
18-500 Design Project Report: Team E3 2/29/2024

1

Abstract—Search and Rescue teams dealing with natural disasters

face many challenges. For example: a lack of communication
infrastructure, understaffing, harsh conditions, and compromised
structural integrity. With modern technological developments, certain
groups have been exploring the integration of autonomous systems
with the Search and Rescue process. This project furthers this
exploration by creating an autonomous swarm of hexapod robots that
collaborate to complete search and rescue (SAR) tasks. The hexapod
swarm utilizes LAN communication, YOLOv8 and R-CNN object
detection, Visual SLAM, and a distributed search algorithm to get
around the challenges that human SAR teams face and coordinate their
search.

I. INTRODUCTION
ur product is a fully autonomous search and rescue

system with a scalable number of hexapod robots. Each
robot is responsible for mapping its terrain as well as
identifying potential survivors. Designated MedBots have the
additional responsibility of providing medical supplies / care
packages to survivors identified by any robot that is part of the
network.

The motivation for our solution is to reduce the need for

human intervention in search and rescue as much as possible.
Understaffing is a huge problem in search and rescue missions
as workers are often not paid sufficiently to compensate them
for the risk they undertake. A small rescue force may not be
sufficiently large enough to cover a large search surface with
adequate efficiency. In search and rescue missions every minute
counts and can lead to loss of life. An additional problem is that
these missions often involve workers being in precarious
situations that risk injury or even death. Casualties and injury
from such missions cause the workers and their families to have
psychological stress from the vocation itself. Our product is
scalable so the number of robots could be scaled up or down in
response to the mission requirements and fault tolerant so it can
work even if some robots fail. Hence human intervention might
only be needed to interface with the robots.

An existing solution that we saw was Inuktun’s small robots
with tank-like treads that were used after 9/11 at the Twin
Towers site and after Hurricane Katrina. These robots were
very useful but a key difference between our solution and these
was that robots were remote-controlled and needed a human to
operate them. In comparison, our solution improves upon it by
having our robots completely autonomous. Another difference

is the establishment of a local network which helps each robot
communicate its information with the other and optimize their
collaborative search effort as much as possible.

II. USE-CASE REQUIREMENTS
We define the following Use-Case-Requirements for this
project:

1. The hexapod swarm shouldn’t need constant signal
access to communicate with each other. This comes
from the use case where our hexapods enter areas to
perform search and rescue tasks without a strong
network infrastructure.

2. The hexapod should have an active battery life of at
least 1 hour. This is a requirement to ensure that the
hexapods can conduct a thorough search of a house or
enclosure.

3. The hexapods should have a high accuracy of
detecting a possible survivor in the frame with a low
false negative rate. This requirement is to ensure that
our hexapods can correctly identify survivors in a
search and rescue environment. Additionally, we want
to have our hexapods lean towards more false
positives for survivor detection than false negatives,
since we don’t want to accidentally miss any real
survivor. Moreover, our model should be able to
accurately identify many kinds of humans and not
have implicit biases based on race, age, and gender.

4. The hexapod swarm should be scalable; it should be
able to seamlessly incorporate additional hexapods to
make the swarm more efficient and it should also be
able to adapt to failures of single hexapods. Our
solution would need to be flexible in swarm size for
human SAR teams to be able to effectively deploy our
swarm. In cases where the search location is larger, the
swarm should be able to scale up in numbers to
compensate for the increase in search area.
Additionally, the swarm should be able to detect and
account for failures in case hexapods die in the process
of the SAR mission.

Kobe Zhang, Akash Arun, and Casper Wong

Department of Electrical and Computer Engineering, Carnegie Mellon University

Scalable and Fault-Tolerant Autonomous
Hexapod Swarm for Search and Rescue

Missions

O

18-500 Design Project Report: Team E3 2/29/2024

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

To create our hexapod swarm, there are a few essential
subsystems, which can be seen as a block diagram in Figure 1.
More in-depth information on the implementation of these
subsystems will be discussed in section VI. First, the hexapod
control is a subsystem. In this project, we use an off-the-shelf
hexapod robot from Freenove. This hexapod is controlled using
an RPi that interfaces with a hardware shield that moves around
the hexapod using its 6 servo-powered legs. An off-the-shelf
hexapod is used to leave more time for the team to implement
the desired swarm behavior, communication, object detection,
and hexapod localization.

The swarm behavior, inter-hexapod communication, object

detection, and localization are all individual subsystems that are
implemented with the Jetson Orin Nano and its peripherals. The
design went through multiple iterations and landed on the
Jetson Orin Nano as the best computation unit for this project
due to its relatively small size and weight in combination with
its computational strength and software support. The Orin Nano
will be interfacing with an IMX219 camera and an ultrasonic
sensor via an ADC module to translate analog signals.

An attached Wi-Fi module to the Jetson Orin Nano will allow
it to host a local network for communication with other
hexapods without access to the internet. This local network will
be the cornerstone of the inter-hexapod communication
subsystem.

The object detection subsystem on the Orin Nano will run the
YOLOv8 object detection algorithm to search for survivors,

getting the image data from the IMX219 camera. The camera
will be mounted on the head of the original hexapod, which is
servo-controlled and can swivel 360o which provides a lot of
flexibility for image collection.

The Orin Nano will utilize readings from the attached camera
and ultrasonic sensor for Ultrasonic and Visual SLAM in the
localization subsystem, which will allow it to localize itself and
map its surroundings to remember paths and survivor locations.
With this information, the hexapods will coordinate with fellow
hexapods and route their search path based on a distributed
search algorithm to optimize search area coverage in the swarm
behavior subsystem. This Jetson Orin Nano will be mounted on
the RPi (Raspberry Pi) and will communicate to the RPi via
UART communication.

Figure 1: Block diagram of the system with one Hexapod

Figure 2: Images of off-the-shelf hexapod robot. (left) Arduino version.
(right) RPi version with rotatable head.

18-500 Design Project Report: Team E3 2/29/2024

3

IV. DESIGN REQUIREMENTS
For the project’s design requirements, the focus is on 4 main
aspects of our hexapod swarm function that were described in
the use-case requirements: 1) Inter-hexapod communication,
2) Hexapod survivor identification, 3) Swarm scalability, and
4) Hexapod battery life.

1. For inter-hexapod communication, hexapods should
be able to send packets to each other at varying
distances up to 20m with <5% packet loss. The
average global house is 20m2 hence we came to a max
distance figure of 20m. This should be achievable as
we plan on using 2.4GHz LAN which has a range of
approximately 50 feet indoors.

2. For hexapod survivor identification, our team
preferred to err on the side of caution and create a
model that results in false positives rather than make
one that neglects potential survivors. As a result, we
want to be strict about having a greater than 5% rate of
false negatives. This thought process led us to arrive at
a figure of less than 80% mAP (mean average
precision) for the detection accuracy of different kinds
of human and non-human objects. 80% also represents
a good balance between detection accuracy as well as
the limitations of our hardware and real-time detection
needs. When we ran experiments with YOLOv8 with
images that had humans clearly in them it still had an
accuracy of around 85-90%. This also influenced the
selection of our figure since we can’t predict if our
accuracy will be worse or better when we train it with
a custom dataset. We also need to are required to use
a very diverse training dataset consisting of people of
different races, genders, and ages so that we can
maintain this 80% accuracy across the board and not
have our model pick up unwanted biases.

3. For swarm scalability, the swarm should have a 1.5x
search completion time speedup with 3 hexapods
compared to a single hexapod. This requirement is so
that the additional cost of having more hexapods is
justified with a corresponding improvement in search
efficiency.

4. For hexapod battery life, the battery duration for a
hexapod should be >1 hour under an active load (i.e.
constant movement, running a Jetson…etc.). The
average search and rescue mission lasts for 31 hours,
in a real-life use case where our solution is used the
hexapod wouldn’t be useful if it wasn’t able to search
for at least an hour before getting substituted with
another hexapod.

V. DESIGN TRADE STUDIES

To get to our current solution, our team examined a lot of
possible approaches to create our hexapod swarm. We first
explored the various options for the hexapod itself. Freenove
offered a variety of options for hexapod robots with varying
costs and functionalities. The first hexapod we looked at was a
smaller model that was controlled using an Arduino. While the
low cost of this model was desirable, we were concerned about
the ability of the smaller hexapod to carry larger loads including
the weight of the Jetson Orin Nano and various needed
peripherals. Additionally, we were unsure of the ability of the
Arduino to handle communications from the Jetson Orin Nano
while simultaneously running all the necessary controls for the
hexapod movement. Due to these concerns, we decided to look
at the largest hexapod available that is also controlled through
an RPi. This hexapod, which is our current one, offers the
additional advantage of having a head module that could swivel
360o, a desirable trait for our object detection tasks. While this
hexapod came in at a much larger price than the original model,
it also came with an ultrasonic sensor, camera module, and a
higher weight capacity. Ultimately, we decided to move
forward with this hexapod model for the benefits of
computational power, head mobility, and weight carry capacity.
The trade-off was an increase in cost per hexapod and an
increase in power consumption.

Another critical design choice we made was for the main
computational unit of our hexapod. We originally chose the
NVIDIA Jetson Nano due to its low cost and GPU support.
After a few rounds of initial trials with the software that we
wanted to run, it was evident that the JetPack versions that the
NVIDIA Jetson Nano was able to support were not enough for
our project’s needs, specifically for our object detection tasks.
This was because the Jetson Nano could not support JetPack 4.7
and higher so it could not run Python 3.7 and above, which was
critical to our object detection subsystem. After using a virtual
machine to get around software dependencies, we were able to
run the object detection algorithm we wanted but the detection
process was too slow (~30 seconds) for our purpose. Thus, we
decided to switch to using a Jetson Orin Nano. The original
Jetson Nano was released in 2019 whereas the Orin Nano came
out in 2023. The difference in computation power in
comparison to their size difference is representative of these last
4 years of hardware innovation. Once again, the tradeoff is an
increase in price ($150 vs $500) and an increase in power
consumption (max 10W vs max 15W, 5V input vs 7-20V
input), for better support, more modern software, and higher
JetPack version support, faster computation (approx. 80x), and
a lot more benefits. We realized that the Orin Nano supports the
usage of Issac-ROS which helps us better utilize the GPUs of
the Nano to perform object detection and SLAM more
efficiently. The Orin Nano is also approximately the same size
as the Jetson Nano, making it feasible to use with our hexapod
without needing a substantial change in the design of our
harness.

18-500 Design Project Report: Team E3 2/29/2024

4

Figure 3. Comparison of Jetson Nano and Jetson Orin Nano

For our object detection subsystem, we compared various
versions of the YOLO object detection algorithm for speed,
accuracy, and ease of use. Since we upgraded from the Jetson
Nano to the Jetson Orin Nano, we decided to continue with
YOLOv8 which is one of the newest versions of YOLO that
offers one of the highest accuracy ratings. While we were
considering using YOLO-Nas since it utilizes quantization-
aware training and post-training quantization to reduce the size
of the model and increase performance, we valued the increased
accuracy of YOLOv8 more. This decision was also motivated
by the upgrade of our central computing unit to the Orin Nano
which could run YOLOv8 with fast speeds. Additionally, we
found that Isaac-ROS supported YOLOv8 and allowed for the
hardware acceleration of our object detection through their
NITROS optimization.

For the inter-hexapod communication subsystem, we chose to
go with a local area network (LAN) with Wi-Fi over nRF and
UWB. This is because upon conducting some deep research
on different forums that discuss the applications of these
protocols in various robotics projects, we discovered a couple
of key challenges that we would have to face if we used UWB
or nRF over Wi-Fi. One challenge stem from our usage of an
operating system (Jetson Linux 36.2) with a scheduler rather
than having a microcontroller that runs bare metal code. UWB
or nRF have very tight timing/latency requirements that need
to be met for it to function properly. This wouldn’t be an issue
in the case of Wi-Fi as the Wi-Fi card handles this
requirement, but UWB Modules expect the user of the module
to deal with the requirement, which the Linux scheduler would
be unable to meet. A workaround could be to connect our
Jetson to an Arduino or another microcontroller and write a
UWB driver that helps us meet our timing needs. They also
have lower communication bandwidth in comparison to Wi-Fi
which might cause us issues down the road. Wi-Fi modules
also have a lot more built-in support with drivers, etc. in
comparison. The big advantage of these protocols over Wi-Fi,
however, is that they consume very little power. After
considering these facts, we decided to choose Wi-Fi because
of how easy it is to work with and create a LAN. A convenient
plus with this decision is that Jetson Orin Nano’s come with
Wi-Fi cards built in which saves us additional expenditure.

A key design decision in our project is to build our solution by
leveraging ROS (Robot Operating System) which is an open-
source middleware framework. This decision gives a handful of

advantages. For one, ROS is very modular so it's easy to plug
and play different software packages. It has an extensive
network of researchers worldwide who contribute to its
software packages which will further speed up our development
time. This gives us access to pre-existing implementations of
various object detection, SLAM, and control algorithms so we
won’t have to reinvent the wheel. ROS also supports
simulations through tools like Gazebo and RViz so we can test
our integrated system before we deploy it on the hexapod
hardware.

VI. SYSTEM IMPLEMENTATION

Object Detection
We will be using an object detection model to detect the

presence of search and rescue survivors. This will
predominantly include people, who may be partially obscured
under rubble. Other potential objects of interest include pieces
of clothing and domestic animals. We will train our model such
that it commits virtually no type II errors so that the Hexapods
do not accidentally ignore any survivors. To avoid false
negatives, we will train our model on a diverse dataset that
includes different ethnicities, genders, and other demographic
variables.

To maximize the performance of the object detection model, we
plan to combine the usage of a single-stage detector with a two-
stage detector. During regular operation, the Hexapod will be
using the fast object detector, such as YOLOv8 (You Only
Look Once v8) and will use a slower but more powerful object
detector, such as RCNN (Region-based Convolutional Neural
Network), when the former detects an object of interest. We
plan to run YOLOv8 on Isaac-ROS, which NVIDIA developed
specifically to use GPU acceleration on their products, such as
the Jetson Orin Nano.

Visual Simultaneous Localization and Mapping
Hexapods need to map their surroundings to remember paths

and survivor locations – this is important for the designated
Medbot to travel to other robots that have located survivors. To
achieve this, we will be using the Isaac ROS Visual SLAM
library developed by NVIDIA, which again utilizes GPU
acceleration to provide low-latency results in a robotics
application. Using an IMU and stereo camera, VSLAM
combines visual-inertial odometry, which visually estimates the
position of a robot relative to its start position, with SLAM,
which creates a map of key points to determine if an area is
previously seen. A demonstration of the library running on the
Jetson Orin Nano can be found here. Using this library, the
Hexapods can quickly map out obstacles such as walls and
unsurmountable rubble, as well as retain the path that they took
to get to their current locations.

https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_object_detection/index.html
https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_visual_slam/index.html
https://nvidia-ai-iot.github.io/jetson_isaac_ros_visual_slam_tutorial/

18-500 Design Project Report: Team E3 2/29/2024

5

Search Algorithm
We will be adapting and iterating upon a previously

implemented cooperative search algorithm for distributed
autonomous robots. It is a simple algorithm that almost fully
eliminates communication between robots to reduce overhead
when scaling up. Each robot follows 5 behavioral rules,
prioritized with 1 being the highest:

1. Avoid obstacles and fellow robots – Using camera and
ultrasonic sensors.

2. Find targets and alert neighboring robots – After
finding a target, the robot stops and broadcasts to other
robots.

3. Response to neighboring robots' messages – Robots
will move away from others to avoid redundant
searching.

4. Follow external commands – Robots listen to global
communication on WAN for start and stop.

5. Wander in the environment.

Previous literature demonstrated that 5 robots can lead to a 60%
increase in search efficiency.

As we can see in the original algorithm, robots do not need to
know either their position or environmental layout. Although
this prioritizes simplicity, it also leads to a lot of search
redundancies, where multiple robots might search the same area
over some course of time. So, we plan on improving this
algorithm after implementation. Since we will have the location
of robots using SLAM, we hope to keep track of previously
visited locations and communicate this across robots. In doing
so, the robots can follow a new rule of avoiding previously
searched areas.

General Algorithm – State Diagram

Figure 4. state diagram for hexapod behavior.

Upon start-up, the Jetson Nano Orin will run the algorithm
shown in Figure 4, beginning in the search state.

In the search state, Hexapods will wander, using a provided
actuation library, and actively run object detection to search for
survivors as well as VSLAM to map out the environment and
their path. Upon finding an object of interest with YOLOv8, the
robot will run the stronger RCNN network to confirm whether
the object is indeed a survivor. The robot will then be in either
the help state if it is the Medbot, where it will help the survivor;

or it will be in the found state, where it will signal for the
Medbot to come and help the survivor. Finally, when Hexapods
are running low on charge, they will return towards the
deployment site so that they can be easily assessed and
recharged.

The dead state is a custom state used in testing, in the case that
a robot is destroyed during a real deployment.

VII. TEST, VERIFICATION AND VALIDATION AND RISK
MITIGATION

Building upon the design decisions outlined in the previous
section, a crucial aspect of ensuring the effectiveness of our
hexapod swarm solution lies in testing, verification, and
validation. This stage involves a series of controlled and real-
world evaluations to assess the functionality, performance, and
suitability of the developed system. We have 4 main categories
of design specifications: Communication, Identification,
Scalability, and Battery Life.

A. Tests for Communication
Different messages will be sent between hexapods from

distances ranging from 0.5m-20m. This test exists to verify that
our solution is competitive in the average global household’s
dimensions.

For each of these distances, we will compare the percentage
packet loss. We aim to have an overall average packet loss of
less than 5%. If we cannot achieve this, we will consider trying
other protocols like UWB or nRF. This test is required so we
can affirm our first use case requirement which requires that the
hexapods shouldn’t be dependent on a consistent internet
connection to communicate to the outside world. The packet
loss requirement we enforce helps us attest to the reliability of
our communication system.

B. Tests for Identification
We will create a test dataset consisting of a variety of human

and non-human images which we will use to evaluate our
model.

If we have more than a 5% rate of false negatives or less than
80% mAP then we fail our testing requirement. In this situation
we will try to meet it by tweaking our training data set, having
even more layers of object detectors, or using other model
frameworks such as FOMO, detect-net, etc. as our main
detector.

C. Tests for Scalability
We will run our search algorithm in a sample test

environment that is 5m2 and randomly scatter rescue targets
across the environment. We will do this for just 1 hexapod, 2
hexapods, and 3 hexapods to compare how long it takes to find
all the targets in each case.

18-500 Design Project Report: Team E3 2/29/2024

6

We aim for at least a 1.5x times speedup as we scale up
from 1 to 3 hexapods. If we don’t achieve this, we will use
different more involved search algorithms / improve our
communication and collaborative search scheme.

D. Tests for Battery Life
We will run our hexapods under maximum stress (max

speed, SLAM, and Object Detection running) and evaluate how
long it takes for the hexapods to be unable to function from a
full charge. We will vary the number of 18650 Lithium-Ion
cells to see how the number of cells affects the duration it lasts.

We require our system to last for at least one hour hence we will
see how many cells are required for us to meet this threshold. If
we fail to accomplish this, we will experiment with alternative
power sources such as power banks, etc.

VIII. PROJECT MANAGEMENT

A. Team Member Responsibilities
Casper is mainly in charge of the Harness and Structural

Setup since he is most comfortable with CAD and 3D Printing.
Kobe and Akash are responsible for Inter-robot communication
and SLAM. Akash and Casper oversee the Distributed Search
Algorithm. All 3 team members are responsible for Object
Detection and overall testing.

B. Schedule

As seen from the schedule on the next page, we have planned
to front load most of our project to be done before Spring break.
This entails the ordering and assembly of the Hexapods, as well
as setting up the Jetsons with object detection models and ROS
2. After Spring break, we will set up VSLAM and the search
algorithm, then begin to test and integrate all the various
components of our project to ensure that it functions as
expected.

Figure 3: Schedule with milestones and team responsibilities.

18-500 Design Project Report: Team E3 2/29/2024

7

C. Bill of Materials and Budget

Part Supplier
Unit
Price Quantity

Total
Price

FreeNove Big
Hexapod Amazon $169.95 2 $339.90
FreeNove Big
Hexapod

Marios
Savvides $0.00 1 $0.00

Raspberry Pi 3
Model B

ECE
Inventory $0.00 3 $0.00

Jetson Orin Nano
ECE
Inventory $0.00 3 $0.00

18650 Batteries +
Charger Amazon $32.99 3 $98.97
64GB Class10
SD Card (2 pack) Amazon $14.99 3 $44.97
eYs3D Stereo
Camera -
EX8036

ECE
Inventory $0 3 $0

 Total $483.84
.

IX. RELATED WORK
• RoboBees - autonomous flying robots with bee-like

behavior developed at Harvard.
• Swarmanoid - heterogeneous swarm of robots that

work together to perform tasks like exploration and
mapping.

• SAFFiR - The Shipboard Autonomous Firefighting
Robot - developed by US Navy, focusing on creating
autonomous robots to assist firefighting on ships.

• Swarm-SLAM - Sparse Decentralized Collaborative
SLAM Framework for Multi-Robot Systems
developed by MISTLab

• Inuktun - Rescue robots used in 9/11 and Hurricane
Rescue Operations with tank-like treads.

X. SUMMARY
In a world that has a multitude of wars and disasters, search

and rescue operations will be vital to reuniting families and
bringing hope in dark times. The integration of sophisticated
autonomous robots in the search and rescue process is key to
future of search and rescue since it can help make missions
more effective and efficient. Our hexapod swarm provides a
fault tolerant and scalable swarm of independent autonomous
robots that can be deployed with search and rescue teams in
critical areas. The core components of our design include
swarm behavior, object detection, local communication,
localization and mapping, and scalability. We predict that a
central challenge for our design will be to ensure that all our
software can run together and allow the hexapod to run
efficiently. Another challenge will be to ensure that the hexapod
localization is accurate given the lower-cost sensors that we
currently are using. Lastly, providing enough power for both
our hexapod controlling RPi as well as our Jetson Orin Nano
will be challenging since we want to meet our battery life
requirement.

REFERENCES
[1] Rigging Lab Academy. "The 5 Common Challenges Facing Any Search

and Rescue Team." Rigging Lab Academy,
[https://rigginglabacademy.com/the-5-common-challenges-facing-any-
search-and-rescue-team/].

[2] Thunder Said Energy. "Average Home Sizes." Thundersaid Energy,
[https://thundersaidenergy.com/downloads/average-home-sizes/].

[3] Eddyfi. "Versatrax Inspection Crawlers." Eddyfi,
[https://www.eddyfi.com/en/product/versatrax-inspection-crawlers].

[4] NVIDIA Developer Blog. "Take AI Learning to the Edge with Jetson."
NVIDIA, [https://developer.nvidia.com/blog/take-ai-learning-to-the-
edge-with-jetson].

