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Abstract— Search and Rescue teams dealing with natural disasters 

face many challenges. For example: a lack of communication 
infrastructure, understaffing, harsh conditions, and compromised 
structural integrity. With modern technological developments, certain 
groups have been exploring the integration of sophisticated 
autonomous systems with the Search and Rescue process. This project 
furthers this exploration by creating an autonomous swarm of hexapod 
robots that collaborate to complete search and rescue (SAR) tasks. The 
hexapod swarm utilizes LAN communication, YOLOv8 object 
detection, VSLAM and a distributed search algorithm to get around the 
challenges that human SAR teams face and coordinate their search. 
 

Index Terms—Autonomous Robot, SLAM, YOLO, Isaac ROS, 
NVIDIA Jetson Orin Nano, Search and Rescue 
 

I. INTRODUCTION 

ur end product is a fully autonomous search and rescue 
system with a scalable number of hexapod robots. Each 

robot is responsible for mapping its terrain as well as 
identifying potential survivors.  

The motivation for our solution is to reduce the need for 
human intervention in search and rescue as much as possible. 
Understaffing is a huge problem in search and rescue missions 
as workers are often not paid sufficiently to compensate them 
for the risk they undertake. A small rescue force may not be 
sufficiently large enough to cover a large search surface with 
adequate efficiency. In search and rescue missions every minute 
counts and can lead to loss of life. An additional problem is that 
these missions often involve workers being in precarious 
situations that risk injury or even death. Casualties and injury 
from such missions cause the workers and their families to have 
psychological stress from the vocation itself. Our product is 
scalable so the number of robots could be scaled up or down in 
response to the mission requirements and also fault tolerant so 
it can work even if some robots fail. Hence human intervention 
might only be needed to interface with the robots. 

An existing solution that we saw was Inuktun’s small robots 
with tank-like treads that were used after 9/11 at the Twin 
Towers site and after Hurricane Katrina. These robots were 
very useful but a key difference between our solution and these 
was that robots were remote-controlled and needed a human to 
operate them. In comparison, our solution improves upon it by 

having our robots completely autonomous. Another difference 
is the establishment of a local network which helps each robot  
communicate its information with the other and optimize their 
collaborative search effort as much as possible.  

II. USE-CASE REQUIREMENTS 

We define the following Use-Case-Requirements for this 
project: 
1) The hexapod swarm shouldn’t need constant signal access to 
communicate with each other. This comes from the use case 
where our hexapods enter areas to perform search and rescue 
tasks without a strong network infrastructure.  
 
2)The hexapod should have an active battery life of at least 1 
hour. This is a requirement to ensure that the hexapods can 
conduct a thorough search of a house or enclosure.  
 
3) The hexapods should have a high accuracy of detecting a 
possible survivor in the frame with a low false negative rate. 
This requirement is to ensure that our hexapods can correctly 
identify survivors in a search and rescue environment. 
Additionally, we want to have our hexapods lean towards more 
false positives for survivor detection than false negatives, since 
we don’t want to accidentally miss any real survivor.  
 
4) The hexapod swarm should be scalable; it should be able to 
seamlessly incorporate additional hexapods to make the swarm 
more efficient and it should also be able to adapt to failures of 
single hexapods. Our solution would need to be flexible in 
swarm size for human SAR teams to be able to effectively 
deploy our swarm. In cases where the search location is larger, 
the swarm should be able to scale up in numbers to compensate 
for the increase in search area. Additionally, the swarm should 
be able to detect and account for failures in case hexapods die 
in the process of the SAR mission. 
 
 
 
 
 
 
 
 
 

Scalable and Fault-Tolerant Autonomous 
Hexapod Swarm for Search and Rescue 

Missions    

Kobe Zhang, Akash Arun, and Casper Wong 

Department of Electrical and Computer Engineering, Carnegie Mellon University 

O



18-500 Final Project Report: E3   Date: 5/3/2024 
 

2

 
 
 
 
 
 
 
 
 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION          

        
Fig. 1. Annotated image of 1 hexapod robot 

 

Fig. 2. Hardware block diagram  

 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Each hexapod consists of a few essential subsystems that 

work together to make our search and rescue possible. First, for 
controlling the hexapod we use the off-the-shelf hexapod robot 
from   FreeNove.  This hexapod is controlled by our RPi and 
interfaces with a hardware shield 

that 
moves 

Figure 3. Software block diagram of our design  
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around the hexapod using its 6 servo-powered legs. We 
hijacked their existing controls framework and changed it so 
that we send commands from our central compute unit (Jetson 
Orin Nano) over a LAN using TCP to change our hexapod's 
motion. Using this pre-existing hardware gave our team more 
time to implement our desired swarm behavior, 
communication, object detection, and hexapod localization. 

The swarm behavior, inter-hexapod communication, object 
detection, and localization were implemented on the Jetson 
Orin Nano, which we chose because of its relatively small size 
and weight in combination with its computational capacity and 
software support. The Orin Nano 

will be interfaced with an Intel Realsense D435i stereo vision 
camera that also has depth sensing and an IMU (Inertial Mass 
Unit). 

The Jetson also has an attached Wi-Fi module which allows 
it to host a local network for communication with other 
hexapods. This local network is one of the cornerstones of the 
inter-hexapod communication subsystem. The object detection 
subsystem on the Orin Nano runs the YOLOv8 object detection 
algorithm to search for survivors, getting stereo images from 
the Realsense camera. The Orin Nano utilizes the camera's 
depth sensing, infrared cameras, and IMU to do Visual SLAM 
which allows it to localize itself and map its surroundings to 
remember paths and survivor 

locations. With this information, the hexapods coordinate 
with fellow hexapods and route their search path based on a 
distributed search algorithm to optimize search area coverage 
in the swarm behavior subsystem. 

 

IV. DESIGN REQUIREMENTS 

For the project’s design requirements, the focus is on 4 main 
aspects of our hexapod swarm function that were described in 
the use-case requirements: 1) Inter-hexapod communication, 
2) Hexapod survivor identification, 3) Swarm scalability, and 
4) Hexapod battery life. 
 

 
1. For inter-hexapod communication, hexapods should 

be able to send packets to each other at varying 
distances up to 20m with <5% packet loss. The 
average global house is 20mx20mx20m hence we 
came to a max distance figure of 20m. This should be 
achievable as we plan on using 2.4GHz LAN which 
has a range of approximately 50 feet indoors. 

2. For Hexapod survivor identification, our team 
preferred to err on the side of caution and create a 
model that results in false positives rather than make 
one that neglects potential survivors. As a result, we 
want to be strict about having <5% rate of false 
negatives. This thought process led us to arrive at a 
figure of >80% mAP (mean average precision) for 
the detection accuracy of different kinds of human 
and non-human objects. 80% also represents a good 
balance between detection accuracy as well as the 
limitations of our hardware and real-time detection 
needs. When we ran experiments with YOLOv8 with 
images that had humans clearly in them it still had an 
accuracy of around 85-90%. This also influenced the 
selection of our figure since we can’t predict if our 
accuracy will be worse or better when we train it with 
a custom dataset.  

3. For swarm scalability, the swarm should have a 1.5x 
search completion time speedup with 3 hexapods 
compared to a single hexapod. This requirement is so 
that the additional cost of having more hexapods is 
justified with a corresponding improvement in search 
efficiency. 

4. For hexapod battery life, the battery duration for a 

hexapod should be >1 hour under an active load (i.e. 
constant movement, running a Jetson…etc.). The 
average search and rescue mission lasts for 31 hours, 
in a real-life use case where our solution is used the 
hexapod wouldn’t be useful if it wasn’t able to search 
for at least an hour before getting substituted with 
another hexapod. 
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V. DESIGN TRADE STUDIES 

To get to our current solution, our team examined a lot of 
possible approaches to create our hexapod swarm. We first 
explored the various options for the hexapod itself. FreeNove 
offered a variety of options for hexapod robots with varying 
costs and functionalities. The first hexapod we looked at was a 
smaller model that was controlled using an Arduino. While the 
low cost of this model was desirable, we were concerned about 
the ability of the smaller hexapod to carry larger loads including 
the weight of the Jetson Orin Nano and various needed 
peripherals. Additionally, we were unsure of the ability of the 
Arduino to handle communications from the Jetson Orin Nano 
while simultaneously running all of the necessary controls for 
the hexapod movement. Due to these concerns, we decided to 
look at the largest hexapod available that is also controlled 
through an RPi. This hexapod, which is our current one, offers 
the additional advantage of having a head module that could 
swivel 360o, a desirable trait for our object detection tasks. 
While this hexapod came in at a much larger price than the 
original model, it also came with an ultrasonic sensor, camera 
module, and a higher weight capacity. Ultimately, we decided 
to move forward with this hexapod model for the benefits of 
computational power, head mobility, and weight carry capacity. 
The trade-off was an increase in cost per hexapod and an 
increase in power consumption.  
 

 Another critical design choice we made was for the main 
computational unit of our hexapod. We originally chose the 
NVIDIA Jetson Nano due to its low cost and GPU support. 
After a few rounds of initial trials with the software that we 
wanted to run, it was evident that the JetPack versions that the 
NVIDIA Jetson Nano was able to support were not enough for 
our project’s needs, specifically for our object detection tasks. 
This was because the Jetson Nano could not support JetPack 4.7 
and higher so it could not run Python 3.7 and above which was 
critical to our object detection subsystem. After using a virtual 
machine to get around software dependencies, we were able to 
run the object detection algorithm we wanted but the detection 
process was too slow (~30 seconds) for our purpose. Thus, we 
decided to switch to using a Jetson Orin Nano. The original 
Jetson Nano was released in 2019 whereas the Orin Nano came 
out in 2023. The difference in computation power in 
comparison to their size difference is representative of these last 
4 years of hardware innovation. Once again, the tradeoff is an 
increase in price ($150 vs $500) and an increase in power 
consumption (max 10W vs max 15W, 5V input vs 7-20V 
input), for better support, more modern software, and higher 
JetPack version support, faster computation (approx. 80x), and 
a lot more benefits. We realized that the Orin Nano supports the 
usage of Issac-ROS which helps us better utilize the GPUs of 
the Nano to perform object detection and SLAM more 
efficiently. The Orin Nano is also approximately the same size 
as the Jetson Nano, making it feasible to use with our hexapod 
without needing a substantial change in the design of our 
harness. 

 
Figure 4. Comparison of Jetson Nano and Jetson Orin Nano 

For our object detection subsystem, we compared various 
versions of the YOLO object detection algorithm for speed, 
accuracy, and ease of use. Since we upgraded from the Jetson 
Nano to the Jetson Orin Nano, we decided to continue with 
YOLOv8 which is one of the newest versions of YOLO that 
offers one of the highest accuracy ratings. While we were 
considering using YOLO-Nas since it utilizes quantization-
aware training and post-training quantization to reduce the size 
of the model and increase performance, we valued the increased 
accuracy of YOLOv8 more. This decision was also motivated 
by the upgrade of our central computing unit to the Orin Nano 
which could run YOLOv8 with fast speeds. Additionally, we 
found that Isaac-ROS supported YOLOv8 and allowed for the 
hardware acceleration of our object detection through their 
NITROS optimization. 

 
Figure 5 Comparison of various YOLO versions and varying sizes for 
each version 

 More specifically, our project uses YOLOv8s with FP32. 
We tested various combinations of reducing size and 
increasing the quantization level from FP32 to FP16 to INT8. 
After some evaluation, we chose Yolov8s FP32 due to the 
consistency of the predictions and the moderately low size of 
the model. This model would be pretrained on the COCO 
dataset, and we would further train the model with data that 
would be more specific for our use case. This would be in the 
form of images of human survivors in low-light settings.  
 For the inter-hexapod communication subsystem, we chose 
to go with a local area network (LAN) with Wi-Fi over nRF 
and UWB. This is because upon conducting some deep 
research on different forums that discuss the applications of 
these protocols in various robotics projects, we discovered a 
couple of key challenges that we would have to face if we 
used UWB or nRF over Wi-Fi. One challenge stem from our 
usage of an operating system (Jetson Linux 36.2) with a 
scheduler rather than having a microcontroller that runs bare 
metal code. UWB or nRF have very tight timing/latency 
requirements that need to be met for it to function properly. 
This wouldn’t be an issue in the case of Wi-Fi as the Wi-Fi 
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card handles this requirement, but UWB Modules expect the 
user of the module to deal with the requirement, which the 
Linux scheduler would be unable to meet. A workaround 
could be to connect our Jetson to an Arduino or another 
microcontroller and write a UWB driver that helps us meet our 
timing needs. They also have lower communication bandwidth 
in comparison to Wi-Fi which might cause us issues down the 
road. Wi-Fi modules also have a lot more built-in support with 
drivers, etc. in comparison. The big advantage of these 
protocols over Wi-Fi, however, is that they consume very little 
power. After considering these facts, we decided to choose 
Wi-Fi because of how easy it is to work with and create a 
LAN. A convenient plus with this decision is that Jetson Orin 
Nano’s come with Wi-Fi cards built in which saves us 
additional expenditure. We chose to communicate information 
between the hexapods using TCP to reduce packet loss. TCP is 
something that we’re more familiar with and has been proven 
to be very consistent. 
 
 A key design decision in our project is to build our solution 
by leveraging ROS (Robot Operating System) which is an 
open-source middleware framework. This decision gives a 
handful of advantages. For one, ROS is very modular so it's 
easy to plug and play different software packages. It has an 
extensive network of researchers worldwide who contribute to 
its software packages which will further speed up our 
development time. Isaac ROS is a recently released version of 
ROS2 that contains a lot of packages that allows for the 
development of computer vision robotic applications. This 
gives us access to pre-existing implementations of various 
object detection, SLAM, and control algorithms so we won’t 
have to reinvent the wheel. ROS also supports simulations 
through tools like Gazebo and RViz so we can test our 
integrated system before we deploy it on the hexapod 

hardware.  
 Lastly, to allow our hexapods to get orientation data, we 
originally planned to get a magnetometer but after more 
consideration we realized that the amount of servos on our 
hexapod would cause the magnetometer to be very 
inconsistent and we would not be able to get solid readings. 
We got to this conclusion after consulting with friends that 
have used a magnetometer before. To get around this, we 
decided that we would continue with getting SLAM to work 
on our system. In the beginning we considered finding a way 
to purchase a LIDAR for SLAM but due to budget constraints 
we were not able to. Thus, we chose to go forward with 
VSLAM which is Visual Simultaneous Localization and 
Mapping. VSLAM would provide orientation data for us by 
tracking landmarks in the camera data. The tradeoff here is 
that VSLAM is less consistent than normal SLAM with some 
kind of lidar since VSLAM relies on the camera being 
consistent and can be affected by the camera’s FPS. 
 

VI. SYSTEM IMPLEMENTATION 

Isaac ROS 
The majority of our software was run using the Jetson Orin 
Nano. We developed our software in an Isaac ROS 

environment that we set up via a docker container on our 
Jetson’s solid state drive.  
 
ROS (Robot Operating System) is an open source robotics 
middleware that allows for easier and more effective robotics 
development. Nvidia’s Isaac ROS is a recently released 
collection of hardware accelerated, high performance, and low 
latency ROS2 packages that are made for autonomous robot 
perception tasks. Using Isaac ROS, we can leverage the power 
of GPU acceleration on NVIDIA platforms like the Jetson 
Orin Nano. 
 

Object Detection and Classification 
 
We used an object detection model to locate and track search 
and rescue survivors. This predominantly focuses on people, 
who may be partially obscured under rubble. Other objects of 
interest also include pieces of clothing and domestic animals. 
We trained our model such that it commits virtually no type II 
errors, so that the Hexapods do not accidentally ignore any 
survivors. To avoid these false negatives,  we trained our 
model on a diverse dataset that includes people from different 
ethnicities, genders, and other demographic variables.   
  
Our hexapods run YOLOv8 which is a start of the art deep 
learning model designed for real time object detection in 
computer vision applications. YOLOv8 is the latest version of 
the You Only Looked Once object detection algorithm that was 
developed by Joseph Redmon and Ali Farhadi. We looked into 
various options for object detection, testing different 
algorithms like YOLO-Nas, YOLOv7, and FOMO (Faster 
Objects More Objects). We originally wanted to use YOLOv7 
for our project, since we were also running our entire 
computation on just a Jetson Nano. However, after testing we 
found that the performance of the Jetson Nano is inadequate 
and upgraded to the Jetson Orin Nano; this allowed us to also 
use YOLOv8 for the best accuracy and the best precision. 
Specifically, we used YOLOv8s since we decided it would be 
a good middle ground between size of model (which would 
increase our performance) and accuracy. Isaac ROS also has a 
YOLOv8 package, which means we gain the additional 
performance benefit of hardware acceleration. Our model was 
pretrained on the COCO dataset, and we further trained it for 
our use case of only detecting humans in disaster 
environments, such as in low light conditions.  
 
With the object detections output, our hexapods are able to 
locate humans and follow them based on their location in the 
images. When hexapods find a human and get to a sufficiently 
close location, they will stop, sound a buzzer, and alert human 
search and rescue workers.  
 
  
Visual Simultaneous Localization and Mapping  
Hexapods need to map their surroundings to remember paths 
and survivor locations – this is important for Hexapods to 
effectively search through a space and convene with one 
another. To achieve this, we used the Isaac ROS Visual 
SLAM library developed by NVIDIA, which again utilizes 
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GPU acceleration to provide low-latency results in robotics 
applications. Visual Simultaneous Localization and Mapping 
refers to the process of determining the position and 
orientation of a sensor with respect to its surroundings while 
also mapping the environment around that sensor. We chose to 
use VSLAM because usual SLAM sensors, such as LIDAR, 
are unreasonably expensive for the scope of our project. Using 
an IMU and stereo camera, VSLAM combines visual-inertial 
odometry, which estimates the position of a robot relative to 
its start position from successive camera frames, with SLAM, 
which creates a map of key points to determine if an area is 
previously seen. Using the Isaac ROS VSLAM library, the 
Hexapods can quickly map out obstacles such as walls and 
insurmountable rubble, as well as retain the path they took to 
get to their current locations.  
 
Our VSLAM node takes in data from our camera feed and 
outputs point clouds and pose data that we collect via a 
ROSbag. This ROSbag allows human search and rescue 
workers to visualize the path that our hexapod robot took and 
its surroundings in the process. A demonstration of the 
VSLAM running on the Jetson Orin Nano can be found here. 
 

Search Algorithm  
We created our own custom search algorithm, which was 
loosely adapted from a previously  
implemented cooperative search algorithm for distributed 
autonomous robots (Cheng, 2004). This simple method almost 
fully eliminates communication between robots to reduce 
overhead when scaling up. Each robot follows 5 behavioral 
rules, prioritized with 1 being the highest.  
 
 

1. Avoid obstacles and fellow robots ultrasonic sensors.  
2. Find targets and alert neighboring robots 
3. Response to neighboring robots' messages   
4. Follow external commands 
5. Wander in the environment.  

 
As we can see in the original algorithm, robots do not need to 
know either their position or environmental layout. Although 
this prioritizes simplicity, it also leads to a lot of search 
redundancies, where multiple robots might search the same 
area. To make the search more efficient, we have Hexapods 
retain their position using SLAM, keeping track of previously 
visited locations and communicating this across bots. In doing 
so, the Hexapods can follow a new rule of avoiding previously 
searched areas.  
 
The map is kept track of in the form of an unbounded 2-
dimensional grid. The grid initially starts as a 1x1 array. 
Whenever the Hexapod moves to a new square, which we 
defined to be 2 feet apart, then the grid is updated to reflect the 
new Hexapod position and mark the previous position as 
visited. If the Hexapod walks beyond the border of the grid, 
then we expand the grid to have another column or row.  
 

 
Figure X. Grid created from Hexapod while being enclosed in 
a rectangular box. ‘ඬ’ signifies Hexapod. ‘.’ signifies visited 
square. ‘ ’ signifies an empty square. ‘*’ signifies blocked 
square. 
 

General Algorithm – State Diagram  

 
Figure X. state diagram for hexapod behavior.  
 
Upon start-up, the Jetson Nano Orin will run the algorithm 
shown in Figure X, beginning in the search state.  
  
In the search state, Hexapods will wander around and actively 
run object detection to search for survivors as well as VSLAM 
to map out the environment and their path. Upon finding an 
object of interest with YOLOv8, the robot will enter the 
investigate state, which involves walking within a foot of the 
object of interest. Finally, the Hexapod will buzz to notify 
nearby rescue workers to retrieve the object of interest, before 
resetting back into search state again.  

 

VII. TEST, VERIFICATION AND VALIDATION 

Building upon the design decisions outlined in the previous 
section, a crucial aspect of ensuring the effectiveness of our 
hexapod swarm solution lies in testing, verification, and 
validation. This stage involves a series of controlled and real-
world evaluations to assess the functionality, performance, and 
suitability of the developed system. As we transitioned from 
the design phase you can see a contrast between our initially 
planned tests and the actual tests we ended up doing because 
of pivots in our implementation 
We have 4 main categories of design specifications: 
Communication, Identification, Scalability, and Battery Life. 
 
 
A. Tests for Communication 
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We tested communication by sending packets of around 3200 
bytes from different distances ranging from 0.5-20m. The 
original purpose of this test was to profile our robot 
communication’s packet loss and the 20m mimics the average 
global households dimension to mimic the real-world use case. 
We compared the percentage packet loss at each of these 
distances and wanted to ensure that our mean packet loss was 
less than 5%. Because we chose to use a LAN and TCP to 
send our messages our packet loss after conducting our tests 
was essentially 0 as seen in the below figure. Since we were 
previously experimenting with other communication protocols 
this test could have garnered different results if we used UWB, 
nRF, etc. One of the main reasons we chose LAN was because 
it helped us get our desired packet loss percentage without 
having to meet the strict timing requirements that using UWB 
entails. The test results fulfill our first use case requirement 
which requires that the hexapods shouldn’t be dependent on a 
consistent internet connection to communicate with the 
outside world. The packet loss result is a testament to the 
reliability of our communication system. 
 

 
 
B. Tests for Identification 
 
To test our identification we created a testing dataset 
consisting of images of different nonhuman and human 
objects and also had 15 of our friends as test humans to see 
their confidence scores as well as object classification 
accuracy when 20 meters away from our camera. We initially 
wanted to test various model frameworks such as many 
versions of YOLO, FOMO, detect-net, etc. However, as we 
worked on these object detectors we found out that they 
weren’t all made to work on our hardware well. For example, 
YOLOv7 can only output at an average rate of 7 FPS 
meanwhile since YOLOv8 implementations can be hardware 
accelerated leveraging Nvidia’s NITROS acceleration we can 
get 30 FPS from it.  
We required that our object detection model has an Average 
Confidence of greater than 70% and a Mean Accuracy of 
greater than 90%. Our model hits this requirement because our 
average confidence is 83.1% and our mean accuracy is 
98.2%.  
 

Architecture Average FPS 

YOLOv7 ~7 FPS 

Isaac ROS YOLOv8 ~30 FPS 

 
 
 

Test Requirements  Results  

Avg Confidence at 20m  >70% 83.1% 

Mean Accuracy at 20m  >90% 98.2% 

 
 
 
C. Tests for Scalability 
 
For our scalability tests, we ran our search algorithm in a 
sample test environment that was 10 feet by 16 feet and had a 
target human randomly positioned in the space our test is set 
up to see how long it takes to find the target and see if it 
speeds up as we increase the number of robots.  
We initially tested this with a simulated test of our robots and 
observed a roughly linear speedup of up to 5 robots. The goal 
that we set was a 1.5 times speedup with an additional robot 
which we achieved. We also tested this with our actual robots 
and also observed this same 1.5 times speedup. 
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C. Tests for Battery 
 
We ran our hexapods under maximum stress (max speed, 
SLAM, and Object Detection running) and evaluated how 
long it takes for the hexapods to be unable to function from a 
full charge. We have 18 MG995 servo motors. From the 
manufacturer datasheet, each servo draws 10mA when idling 
and 1200mA when under max load. Although the servo is not 
running at max load given that the Hexapod is relatively light, 
we still assumed stall current to obtain a conservative estimate 
for our battery requirement. Since only half the legs move at a 
time, and the robot will be stopping frequently during path 
planning, we estimate that the servos have an active duty of 
40%. From this data, we calculated that the servos would draw 
5.674A from a 7.4V source.  
 
Most 18650 batteries are 3.7V and have a capacity of around 
3Ah, such as the Samsung 30Q 18650 cells. To meet our 1-
hour battery life requirement, we decided to power the servos 
using 4 Samsung cells, with 2 wired in series and in parallel. 
This provides us with a 7.4V source and a capacity of 6Ah, 
which is enough to account for our worst-case power demand.  
 
We did similar calculations for powering the Raspberry Pi and 
Jetson Orin Nano, and we found that the 10Ah battery packs 
we provide is able to support the embedded computers for 6 
hours.. 
 
Number of Servos 18 

Voltage (V) 4.8 

Idle Current (A) 0.01 

% Idling 60% 

Stall Current (A) 1.2 

% Stall 40% 

Total Power (W) 41.990 

Total Power (A at 7.4V) 5.674 

Project Management 

A. Schedule 

As seen from the schedule above, we planned to front load 
most of our project to be done before Spring break. This 
entails the ordering and assembly of the Hexapods, as well as 
setting up the Jetsons with object detection models and ROS 2. 
After Spring break, we will set up VSLAM and the search 
algorithm, then begin to test and integrate all the various 
components of our project to ensure that it functions as 
expected.  

However, as the semester continued, we quickly realized 
that this schedule was way too ambitious. Thankfully we had 
some built-in slack time to account for the many setbacks we 
hit along the way. For example, one of the setbacks was when 
our SD card with all of our code got corrupted in the middle of 
the semester, this was due to us running all of our docker code 
on the SD card and not purchasing a SSD for Jetson. Because 
of this we lost out on a lot of progress and had to redo our 
entire setup, this time with a SSD. On the bright side, this did 
allow us to learn a lot more about docker containers and set us 
up for more success down the road since we now understood 
more about how the environment was built and what pitfalls to 
be wary of. 

A lot of other setbacks were related to the software 
integration of VSLAM and YOLOv8. This was mainly caused 
by the camera not being able to support the amount of data 
that it was required to collect to support both of these heavy 
processes. 

B. Team Member Responsibilities 

In our team, Casper was mainly in charge of the hardware 
and hexapod setup. Casper also developed and simulated the 
search algorithm that we later implemented in our robots. 
Casper did a lot of the 3D printing design aspect of the project. 
Casper and Akash worked on optimizing the battery usage.  

Kobe was mainly in charge of the Isaac ROS pipeline and 
getting VSLAM and YOLOv8 to run correctly with eachother. 
He and Akash went through a lot of research for Isaac ROS, 
YOLOv8 and other versions of YOLO object detection, and 
VSLAM and how that compares with normal slam. They were 
also mainly in charge of the creation of the ISAAC ROS 
environment and setting up the docker containers…etc. and 
using them. Akash also implemented the communication node 
that hexapods used to communicate with each other. A lot of 
the other engineering responsibilities were shared among all 
team members and most of the time paired 
programming/engineering was the preferred method.    
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Figure 1. Schedule of work 

 

C. Bill of Materials and Budget 

 
The majority of the items that we purchased were used in our 
project, however there was a big change relating to the camera 
that we were going to use. More specifically, we no longer 
wanted to use the eYs3D camera since we wanted to get depth 
data for our obstacle avoidance and VSLAM processes. 
Because of this, we pivoted to using an Intel Realsense D435i 
Depth Camera. This allowed us to run YOLOv8 easier too 
since there were more supporting packages for the Intel 
Realsense.  

Part Supplier 
Unit 
Price Quantity 

Total 
Price 

FreeNove 
Big 
Hexapod  

Amazon $169.95 2 $339.90 

FreeNove 
Big 
Hexapod 

Marios 
Savvides $0.00 1 $0.00 

Raspberry 
Pi 3 Model 
B 

ECE 
Inventory $0.00 3 $0.00 

Jetson 
Orin Nano 

ECE 
Inventory $0.00 3 $0.00 

18650 
Batteries 
+ Charger  Amazon $32.99 3 $98.97 

64GB 
Class10 
SD Card 
(2 pack) Amazon $14.99 3 $44.97 

eYs3D 
Stereo 
Camera - 
EX8036 

ECE 
Inventory $0 3 $0 

Intel 
Realsense 
D435i 

ECE 
Inventory $0 1 $0 

   Total $483.84 

D. AWS Usage [if credits requested/used] 

None Used 

E. Risk Management  

Some of the main risks we faced were related to us not 
being able to complete the integration of our full system in 
time. Fortunately, we were able to finish but our main risk 
management strategy was having alternatives that we knew 
worked that we could descale to if our reach goals were not 
possible. An example of this is when our VSLAM vo_pose 
was not being consistent due to the lack of visual tracking 
across a low fps camera feed, we had the option to pivot to 
hardcoded turning. This meant that hexapods would have a 
hardcoded time duration that they would turn in order to 
turn a full 90 degrees instead of just checking the vo_pose 
data to figure out their orientation.  

VIII. ETHICAL ISSUES 

Some ethical considerations for our project include the 
following: 
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1. Privacy Concerns – since we our hexapods use 
computer vision to identify humans, they are also 
capturing a lot of data of these humans during the 
process of search and rescue. We need to ensure that 
we build in privacy into future design iterations of 
our project to protect the privacy of the survivors that 
we rescue. 

2. Fairness – a big consideration is that computer vision 
algorithms could be biased which could lead to 
hexapods treating people of different demographic 
groups differently. To prevent this we had our model 
pretrained on the COCO dataset which has a large 
amount of data of people from all demographics. In 
addition, we tested our model on our friends of 
different races, genders…etc. and found that our 
model was consistently recognizing all of them 
correctly. 

3. Lastly, all autonomous robots will always have the 
ethical consideration of robot autonomy. Depending 
on the degree of autonomy we grant the robot, there 
can be a lot of ethical questions about who is liable or 
responsible if something happens that could harm a 
human’s life. To address this, we made our hexapods 
not have any kind of method to directly interact with 
a human. All they do is search and alert the human 
search and rescue workers about the location of a 
potential human.  

 

IX. RELATED WORK 

 RoboBees - autonomous flying robots with bee-like 
behavior developed at Harvard 

 Swarmanoid - heterogeneous swarm of robots that 
work together to perform tasks like exploration and 
mapping 

 SAFFiR - The Shipboard Autonomous Firefighting 
Robot - developed by US Navy, focusing on creating 
autonomous robots to assist firefighting on ships  

 Swarm-SLAM - Sparse Decentralized Collaborative 
SLAM Framework for Multi-Robot Systems 
developed by MISTLab 

 Inuktun - Rescue robots used in 9/11 and Hurricane 
Rescue Operations with tank-like treads. 

X. SUMMARY 

Our system was able to meet most of the design 
specifications. The limit of the system comes from the 
camera not being able to process a large amount of camera 
data in time to serve both the VSLAM and YOLO 
processes. Some of our servos were very inconsistent and 
would break quickly. Additionally, cooling was an issues 
since the Jetson Orin Nano could overheat at certain times 
and die. 
 To improve our system’s performance, we could have 
used LIDAR sensors instead of only relying on VSLAM. 
This would give us a really nice occupancy grid as well as 
rid us of a dependency on the visual frames for SLAM data. 
That would make our pose estimation a lot more consistent 
and would also reduce the load on the camera which was 

our main bottleneck. LIDAR would also help us better 
combat robot drift. 
 A stronger computer system would also allow us to avoid 
overheating, this could come in the form of a Jetson Xavier 
TX. 

A. Lessons Learned 

Don’t be too ambitious with project scope, making 
something very polished is just as cool. Leave more time for 
integration and don’t overestimate your abilities.  

GLOSSARY OF ACRONYMS 

SAR – Search and Rescue 
SLAM –Simultaneous Localization and Mapping  
RPi – Raspberry Pi  
YOLO – You only look once 
FOMO – Faster objects more objects 
ROS - Robot operating system  
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