

TEAM E2 • NutrientMatch

Surya Chandramouleeswaran, Grace Liu, Steven Zeng

Use Case

PROBLEM

- An increase in physical wellness trends leads to more people tracking their daily macronutrient intake
- Food tracking becomes a tedious task that often results in lack of consistency

SOLUTION

NutrientMatch is a product that helps users simplify their food tracking process

DESIGN CHANGES

- Calorie tracking only instead of all macronutrient count
- Separating label reading and image classification components
- Arduino driver/receiver instead of camera working with scale

Quantitative Design Requirements

Overview

Structural Parameters

Description of Physical Features of Product

Wooden cubic structure of edge length ~2-3 feet

- Ambient **55-80 watt** LED for diffuse illumination
- Scale, Microcontroller

Performance

Object recognition and performance

Captured image of product should be reasonably clear and well-illuminated

• 2 MP, 15 FPS Camera

- Food held **12-18 inches** from camera lens
- ~750 pixel images to feed into CNN

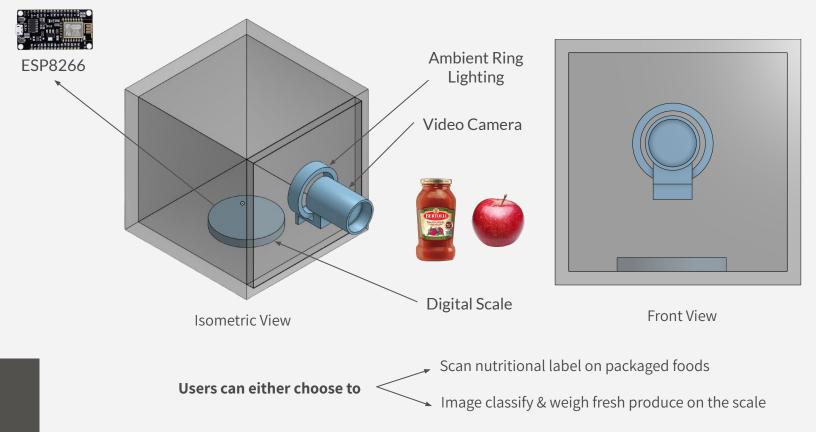
Accessibility

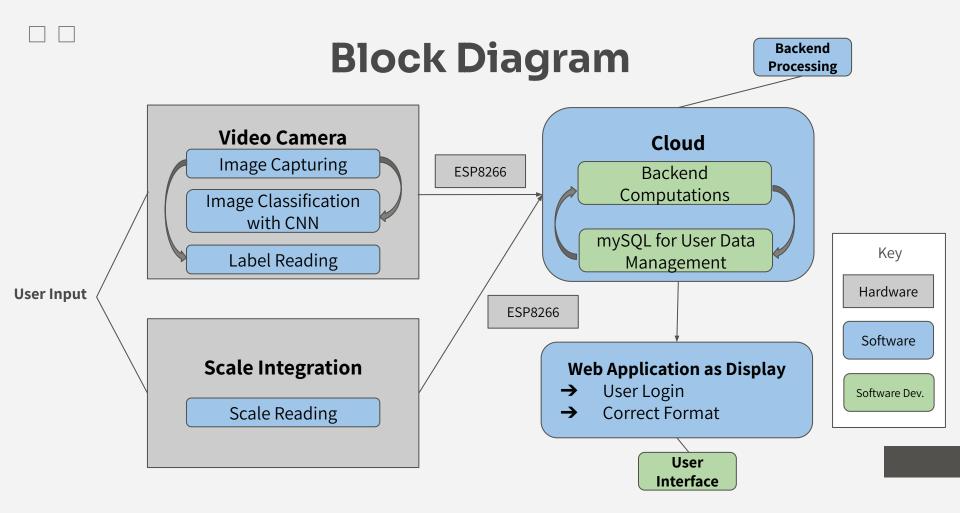
User Accessibility and Experience

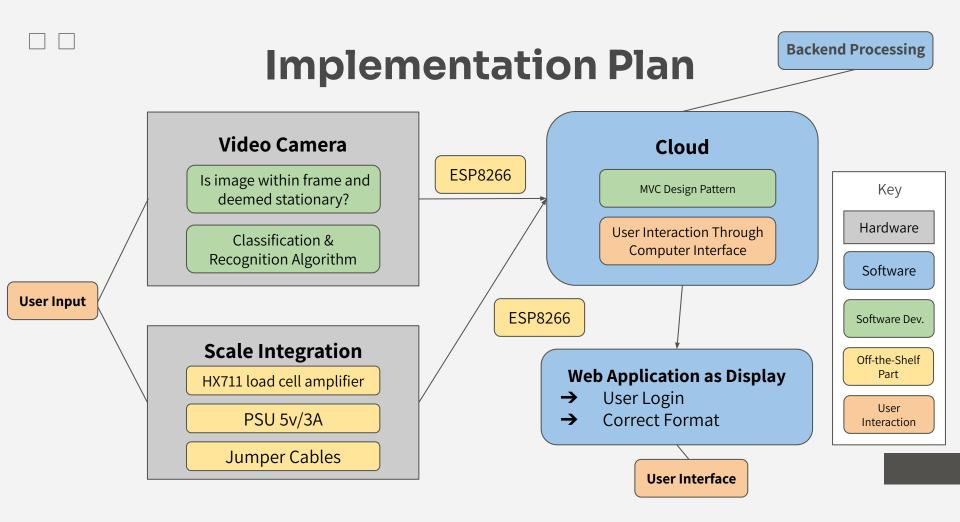
Not a quickly-patched DIY; product should reflect elegance and functionality

• Overall Latency minimization (~25 seconds)

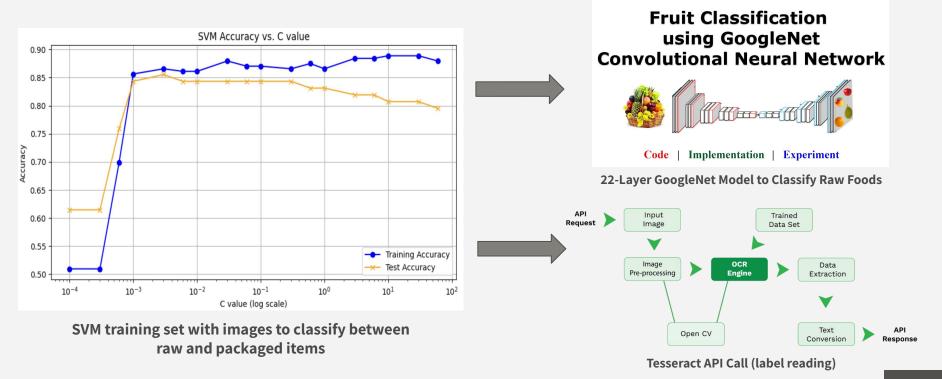
 Systematic Bias Mitigation (>= 90% recognition accuracy)

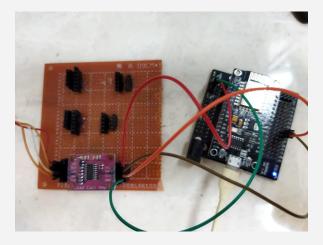

Evolution of Solution Approach


Themes	Object Recognition(CNN)	Back-end Management	Hardware Considerations
STEP 1	Image Classification: -> Packaged Items -> Standalone Foods	mySQL manages users within family, corresponding data	Diffuse Lighting Structure
STEP 2	Label Reading: -> Directed towards packaged foods	Low-latency (25-seconds) updating process	Scale Communication: Arduino RS232/RPI/ESP8226
STEP 3	Robust Error Handling	"Polling strategy" on weight measurement	Scripts for microchip control


Societal/Ethical Considerations

- Mitigating bias in the classification algorithm
- Maintaining health nutritional intake can be challenging for those with busy lifestyles (has to be reasonably efficient)
- Food wastage concerns


Solution Approach: Overview



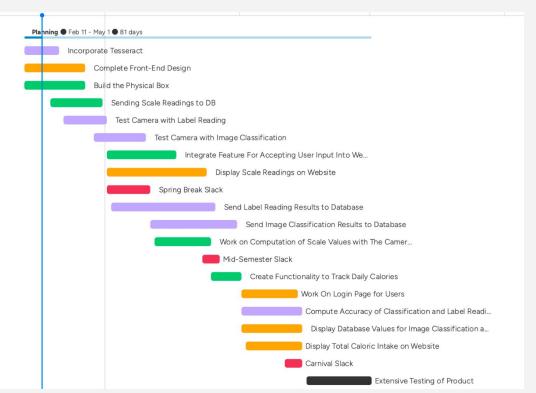
Design Progress

Scale Design

- Requires accurate measurement and timely communication
 - Important to start thinking about pertinent issues now
- "Polling Feature" requires control hardware to manage communication between scale and database
- Most scales have a USB/COM port
 - Plan is to hook this to an ESP8266 WiFi Microchip (proof of concept)
 - Anticipate Load-Cell Amp will be needed to enhance signal strength (pictured right)
- Xiaomi Smart Scale with RPI
 - Seamless Bluetooth integration with mySQL (stretch goal)

Change in voltage in load cell too small to be captured by ADC: hence need for amplifier

Testing, Verification, Validation



Goal: Modular structure around imaging, scale integration, and backend management

Schedule

Steven Surya Grace All Three of Us

Planning			
Incorporate Tesseract	Feb 11 - 19		
Complete Front-End Design	Feb 11 - 25		
Build the Physical Box	Feb 11 - 25		
Sending Scale Readings to DB	Feb 17 - 29		
Test Camera with Label Reading	Feb 20 - Mar 1		
Test Camera with Image Classifi	Feb 27 - Mar 10		
Integrate Feature For Accepting	Mar 1 - 17		
Display Scale Readings on Webs	Mar 1 - 24		
Spring Break Slack	Mar 1 - 11		
Send Label Reading Results to	Mar 2 - 26		
Send Image Classification Resul	Mar 11 - 31		
Work on Computation of Scale	Mar 12 - 25		
Mid-Semester Slack	Mar 23 - 27		
Create Functionality to Track	Mar 25 - Apr 1		
Work On Login Page for Users	Apr 1 - 14		
Compute Accuracy of Classifica	Apr 1 - 15		
Display Database Values for Ima	Apr 1 - 15		
Display Total Caloric Intake on	Apr 2 - 15		
Carnival Slack	Apr 11 - 15		
Extensive Testing of Product	Apr 16 - May 1		

