terms of cost and time,
we decided to build the robot out of aluminum extrusions
(provide a very strong and sturdy foundation/ frame for
the robot) and acrylic boards. We will be 3D printing the
actually rotating device, as some of the newest 3D printers
on campus have produced some reliable and sturdy prod-
ucts. The rotating device must be strong and durable (to
collect the trash components), and must match our defined
dimensions. Hence, 3D printing the rotating shaft, using
the most recent 3D printers was the best option for us.
In addition, we will be using acrylic boards over laser-cut
wood to cover our electronics and fill our base as there is a
greater availability of these boards in campus workstations.
Overall, we considered our materials (on campus and on-
line - budget) in great detail while defining the final design
sketch and the dimensions.

6 SYSTEM IMPLEMENTATION

Our implementation is split into three major compo-
nents: detecting trash, motor control, and avoiding obsta-
cles. For our overall pipeline, we plan to use a camera
(specifically the e-CAM50 CUNX) to take a picture of ev-
ery direction the robot faces, as the robot will have a simple
path finding algorithm. Specifically, the robot will take a
picture of what lies in front of it, if the robot sees trash, it
will move forward, else it will turn 45 degrees to the left.
If the robot has turned a full 360 degrees, it will also move
forward. Also, it will be smart enough to avoid moving
forward in a direction which has obstacles. A basic CAD
model of our overall system can be seen in Fig 2. It in-
cludes trash storage separated by an acrylic board from
the conveyor belt and roller pickup mechanism. It includes
mock-up wheels and a blue box for all hardware compo-
nents.
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Figure 2: CAD Model

6.1 Object Classification

In order to detect trash, we plan to tune two pre-trained
object classification ML models on a custom dataset includ-
ing classes for soda cans[9], plastic bottles[10], and crum-
pled paper[11]. We will combine these three datasets to-
gether to form our custom dataset, using Roboflow to re-
annotate classes as needed. In case the existing soda can
dataset performs poorly due to its intensive use of back-
grounds, we also plan to build our own soda can dataset
with pictures of soda cans taken from an iPhone. We will
annotate these using Roboflow on backgrounds more repre-
sentative of our use case. The two models we plan to use are
Tiny YOLOv7, which works well on lightweight compute
devices but sacrifices accuracy for speed, and YOLOv7,
which is very accurate but runs slower. We will be running
both on the GPU of the Jetson Nano Orin. We have been
training both models using Google Colab Pro on the A100
GPU. Once we run out of compute units, we plan to switch
to using the GPUs on the ECE wing clusters.

To summarize our flow: (1) the input of the ML sub-
system will be a constant image stream captured by our
e-CAM50 CUNX camera connected via GPIO pins to the
Jetson Nano Orin. (2) We plan to use TensorRT-Torch to
run inference using the Tiny YOLOv7 model trained on our
custom dataset on. (3) If the Tiny YOLOv7 model detects
trash components above a certain threshold for a particular
image, we will then run the same image through the Tiny
YOLOv7 model to reduce false positives. (4) The output
of this subsystem will be bounding boxes around detected
trash objects above a certain threshold.

The pipeline for this subsystem can be visualized
through the left half of the architecture diagram, provided
as reference in Fig 4.

6.2 Movement and Path Finding

In order to control motors used for movement and trash
pickup, we plan to use the Raspberry Pi4, since we believe
the CPU unit on the Jetson Nano Orin won’t be enough
to do everything. We plan to use ROS to control all of the
motors (7 DC motors in total throughout the full system).
We do not plan to use a complicated path finding algo-
rithm to navigate to trash, rather we plan to simply see if
we detect trash in one of 8 directions, if we do, we move
forward to it, otherwise, we move straight relative to the
robot, unless we detect an obstacle. We plan for our robot
to have four Mecanum wheels with one motor per wheel, in

order to facilitate movement in 8 directions. Additionally,
using Mecanum wheels should allow our robot to spin in
place easily while surveying different directions.

To summarize our flow: (1) the input of the path finding
subsystem will be bounding boxes from the ML subsystem.
(2) If there are non-empty bounding boxes and no obsta-
cles, use ROS to have the four wheels move forward, else
use ROS to spin the robot 45 degrees. (3) If the robot has
spun 360 degrees, then the robot should move forward. (4)
This subsystem will not have an output.

There are two other considerations we have for our path
finding algorithm that need more research: (1) using QR
codes to model our boundary of our space (2) remembering
the locations of detected trash objects. As these are both
aspects connected to obstacle avoidance, we will elaborate
on these components in that section.

6.3 Pick Up Mechanism and Display Sub-
system

For our pick up mechanism, we plan to have 3 motors in
total, with one controlling a roller like mechanism and the
other two controlling two conveyor belts. Fig 3 is provided
for reference.

Figure 3: Pick Up Mechanism Subsystem

We thought this method would work the best for our
use case, picking up soda cans; plastic water bottles; and
crumpled paper, due to the shape of these objects. The
roller works as a “one size fits all” mechanism, as long the
objects are large enough, and the conveyor belt pulls the
trash objects into the trash storage component of the robot.
We also plan to have a HC-SR04 sensor near the top of the
storage component to detect when a trash object has been
collected. The Raspberry Pi5 will use this information to
update a digital display of trash objects collected and to
detect when the robot should stop.

To summarize our software flow: (1) the input of the
display subsystem will be positive detections from our HC-
SR04 sensor. (2) The RPi4 will update the display counter
when receiving input. (3) This subsystem stops the full
system once a certain number of trash objects have been
collected.
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6.4 Obstacle Avoidance

In order to avoid obstacles, including the boundary, we
plan to include an ultrasonic proximity sensor, the HC-
SR04, at the front of our robot, as high as possible, con-
nected to the Raspberry Pi4. This way, the robot would be
able to detect obstacles roughly of its height, which is our
limited scope for this project. This is to mimic stationary
hazards such as traffic cones denoting construction and/or
potholes, along with stationary humans. As designated by
our movement subsystem, if this sensor detects an object,
the robot will turn 90 degrees to the right. The same obsta-
cle should not be detected after the turn. In other words,
we currently plan to have the boundary be the same height
of the robot. We are still in the process of researching using
QR codes to model the boundary of our space, and have
designated this goal to be post MVP.

Additionally, we are also researching potentially remem-
bering the locations of past object detections to find a bet-
ter way for the robot to know if an area has been cleaned
or not, particularly in the case of obstacle avoidance. We
have been unable to come up with a good way to do so
however, and thus to get a working product, we have also
decided to make this a post MVP goal.

To summarize our flow: (1) the input of the obstacle
avoidance subsystem will be positive detections from our
HC-SR04 sensor. (2) The RPi4 will use ROS to stop ex-
isting robot movement and spin the robot 90 degrees to
the right, becoming the new “forward” direction. (3) This
subsystem does not have an output.

6.5 Public, Social, and Economic Factors

We considered public health, safety, and welfare in de-
tail when defining our design and scope. Considerations of
public health, sanitation, and pollution that results from
street-garbage/trash were our main sources of intention and
drive behind the product. The end goal of the robot is to
increase public health and welfare by collecting street trash
and in the process, inform the public about the importance
of maintaining clean streets.

In terms of public safety, we considered this in great de-
tail while finalizing our design. After we completed major
portions of research for the robot, we finalized on two de-
signs: a roller mechanism that consists of 6-7 Caster wheels
and a rotating fan that works in combination with two
small conveyor belts. We chose to use the conveyor belt
and rotating fan as our main pick-up mechanism for the
robot. The main reason for this design decision was that
it provides greater safety for stray animals, pets, or small
children that might accidentally put their hands into the
robot. Although this will be significantly advised against,
this is a potential scenario we must be aware of. The roller
with the Caster wheels poses a significant threat to stray
animals/small children as there is no in-expensive way for
the wheels to stop immediately when in contact with skin/-
fur. The wheels also squish/squeeze the trash component
as they pull it into the storage area; hence, it presents a

danger to any stray animals/small children. The rotating
fan will not move as fast as the wheels and runs on a DC
motor, hence it will mostly get stuck (if a stray animal runs
into it).

In terms of social factors, our design will not exclude
certain groups of people when active for tasks. The robot
is meant for use for society at large without excluding de-
mographics, although is best purposed for underdeveloped
communities and urban areas. It will also benefit the gov-
ernment as they can exhibit their continuous contribution
to technology and innovation to the residents, as they would
be the ones paying for the robots to go to the streets.
They would also help environmental organizations in re-
ducing waste while minimizing costs for cleaning with our
autonomous garbage cleaning robot. It will also span cul-
tures as it can adapt to different cultural elements with the
addition/removal of features and settings by preferences.
The robot also aligns with the existing sustainability poli-
cies set by governments

In reference to economic factors, in regards to produc-
tion, our product aims to have low enough cost to be use-
ful to state/local governments. Specifically, the product is
meant to last for a long time and be relatively self-sufficient,
with a one time cost per purchase rather than a salary based
cost necessary for humans. However, since each robot can
only cover so much land in a couple hours, the consumers
must buy several. In terms of distributions, none of our
components are involved in a supply chain shortage, so
mass production would not be an issue. It may take some
effort to release the robots into the street however, such
as some initial setup cost to know which area to focus on.
In terms of when these products should be produced, this
product is useful year round but is not meant to run in
inclement weather. Therefore, we anticipate the robot to
have more usage in the summer, and thus believe the sup-
ply of robots should be higher in the summer season.

7 TEST & VALIDATION

To ensure our garbage-cleaning robot meets the use-case
and design requirements, we aim to evaluate the accuracy
and validity of the following two components. Following
these validations, we will test the entire system with three
integration phases to measure its performance levels thor-
oughly.

7.1 Tests for Object Classification

The performance metrics for the object classification are
false positives and false negatives. To do so, we will connect
a camera E-CAM50-CUNX to Jetson Nano Orin and run
machine learning models to see which objects Orin is able
to detect and identify as trash items. First, there will be 15
correct trash components provided. We calculate the accu-
racy rate and false negative rate (model classifying a trash
component as non-trash items). Similarly, we also provide
15 non-trash objects and get false-positives (models clas-
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sifying non-trash components as trash items) to measure
the accuracy rate. We set the number of items to be 15
because 15 is a doable and testable number to reflect the
actual accuracy rate correctly, while 10 was a small number
to be sampled from.

7.2 Tests for Movement

For movement, we evaluate the robot’s ability to effec-
tively collect objects and clean the given area without col-
liding into obstacles through three test cases: no trash com-
ponents, 5 trash components, and 10 trash components.
The robot will be placed in an assigned area (most likely
to be a track) and start cleaning tasks. During the op-
eration, we will test if it successfully avoids obstacles and
record the number of obstacles it avoids. Also, we will keep
track of the robot’s operating time for movement efficiency.

There are two edge cases to be highlighted. First, the
robot will be instructed to spin around 5 to 10 feet 2-3
times and stop if no object is detected. Also, if the robot is
low on battery, it would find a way to return to the starting
point or look for a charging station.

7.3 Tests for Integrations

There are three integration testing phases. In the first
phase, we will test pick-up mechanisms with obstacle avoid-
ance and record the number of trash items the robot col-
lects. In the second phase, we test path planning and cam-
era rotation with object classification and record the num-
ber of objects the robot is able to detect and reach to pick
up the items. In the last phase, we are planning to com-
bine the first and second integration phases and run multi-
ple iterations with them. Just as before, we will record the
time the robot takes to complete the cleaning tasks and the
number of components it has picked up.

Each phase includes the following three tests to validate
the robot’s performance and improve its functionality as we
go through to satisfy requirements for object classification,
trash pick-up, and obstacle avoidance.

For the first test, we will use a 4ft by 10ft area con-
taining 3 to 5 soda cans. Under this test setting, we aim
to record and evaluate if the robot is able to identify soda
cans above 95% of mAP for YOLOv7 and 80% for tiny
YOLOv7 as well as 100% of recall rate as well as pick up
the required amount of soda cans 90% of the time.

Then, our second test expands to an area of 4ft by 14ft
and the mix of crumpled papers with existing soda cans to
test the robot’s performance with varied types of objects.
During the evaluation, we will calculate the number of cans
and papers it collects and see if the robot avoids obstacles
more than 95% of the time.

The last test will include an area of 4ft by 18ft, which
represents the small model of the actual streets, the ad-
dition of plastic water bottles, and the placement of large
obstacles. This reflects a more realistic cluttered environ-
ment with object variations. Just like the previous tests,

we will collect data for object classification, robot collision,
and pickup rates.

8 PROJECT MANAGEMENT

8.1 Schedule

Please refer to Fig 5 for the full schedule.

8.2 Team Member Responsibilities

Our team member Ritu is in charge of training machine
learning models and run inferences on YOLOv7 and tiny
YOLOv7. Also, she plans to complete writing codes for
the overall ML pipeline and testing the model using new
pictures with the camera module.

Ella will be working on building the robot and test-
ing the integrated parts. She is in charge of defining path
finding algorithm and communication between Jetson Nano
Orin and Raspberry, as well as building CAD models for
pick up mechanisms.

Hirani is responsible for writing codes for pick up mech-
anisms and robot movements and using ROS to develop
software for motion control. Also, she oversees creating
connections between hardware and software components
during the system integration.

8.3 Bill of Materials and Budget

Please refer to Table 1 for the comprehensive list of the
materials.

8.4 Risk Mitigation Plans

Our current plan is to use existing datasets as much
as possible to avoid time-consuming processes with custom
datasets. However, there is a risk of low performance as
some of the pre-existing models are low-quality. To miti-
gate this, we aim to evaluate whether it is acceptable to
lower accuracy to prioritize faster detection or to focus
on precision rather than speed by only using the standard
YOLOv7.

Another major risk we could encounter is with regard to
our pick-up mechanism. Currently, we are using a conveyor
belt and a roller to push the trash items in and move them
to the back of the robot. However, this mechanism has
only been implemented under water, not on the ground,
which we are testing. Subsequently, we might run into
unforeseen problems that are hard to debug. Hence, we
came to have a backup pick-up mechanism—a scoop and a
roller—prepared so that once we cannot move forward with
our current design, we can pivot to the backup in a timely
manner.

For navigation, a simple path-finding algorithm will be
used to reduce the overall complexity of the robot. Our
main concern previously was how to move the robot when
it encounters an obstacle on the way to pick up a trash
item. To mitigate this, the algorithm will be kept simple
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as follows: when an obstacle is detected along the move-
ment, the robot pauses and rotates 90 degrees to move on
to a new path. This helps maximize the probabilities of
the robot working as intended by avoiding unexpected lo-
calization errors.

Also, there is a risk of identifying obstacles (humans or
animals) that are smaller than the robot as trash items. We
simply limit obstacles to being taller than the robot so that
we do not accidentally classify them as trash objects and
avoid those under the threshold height of the robot. Under
this controlled testing, we can solely concentrate on classi-
fying trash items vs. non-trash items without interference
with the obstacles.

The final risk we identified is that no one on the team
has experience with ROS. However, this will be mitigated
by learning the ROS framework through online resources
and seeking out help from the student organization Robo-
Club.

9 RELATED WORK

There have been several trash collecting robots that
have been deployed/ prototyped in the past. Although
the in-take mechanisms differed depending on whether the
robot operated on land/ water, we found some similarities
in the trash classification methods. One of the implemen-
tations of the water way cleaning robots, used a camera
mounted on the chassis of the robot and image data to
classify whether the object as garbage or non-garbage[12].
This specific design used ultrasonic sensors to detect the
object near the robot, then used image data to classify.
This makes sense for water-way cleaning robots, as there
are no significant expectations for obstacles. Almost all
objects are either classified as trash or non-trash.

Most of the on-land projects we have seen have not
been deployed. A majority of them have been prototyped/
planned out, but not tested in the real world. They vary
in terms of the intake mechanisms and the classification
mechanisms (mostly used tiny yolo or lidar system). Our
design will be testing a unique combination of water-way
intake mechanism combined with a roller mechanism with
the usage of tiny yolo for object classification.

10 SUMMARY

The Embellisher aims to promote public health and
safety by detecting and collecting various trash items
thrown out on the streets, such as soda cans, water bot-
tles, and crumpled paper. Using object classification, The
Embellisher will be able to differentiate garbage from non-
trash items, pick them up without any human interference,
and avoid obstacles. Through motion control, it will be
able to navigate the given environments without hassle.
Ultimately, the production of the robot with such func-
tionalities will allow effective clean-up tasks and elevate
the lifestyle of the public in the surrounding environments.

Going forward, our team expects to develop the robot’s
capability of garbage collection and refine its performance
through interactive and progressive testing with variations
of trash items. While it may be difficult to integrate the
system and debug unpredictable challenges, we are confi-
dent that our risk mitigation plans will guide us through
to resolve any issues. Overall, we hope The Embellisher
is a promising prototype that raises social welfare by re-
lieving pervasive environmental issues and benefiting the
community as a whole.

Glossary of Acronyms

• CAD - Computer Aided Design

• mAP - Mean Average Precision

• RPi – Raspberry Pi
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