
18-500 Final Project Report: E3 Date: 5/3/2024

1

Abstract— Search and Rescue teams dealing with natural disasters

face many challenges. For example: a lack of communication
infrastructure, understaffing, harsh conditions, and compromised
structural integrity. With modern technological developments, certain
groups have been exploring the integration of sophisticated
autonomous systems with the Search and Rescue process. This project
furthers this exploration by creating an autonomous swarm of hexapod
robots that collaborate to complete search and rescue (SAR) tasks. The
hexapod swarm utilizes LAN communication, YOLOv8 object
detection, VSLAM and a distributed search algorithm to get around the
challenges that human SAR teams face and coordinate their search.

Index Terms—Autonomous Robot, SLAM, YOLO, Isaac ROS,
NVIDIA Jetson Orin Nano, Search and Rescue

I. INTRODUCTION

ur end product is a fully autonomous search and rescue
system with a scalable number of hexapod robots. Each

robot is responsible for mapping its terrain as well as
identifying potential survivors.

The motivation for our solution is to reduce the need for
human intervention in search and rescue as much as possible.
Understaffing is a huge problem in search and rescue missions
as workers are often not paid sufficiently to compensate them
for the risk they undertake. A small rescue force may not be
sufficiently large enough to cover a large search surface with
adequate efficiency. In search and rescue missions every minute
counts and can lead to loss of life. An additional problem is that
these missions often involve workers being in precarious
situations that risk injury or even death. Casualties and injury
from such missions cause the workers and their families to have
psychological stress from the vocation itself. Our product is
scalable so the number of robots could be scaled up or down in
response to the mission requirements and also fault tolerant so
it can work even if some robots fail. Hence human intervention
might only be needed to interface with the robots.

An existing solution that we saw was Inuktun’s small robots
with tank-like treads that were used after 9/11 at the Twin
Towers site and after Hurricane Katrina. These robots were
very useful but a key difference between our solution and these
was that robots were remote-controlled and needed a human to
operate them. In comparison, our solution improves upon it by

having our robots completely autonomous. Another difference
is the establishment of a local network which helps each robot
communicate its information with the other and optimize their
collaborative search effort as much as possible.

II. USE-CASE REQUIREMENTS

We define the following Use-Case-Requirements for this
project:
1) The hexapod swarm shouldn’t need constant signal access to
communicate with each other. This comes from the use case
where our hexapods enter areas to perform search and rescue
tasks without a strong network infrastructure.

2)The hexapod should have an active battery life of at least 1
hour. This is a requirement to ensure that the hexapods can
conduct a thorough search of a house or enclosure.

3) The hexapods should have a high accuracy of detecting a
possible survivor in the frame with a low false negative rate.
This requirement is to ensure that our hexapods can correctly
identify survivors in a search and rescue environment.
Additionally, we want to have our hexapods lean towards more
false positives for survivor detection than false negatives, since
we don’t want to accidentally miss any real survivor.

4) The hexapod swarm should be scalable; it should be able to
seamlessly incorporate additional hexapods to make the swarm
more efficient and it should also be able to adapt to failures of
single hexapods. Our solution would need to be flexible in
swarm size for human SAR teams to be able to effectively
deploy our swarm. In cases where the search location is larger,
the swarm should be able to scale up in numbers to compensate
for the increase in search area. Additionally, the swarm should
be able to detect and account for failures in case hexapods die
in the process of the SAR mission.

Scalable and Fault-Tolerant Autonomous
Hexapod Swarm for Search and Rescue

Missions

Kobe Zhang, Akash Arun, and Casper Wong

Department of Electrical and Computer Engineering, Carnegie Mellon University

O

18-500 Final Project Report: E3 Date: 5/3/2024

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. Annotated image of 1 hexapod robot

Fig. 2. Hardware block diagram

Each hexapod consists of a few essential subsystems that

work together to make our search and rescue possible. First, for
controlling the hexapod we use the off-the-shelf hexapod robot
from FreeNove. This hexapod is controlled by our RPi and
interfaces with a hardware shield

that
moves

Figure 3. Software block diagram of our design

18-500 Final Project Report: E3 Date: 5/3/2024

3

around the hexapod using its 6 servo-powered legs. We
hijacked their existing controls framework and changed it so
that we send commands from our central compute unit (Jetson
Orin Nano) over a LAN using TCP to change our hexapod's
motion. Using this pre-existing hardware gave our team more
time to implement our desired swarm behavior,
communication, object detection, and hexapod localization.

The swarm behavior, inter-hexapod communication, object
detection, and localization were implemented on the Jetson
Orin Nano, which we chose because of its relatively small size
and weight in combination with its computational capacity and
software support. The Orin Nano

will be interfaced with an Intel Realsense D435i stereo vision
camera that also has depth sensing and an IMU (Inertial Mass
Unit).

The Jetson also has an attached Wi-Fi module which allows
it to host a local network for communication with other
hexapods. This local network is one of the cornerstones of the
inter-hexapod communication subsystem. The object detection
subsystem on the Orin Nano runs the YOLOv8 object detection
algorithm to search for survivors, getting stereo images from
the Realsense camera. The Orin Nano utilizes the camera's
depth sensing, infrared cameras, and IMU to do Visual SLAM
which allows it to localize itself and map its surroundings to
remember paths and survivor

locations. With this information, the hexapods coordinate
with fellow hexapods and route their search path based on a
distributed search algorithm to optimize search area coverage
in the swarm behavior subsystem.

IV. DESIGN REQUIREMENTS

For the project’s design requirements, the focus is on 4 main
aspects of our hexapod swarm function that were described in
the use-case requirements: 1) Inter-hexapod communication,
2) Hexapod survivor identification, 3) Swarm scalability, and
4) Hexapod battery life.

1. For inter-hexapod communication, hexapods should

be able to send packets to each other at varying
distances up to 20m with <5% packet loss. The
average global house is 20mx20mx20m hence we
came to a max distance figure of 20m. This should be
achievable as we plan on using 2.4GHz LAN which
has a range of approximately 50 feet indoors.

2. For Hexapod survivor identification, our team
preferred to err on the side of caution and create a
model that results in false positives rather than make
one that neglects potential survivors. As a result, we
want to be strict about having <5% rate of false
negatives. This thought process led us to arrive at a
figure of >80% mAP (mean average precision) for
the detection accuracy of different kinds of human
and non-human objects. 80% also represents a good
balance between detection accuracy as well as the
limitations of our hardware and real-time detection
needs. When we ran experiments with YOLOv8 with
images that had humans clearly in them it still had an
accuracy of around 85-90%. This also influenced the
selection of our figure since we can’t predict if our
accuracy will be worse or better when we train it with
a custom dataset.

3. For swarm scalability, the swarm should have a 1.5x
search completion time speedup with 3 hexapods
compared to a single hexapod. This requirement is so
that the additional cost of having more hexapods is
justified with a corresponding improvement in search
efficiency.

4. For hexapod battery life, the battery duration for a

hexapod should be >1 hour under an active load (i.e.
constant movement, running a Jetson…etc.). The
average search and rescue mission lasts for 31 hours,
in a real-life use case where our solution is used the
hexapod wouldn’t be useful if it wasn’t able to search
for at least an hour before getting substituted with
another hexapod.

18-500 Final Project Report: E3 Date: 5/3/2024

4

V. DESIGN TRADE STUDIES

To get to our current solution, our team examined a lot of
possible approaches to create our hexapod swarm. We first
explored the various options for the hexapod itself. FreeNove
offered a variety of options for hexapod robots with varying
costs and functionalities. The first hexapod we looked at was a
smaller model that was controlled using an Arduino. While the
low cost of this model was desirable, we were concerned about
the ability of the smaller hexapod to carry larger loads including
the weight of the Jetson Orin Nano and various needed
peripherals. Additionally, we were unsure of the ability of the
Arduino to handle communications from the Jetson Orin Nano
while simultaneously running all of the necessary controls for
the hexapod movement. Due to these concerns, we decided to
look at the largest hexapod available that is also controlled
through an RPi. This hexapod, which is our current one, offers
the additional advantage of having a head module that could
swivel 360o, a desirable trait for our object detection tasks.
While this hexapod came in at a much larger price than the
original model, it also came with an ultrasonic sensor, camera
module, and a higher weight capacity. Ultimately, we decided
to move forward with this hexapod model for the benefits of
computational power, head mobility, and weight carry capacity.
The trade-off was an increase in cost per hexapod and an
increase in power consumption.

 Another critical design choice we made was for the main
computational unit of our hexapod. We originally chose the
NVIDIA Jetson Nano due to its low cost and GPU support.
After a few rounds of initial trials with the software that we
wanted to run, it was evident that the JetPack versions that the
NVIDIA Jetson Nano was able to support were not enough for
our project’s needs, specifically for our object detection tasks.
This was because the Jetson Nano could not support JetPack 4.7
and higher so it could not run Python 3.7 and above which was
critical to our object detection subsystem. After using a virtual
machine to get around software dependencies, we were able to
run the object detection algorithm we wanted but the detection
process was too slow (~30 seconds) for our purpose. Thus, we
decided to switch to using a Jetson Orin Nano. The original
Jetson Nano was released in 2019 whereas the Orin Nano came
out in 2023. The difference in computation power in
comparison to their size difference is representative of these last
4 years of hardware innovation. Once again, the tradeoff is an
increase in price ($150 vs $500) and an increase in power
consumption (max 10W vs max 15W, 5V input vs 7-20V
input), for better support, more modern software, and higher
JetPack version support, faster computation (approx. 80x), and
a lot more benefits. We realized that the Orin Nano supports the
usage of Issac-ROS which helps us better utilize the GPUs of
the Nano to perform object detection and SLAM more
efficiently. The Orin Nano is also approximately the same size
as the Jetson Nano, making it feasible to use with our hexapod
without needing a substantial change in the design of our
harness.

Figure 4. Comparison of Jetson Nano and Jetson Orin Nano

For our object detection subsystem, we compared various
versions of the YOLO object detection algorithm for speed,
accuracy, and ease of use. Since we upgraded from the Jetson
Nano to the Jetson Orin Nano, we decided to continue with
YOLOv8 which is one of the newest versions of YOLO that
offers one of the highest accuracy ratings. While we were
considering using YOLO-Nas since it utilizes quantization-
aware training and post-training quantization to reduce the size
of the model and increase performance, we valued the increased
accuracy of YOLOv8 more. This decision was also motivated
by the upgrade of our central computing unit to the Orin Nano
which could run YOLOv8 with fast speeds. Additionally, we
found that Isaac-ROS supported YOLOv8 and allowed for the
hardware acceleration of our object detection through their
NITROS optimization.

Figure 5 Comparison of various YOLO versions and varying sizes for
each version

 More specifically, our project uses YOLOv8s with FP32.
We tested various combinations of reducing size and
increasing the quantization level from FP32 to FP16 to INT8.
After some evaluation, we chose Yolov8s FP32 due to the
consistency of the predictions and the moderately low size of
the model. This model would be pretrained on the COCO
dataset, and we would further train the model with data that
would be more specific for our use case. This would be in the
form of images of human survivors in low-light settings.
 For the inter-hexapod communication subsystem, we chose
to go with a local area network (LAN) with Wi-Fi over nRF
and UWB. This is because upon conducting some deep
research on different forums that discuss the applications of
these protocols in various robotics projects, we discovered a
couple of key challenges that we would have to face if we
used UWB or nRF over Wi-Fi. One challenge stem from our
usage of an operating system (Jetson Linux 36.2) with a
scheduler rather than having a microcontroller that runs bare
metal code. UWB or nRF have very tight timing/latency
requirements that need to be met for it to function properly.
This wouldn’t be an issue in the case of Wi-Fi as the Wi-Fi

18-500 Final Project Report: E3 Date: 5/3/2024

5

card handles this requirement, but UWB Modules expect the
user of the module to deal with the requirement, which the
Linux scheduler would be unable to meet. A workaround
could be to connect our Jetson to an Arduino or another
microcontroller and write a UWB driver that helps us meet our
timing needs. They also have lower communication bandwidth
in comparison to Wi-Fi which might cause us issues down the
road. Wi-Fi modules also have a lot more built-in support with
drivers, etc. in comparison. The big advantage of these
protocols over Wi-Fi, however, is that they consume very little
power. After considering these facts, we decided to choose
Wi-Fi because of how easy it is to work with and create a
LAN. A convenient plus with this decision is that Jetson Orin
Nano’s come with Wi-Fi cards built in which saves us
additional expenditure. We chose to communicate information
between the hexapods using TCP to reduce packet loss. TCP is
something that we’re more familiar with and has been proven
to be very consistent.

 A key design decision in our project is to build our solution
by leveraging ROS (Robot Operating System) which is an
open-source middleware framework. This decision gives a
handful of advantages. For one, ROS is very modular so it's
easy to plug and play different software packages. It has an
extensive network of researchers worldwide who contribute to
its software packages which will further speed up our
development time. Isaac ROS is a recently released version of
ROS2 that contains a lot of packages that allows for the
development of computer vision robotic applications. This
gives us access to pre-existing implementations of various
object detection, SLAM, and control algorithms so we won’t
have to reinvent the wheel. ROS also supports simulations
through tools like Gazebo and RViz so we can test our
integrated system before we deploy it on the hexapod

hardware.
 Lastly, to allow our hexapods to get orientation data, we
originally planned to get a magnetometer but after more
consideration we realized that the amount of servos on our
hexapod would cause the magnetometer to be very
inconsistent and we would not be able to get solid readings.
We got to this conclusion after consulting with friends that
have used a magnetometer before. To get around this, we
decided that we would continue with getting SLAM to work
on our system. In the beginning we considered finding a way
to purchase a LIDAR for SLAM but due to budget constraints
we were not able to. Thus, we chose to go forward with
VSLAM which is Visual Simultaneous Localization and
Mapping. VSLAM would provide orientation data for us by
tracking landmarks in the camera data. The tradeoff here is
that VSLAM is less consistent than normal SLAM with some
kind of lidar since VSLAM relies on the camera being
consistent and can be affected by the camera’s FPS.

VI. SYSTEM IMPLEMENTATION

Isaac ROS
The majority of our software was run using the Jetson Orin
Nano. We developed our software in an Isaac ROS

environment that we set up via a docker container on our
Jetson’s solid state drive.

ROS (Robot Operating System) is an open source robotics
middleware that allows for easier and more effective robotics
development. Nvidia’s Isaac ROS is a recently released
collection of hardware accelerated, high performance, and low
latency ROS2 packages that are made for autonomous robot
perception tasks. Using Isaac ROS, we can leverage the power
of GPU acceleration on NVIDIA platforms like the Jetson
Orin Nano.

Object Detection and Classification

We used an object detection model to locate and track search
and rescue survivors. This predominantly focuses on people,
who may be partially obscured under rubble. Other objects of
interest also include pieces of clothing and domestic animals.
We trained our model such that it commits virtually no type II
errors, so that the Hexapods do not accidentally ignore any
survivors. To avoid these false negatives, we trained our
model on a diverse dataset that includes people from different
ethnicities, genders, and other demographic variables.

Our hexapods run YOLOv8 which is a start of the art deep
learning model designed for real time object detection in
computer vision applications. YOLOv8 is the latest version of
the You Only Looked Once object detection algorithm that was
developed by Joseph Redmon and Ali Farhadi. We looked into
various options for object detection, testing different
algorithms like YOLO-Nas, YOLOv7, and FOMO (Faster
Objects More Objects). We originally wanted to use YOLOv7
for our project, since we were also running our entire
computation on just a Jetson Nano. However, after testing we
found that the performance of the Jetson Nano is inadequate
and upgraded to the Jetson Orin Nano; this allowed us to also
use YOLOv8 for the best accuracy and the best precision.
Specifically, we used YOLOv8s since we decided it would be
a good middle ground between size of model (which would
increase our performance) and accuracy. Isaac ROS also has a
YOLOv8 package, which means we gain the additional
performance benefit of hardware acceleration. Our model was
pretrained on the COCO dataset, and we further trained it for
our use case of only detecting humans in disaster
environments, such as in low light conditions.

With the object detections output, our hexapods are able to
locate humans and follow them based on their location in the
images. When hexapods find a human and get to a sufficiently
close location, they will stop, sound a buzzer, and alert human
search and rescue workers.

Visual Simultaneous Localization and Mapping
Hexapods need to map their surroundings to remember paths
and survivor locations – this is important for Hexapods to
effectively search through a space and convene with one
another. To achieve this, we used the Isaac ROS Visual
SLAM library developed by NVIDIA, which again utilizes

18-500 Final Project Report: E3 Date: 5/3/2024

6

GPU acceleration to provide low-latency results in robotics
applications. Visual Simultaneous Localization and Mapping
refers to the process of determining the position and
orientation of a sensor with respect to its surroundings while
also mapping the environment around that sensor. We chose to
use VSLAM because usual SLAM sensors, such as LIDAR,
are unreasonably expensive for the scope of our project. Using
an IMU and stereo camera, VSLAM combines visual-inertial
odometry, which estimates the position of a robot relative to
its start position from successive camera frames, with SLAM,
which creates a map of key points to determine if an area is
previously seen. Using the Isaac ROS VSLAM library, the
Hexapods can quickly map out obstacles such as walls and
insurmountable rubble, as well as retain the path they took to
get to their current locations.

Our VSLAM node takes in data from our camera feed and
outputs point clouds and pose data that we collect via a
ROSbag. This ROSbag allows human search and rescue
workers to visualize the path that our hexapod robot took and
its surroundings in the process. A demonstration of the
VSLAM running on the Jetson Orin Nano can be found here.

Search Algorithm
We created our own custom search algorithm, which was
loosely adapted from a previously
implemented cooperative search algorithm for distributed
autonomous robots (Cheng, 2004). This simple method almost
fully eliminates communication between robots to reduce
overhead when scaling up. Each robot follows 5 behavioral
rules, prioritized with 1 being the highest.

1. Avoid obstacles and fellow robots ultrasonic sensors.
2. Find targets and alert neighboring robots
3. Response to neighboring robots' messages
4. Follow external commands
5. Wander in the environment.

As we can see in the original algorithm, robots do not need to
know either their position or environmental layout. Although
this prioritizes simplicity, it also leads to a lot of search
redundancies, where multiple robots might search the same
area. To make the search more efficient, we have Hexapods
retain their position using SLAM, keeping track of previously
visited locations and communicating this across bots. In doing
so, the Hexapods can follow a new rule of avoiding previously
searched areas.

The map is kept track of in the form of an unbounded 2-
dimensional grid. The grid initially starts as a 1x1 array.
Whenever the Hexapod moves to a new square, which we
defined to be 2 feet apart, then the grid is updated to reflect the
new Hexapod position and mark the previous position as
visited. If the Hexapod walks beyond the border of the grid,
then we expand the grid to have another column or row.

Figure X. Grid created from Hexapod while being enclosed in
a rectangular box. ‘ඬ’ signifies Hexapod. ‘.’ signifies visited
square. ‘ ’ signifies an empty square. ‘*’ signifies blocked
square.

General Algorithm – State Diagram

Figure X. state diagram for hexapod behavior.

Upon start-up, the Jetson Nano Orin will run the algorithm
shown in Figure X, beginning in the search state.

In the search state, Hexapods will wander around and actively
run object detection to search for survivors as well as VSLAM
to map out the environment and their path. Upon finding an
object of interest with YOLOv8, the robot will enter the
investigate state, which involves walking within a foot of the
object of interest. Finally, the Hexapod will buzz to notify
nearby rescue workers to retrieve the object of interest, before
resetting back into search state again.

VII. TEST, VERIFICATION AND VALIDATION

Building upon the design decisions outlined in the previous
section, a crucial aspect of ensuring the effectiveness of our
hexapod swarm solution lies in testing, verification, and
validation. This stage involves a series of controlled and real-
world evaluations to assess the functionality, performance, and
suitability of the developed system. As we transitioned from
the design phase you can see a contrast between our initially
planned tests and the actual tests we ended up doing because
of pivots in our implementation
We have 4 main categories of design specifications:
Communication, Identification, Scalability, and Battery Life.

A. Tests for Communication

18-500 Final Project Report: E3 Date: 5/3/2024

7

We tested communication by sending packets of around 3200
bytes from different distances ranging from 0.5-20m. The
original purpose of this test was to profile our robot
communication’s packet loss and the 20m mimics the average
global households dimension to mimic the real-world use case.
We compared the percentage packet loss at each of these
distances and wanted to ensure that our mean packet loss was
less than 5%. Because we chose to use a LAN and TCP to
send our messages our packet loss after conducting our tests
was essentially 0 as seen in the below figure. Since we were
previously experimenting with other communication protocols
this test could have garnered different results if we used UWB,
nRF, etc. One of the main reasons we chose LAN was because
it helped us get our desired packet loss percentage without
having to meet the strict timing requirements that using UWB
entails. The test results fulfill our first use case requirement
which requires that the hexapods shouldn’t be dependent on a
consistent internet connection to communicate with the
outside world. The packet loss result is a testament to the
reliability of our communication system.

B. Tests for Identification

To test our identification we created a testing dataset
consisting of images of different nonhuman and human
objects and also had 15 of our friends as test humans to see
their confidence scores as well as object classification
accuracy when 20 meters away from our camera. We initially
wanted to test various model frameworks such as many
versions of YOLO, FOMO, detect-net, etc. However, as we
worked on these object detectors we found out that they
weren’t all made to work on our hardware well. For example,
YOLOv7 can only output at an average rate of 7 FPS
meanwhile since YOLOv8 implementations can be hardware
accelerated leveraging Nvidia’s NITROS acceleration we can
get 30 FPS from it.
We required that our object detection model has an Average
Confidence of greater than 70% and a Mean Accuracy of
greater than 90%. Our model hits this requirement because our
average confidence is 83.1% and our mean accuracy is
98.2%.

Architecture Average FPS

YOLOv7 ~7 FPS

Isaac ROS YOLOv8 ~30 FPS

Test Requirements Results

Avg Confidence at 20m >70% 83.1%

Mean Accuracy at 20m >90% 98.2%

C. Tests for Scalability

For our scalability tests, we ran our search algorithm in a
sample test environment that was 10 feet by 16 feet and had a
target human randomly positioned in the space our test is set
up to see how long it takes to find the target and see if it
speeds up as we increase the number of robots.
We initially tested this with a simulated test of our robots and
observed a roughly linear speedup of up to 5 robots. The goal
that we set was a 1.5 times speedup with an additional robot
which we achieved. We also tested this with our actual robots
and also observed this same 1.5 times speedup.

18-500 Final Project Report: E3 Date: 5/3/2024

8

C. Tests for Battery

We ran our hexapods under maximum stress (max speed,
SLAM, and Object Detection running) and evaluated how
long it takes for the hexapods to be unable to function from a
full charge. We have 18 MG995 servo motors. From the
manufacturer datasheet, each servo draws 10mA when idling
and 1200mA when under max load. Although the servo is not
running at max load given that the Hexapod is relatively light,
we still assumed stall current to obtain a conservative estimate
for our battery requirement. Since only half the legs move at a
time, and the robot will be stopping frequently during path
planning, we estimate that the servos have an active duty of
40%. From this data, we calculated that the servos would draw
5.674A from a 7.4V source.

Most 18650 batteries are 3.7V and have a capacity of around
3Ah, such as the Samsung 30Q 18650 cells. To meet our 1-
hour battery life requirement, we decided to power the servos
using 4 Samsung cells, with 2 wired in series and in parallel.
This provides us with a 7.4V source and a capacity of 6Ah,
which is enough to account for our worst-case power demand.

We did similar calculations for powering the Raspberry Pi and
Jetson Orin Nano, and we found that the 10Ah battery packs
we provide is able to support the embedded computers for 6
hours..

Number of Servos 18

Voltage (V) 4.8

Idle Current (A) 0.01

% Idling 60%

Stall Current (A) 1.2

% Stall 40%

Total Power (W) 41.990

Total Power (A at 7.4V) 5.674

Project Management

A. Schedule

As seen from the schedule above, we planned to front load
most of our project to be done before Spring break. This
entails the ordering and assembly of the Hexapods, as well as
setting up the Jetsons with object detection models and ROS 2.
After Spring break, we will set up VSLAM and the search
algorithm, then begin to test and integrate all the various
components of our project to ensure that it functions as
expected.

However, as the semester continued, we quickly realized
that this schedule was way too ambitious. Thankfully we had
some built-in slack time to account for the many setbacks we
hit along the way. For example, one of the setbacks was when
our SD card with all of our code got corrupted in the middle of
the semester, this was due to us running all of our docker code
on the SD card and not purchasing a SSD for Jetson. Because
of this we lost out on a lot of progress and had to redo our
entire setup, this time with a SSD. On the bright side, this did
allow us to learn a lot more about docker containers and set us
up for more success down the road since we now understood
more about how the environment was built and what pitfalls to
be wary of.

A lot of other setbacks were related to the software
integration of VSLAM and YOLOv8. This was mainly caused
by the camera not being able to support the amount of data
that it was required to collect to support both of these heavy
processes.

B. Team Member Responsibilities

In our team, Casper was mainly in charge of the hardware
and hexapod setup. Casper also developed and simulated the
search algorithm that we later implemented in our robots.
Casper did a lot of the 3D printing design aspect of the project.
Casper and Akash worked on optimizing the battery usage.

Kobe was mainly in charge of the Isaac ROS pipeline and
getting VSLAM and YOLOv8 to run correctly with eachother.
He and Akash went through a lot of research for Isaac ROS,
YOLOv8 and other versions of YOLO object detection, and
VSLAM and how that compares with normal slam. They were
also mainly in charge of the creation of the ISAAC ROS
environment and setting up the docker containers…etc. and
using them. Akash also implemented the communication node
that hexapods used to communicate with each other. A lot of
the other engineering responsibilities were shared among all
team members and most of the time paired
programming/engineering was the preferred method.

18-500 Final Project Report: E3 Date: 5/3/2024

9

Figure 1. Schedule of work

C. Bill of Materials and Budget

The majority of the items that we purchased were used in our
project, however there was a big change relating to the camera
that we were going to use. More specifically, we no longer
wanted to use the eYs3D camera since we wanted to get depth
data for our obstacle avoidance and VSLAM processes.
Because of this, we pivoted to using an Intel Realsense D435i
Depth Camera. This allowed us to run YOLOv8 easier too
since there were more supporting packages for the Intel
Realsense.

Part Supplier
Unit
Price Quantity

Total
Price

FreeNove
Big
Hexapod

Amazon $169.95 2 $339.90

FreeNove
Big
Hexapod

Marios
Savvides $0.00 1 $0.00

Raspberry
Pi 3 Model
B

ECE
Inventory $0.00 3 $0.00

Jetson
Orin Nano

ECE
Inventory $0.00 3 $0.00

18650
Batteries
+ Charger Amazon $32.99 3 $98.97

64GB
Class10
SD Card
(2 pack) Amazon $14.99 3 $44.97

eYs3D
Stereo
Camera -
EX8036

ECE
Inventory $0 3 $0

Intel
Realsense
D435i

ECE
Inventory $0 1 $0

 Total $483.84

D. AWS Usage [if credits requested/used]

None Used

E. Risk Management

Some of the main risks we faced were related to us not
being able to complete the integration of our full system in
time. Fortunately, we were able to finish but our main risk
management strategy was having alternatives that we knew
worked that we could descale to if our reach goals were not
possible. An example of this is when our VSLAM vo_pose
was not being consistent due to the lack of visual tracking
across a low fps camera feed, we had the option to pivot to
hardcoded turning. This meant that hexapods would have a
hardcoded time duration that they would turn in order to
turn a full 90 degrees instead of just checking the vo_pose
data to figure out their orientation.

VIII. ETHICAL ISSUES

Some ethical considerations for our project include the
following:

18-500 Final Project Report: E3 Date: 5/3/2024

10

1. Privacy Concerns – since we our hexapods use
computer vision to identify humans, they are also
capturing a lot of data of these humans during the
process of search and rescue. We need to ensure that
we build in privacy into future design iterations of
our project to protect the privacy of the survivors that
we rescue.

2. Fairness – a big consideration is that computer vision
algorithms could be biased which could lead to
hexapods treating people of different demographic
groups differently. To prevent this we had our model
pretrained on the COCO dataset which has a large
amount of data of people from all demographics. In
addition, we tested our model on our friends of
different races, genders…etc. and found that our
model was consistently recognizing all of them
correctly.

3. Lastly, all autonomous robots will always have the
ethical consideration of robot autonomy. Depending
on the degree of autonomy we grant the robot, there
can be a lot of ethical questions about who is liable or
responsible if something happens that could harm a
human’s life. To address this, we made our hexapods
not have any kind of method to directly interact with
a human. All they do is search and alert the human
search and rescue workers about the location of a
potential human.

IX. RELATED WORK

 RoboBees - autonomous flying robots with bee-like
behavior developed at Harvard

 Swarmanoid - heterogeneous swarm of robots that
work together to perform tasks like exploration and
mapping

 SAFFiR - The Shipboard Autonomous Firefighting
Robot - developed by US Navy, focusing on creating
autonomous robots to assist firefighting on ships

 Swarm-SLAM - Sparse Decentralized Collaborative
SLAM Framework for Multi-Robot Systems
developed by MISTLab

 Inuktun - Rescue robots used in 9/11 and Hurricane
Rescue Operations with tank-like treads.

X. SUMMARY

Our system was able to meet most of the design
specifications. The limit of the system comes from the
camera not being able to process a large amount of camera
data in time to serve both the VSLAM and YOLO
processes. Some of our servos were very inconsistent and
would break quickly. Additionally, cooling was an issues
since the Jetson Orin Nano could overheat at certain times
and die.
 To improve our system’s performance, we could have
used LIDAR sensors instead of only relying on VSLAM.
This would give us a really nice occupancy grid as well as
rid us of a dependency on the visual frames for SLAM data.
That would make our pose estimation a lot more consistent
and would also reduce the load on the camera which was

our main bottleneck. LIDAR would also help us better
combat robot drift.
 A stronger computer system would also allow us to avoid
overheating, this could come in the form of a Jetson Xavier
TX.

A. Lessons Learned

Don’t be too ambitious with project scope, making
something very polished is just as cool. Leave more time for
integration and don’t overestimate your abilities.

GLOSSARY OF ACRONYMS

SAR – Search and Rescue
SLAM –Simultaneous Localization and Mapping
RPi – Raspberry Pi
YOLO – You only look once
FOMO – Faster objects more objects
ROS - Robot operating system

REFERENCES
1. "The 5 Common Challenges Facing Any Search and Rescue

Team." Rigging Lab Academy, rigginglabacademy.com/the-5-
common-challenges-facing-any-search-and-rescue-team/.
Accessed 3 May 2024.

2. "Average Home Sizes." Thunder Said Energy,
thundersaidenergy.com/downloads/average-home-sizes/. Accessed
3 May 2024.

3. "Versatrax Inspection Crawlers." Eddyfi,
www.eddyfi.com/en/product/versatrax-inspection-crawlers.
Accessed 3 May 2024.

4. "Take AI Learning to the Edge with Jetson." NVIDIA Developer
Blog, developer.nvidia.com/blog/take-ai-learning-to-the-edge-
with-jetson. Accessed 3 May 2024.

5. "Isaac ROS YOLOv8." NVIDIA Isaac ROS, nvidia-isaac-
ros.github.io/repositories_and_packages/isaac_ros_object_detectio
n/isaac_ros_yolov8/index.html. Accessed 3 May 2024.

6. "Isaac ROS Visual SLAM." GitHub - NVIDIA ISAAC ROS,
github.com/NVIDIA-ISAAC-ROS/isaac_ros_visual_slam.
Accessed 3 May 2024.

7. "A Brief Overview of Search and Rescue Robotics." Springer
Link, link.springer.com/chapter/10.1007/978-3-642-21434-9_1.
Accessed 3 May 2024.

18-500 Final Project Report: E3 Date: 5/3/2024

11

