
18-500 Design Review Report - May 04 2024 Page 1 of 18

Give Me A Sign
Authors: Leia Park, Ran Fang, Sejal Madan

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A phone attachment and mobile applica-
tion package that provides dual-screen, real-time, im-
mediate translations of American Sign Language into
full, grammatically correct English.

Index Terms—American Sign Language, Arduino,
Bluetooth Low Energy, Computer Vision, Machine
Learning, Web Application, Large Language Model

1 INTRODUCTION

In today’s interconnected world, effective communica-
tion is essential for social interaction, professional advance-
ment, and access to vital services. However, communica-
tion barriers persist, particularly between the deaf com-
munity and individuals who are not proficient in American
Sign Language (ASL). These barriers hinder meaningful in-
teraction, limit opportunities, and contribute to feelings of
isolation and exclusion among the deaf population[1].

Our solution, a Real-time ASL Translator App + Phone
Attachment, addresses this pressing issue by providing a
seamless means of communication between deaf individuals
and those unfamiliar with sign language. This innovative
application, coupled with a convenient phone attachment,
enables real-time translation of spoken language into ASL
gestures, facilitating smooth and efficient communication
regardless of language proficiency.

The primary use case for our product arises in everyday
interactions, where deaf individuals encounter communica-
tion challenges in various settings, including educational
institutions, workplaces, healthcare facilities, dining loca-
tions and social gatherings. Our device is designed as a
portable device that users can easily set up. The compact
and lightweight design allows users to carry it with them
wherever they go, ensuring accessibility and convenience in
various situations. For example, if a user wants to order a
coffee at a coffee shop, they can simply attach the device
to their phone, set up the camera angle, and start signing
into the camera. The app automatically translates the sign
language into written English and displays the translation
as subtitles on both the phone screen for ASL users to view
and the attached screen for non-ASL users to understand,
enabling smooth and efficient communication for both par-
ties. This empowers deaf individuals to confidently place
orders, customize their preferences, and engage in mean-
ingful interactions, thereby enhancing their ordering expe-
rience and promoting inclusivity.

Overall, our Real-time ASL Translator App + Phone
Attachment offers a comprehensive solution to the commu-
nication barriers faced by the deaf community. Our goal
is to empower individuals with hearing impairments to en-

gage confidently in conversations, participate fully in social
and professional settings, and access essential services with-
out the hindrance of communication barriers. Through our
commitment to inclusivity and innovation, we strive to en-
hance the quality of life for individuals with hearing impair-
ments and promote equal opportunities for communication
and interaction.

2 USE-CASE REQUIREMENTS

To ensure effective communication between individuals
proficient in American Sign Language (ASL) and those who
are not, several critical quantitative metrics have been es-
tablished, with specifications regarding user distance from
camera, sign language detection, recognition, accuracy, and
user satisfaction.

Firstly, the person using the app must be within a cer-
tain distance from the camera for their gestures to be visi-
ble and accurately tracked. This distance is specified to be
between 1 to 3.9 feet from the mobile device front camera.
Our application is designed to operate on a mobile device,
so these distances come from our research about the op-
timal distance of the phone front camera best resolution
range, and the distance of a normal conversation [2]. The
prescribed distance ensures that the user’s gestures are well
within the camera’s field of view, allowing our computer vi-
sion (CV) algorithm to accurately detect and analyze the
intricate movements of their hands along with their pose
(upper body). Besides from distance, the ambient light-
ing condition could interfere with the CV detection qual-
ity. Since our ideal use-case is a cafe or restaurant setting,
we expect our product remains intact CV function under
a brightness range of 10-500 lux (lumen per square meter),
approximately from dimmest as an evening restaurant to
brightest as indoor workplace under sunlight[3].

Furthermore, the accuracy of gesture recognition is im-
portant to the functionality of our app. With a mini-
mum requirement of 95% accuracy for gesture detection
and recognition, users can trust that their signing gestures
will be correctly interpreted and translated into written
English. We will be leveraging MediaPipe for temporal
gesture recognition, which reports average accuracy rates
up to 99% [4]. Specifically, we will be using MediaPipe’s
holistic model to create landmarks for the user’s hands
and pose, which will then be used in the machine learn-
ing (ML) algorithm to predict these translations. We are
giving a 5% error to account for potential challenges such as
variations in environmental conditions, lighting, and other
factors that may affect the accuracy of gesture recogni-
tion. This high level of accuracy is essential for facilitating



18-500 Design Review Report - May 04 2024 Page 2 of 18

clear and meaningful communication between ASL users
and non-ASL users.

In addition to accurate gesture recognition, the accu-
racy of translation from sign language to written English is
another crucial requirement. The app must achieve a min-
imum accuracy of 95% for translation to ensure that the
intended message is conveyed accurately and effectively.
To achieve this level of accuracy, we will employ a ML
model trained with extensive data specifically curated for
dynamic signing recognition. This model will be trained
on a diverse range of ASL gestures and expressions to ac-
curately interpret sign language in various contexts. This
minimum accuracy is based on empirical accuracy findings:

Long Short-Term Memory (LSTM) networks achieve an
empirical accuracy of 95.21%[5], and are a type of recur-
rent neural network (RNN) that are specifically designed
to overcome the limitations of traditional RNNs in cap-
turing long-range dependencies in sequential data, such as
video frames. We allow a tolerance for inaccuracies up to
5% due to factors such as variations in hand movements,
environmental conditions, or the complexity of the sign.

Furthermore, to provide a truly immersive and real-
time communication experience, the translation must be
relatively immediate, functioning as ”live subtitles.” While
existing translation models, such as Microsoft Translation
Services, boast impressively low latency (8.9 - 13.9 millisec-
onds) [6], our aim is to set a slightly slower latency require-
ment to account for processing times involved in capturing
and analyzing dynamic sign language gestures and model
complexity. With a latency requirement of between 1 and 3
seconds, users can enjoy smooth and natural conversations
without hindering delays in translation.

Lastly, ensuring good accessibility and a positive user
experience is crucial for the widespread adoption and satis-
faction of our Real-time ASL Translator App + Phone At-
tachment. Not only must the app itself provide a seamless
experience, but the phone attachment must also enhance
usability and convenience. With a target user satisfaction
rate of approximately 90%, our goal is to create an intuitive
interface that is easy to navigate for both ASL and non-
ASL users. Specifically, we asked at least 10 ASL users to
try the device and ask questions about the usability and
accessibility. Some questions included ”Were you able to
perform tasks efficiently with the app and phone attach-
ment?” and ”How satisfied are you with the accuracy of
ASL translation provided by the app?” Clear instructions
guide users through the setup process, ensuring that they
can quickly and easily attach the device to their smart-
phone. Seamless functionality is essential for smooth com-
munication between users. By meeting these quantitative
metrics, our app aims to enhance the overall communica-
tion experience for both ASL and non-ASL users, promot-
ing inclusivity and accessibility in diverse social and pro-
fessional settings.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

There are two primary modules to our product: (1) the
software module shown in Fig. 1 and (2) the hardware
module shown in Fig. 2. The interactions between and
within the two modules are indicated in the block diagram
in Fig. 3. The software module acts as the data process-
ing hub of the system, consisting of computer vision (CV),
machine learning (ML) and large language model (LLM)
algorithms, and the web application. The CV receives raw
input data from the phone camera and the ML performs
gesture recognition on that data. The collated informa-
tion is processed through LLM to interpret the gestures
into grammatical English, transmitting the finalized trans-
lations to our hardware side. The hardware module serves
as the physical product the user attaches to their phone
that receives data from the web app to display ASL trans-
lations on its monitor. It consists of components packaged
into an adjustable 3D-printed case, providing dual-screen
ASL translations for the user and their conversant.

3.1 Software Module

Figure 1: Subsystem diagram - Software module

MediaPipe’s web framework runs in HTML and the un-
derlying JavaScript. The HTML camera session handles
and propagates real-time video input to pre-trained Medi-
aPipe models in JavaScript, which extracts hand and pose
gestures and allows dynamic visualization. The combined
programs identify and outline skeletons for hands and up-
per body.

The machine learning subsystem is implemented by
Tensorflow and Keras. Dynamic datasets of ASL are
prepared and run through a Long Short-Term Memory
(LSTM) Model, training the neural network model for fea-
ture extraction and classification.

The exported model reads the skeleton defined by the
CV to predict the gestures, and the CV data is propagated
to the model in a feedback loop for model refinement.

The language processing utilizes a Large Language
Model (LLM), specifically GPT-3.5, receiving the final pre-
diction from the ML model to standardize the text with



18-500 Design Review Report - May 04 2024 Page 3 of 18

correct spelling and proper grammar according to the En-
glish language. The resulting text is sent to the frontend
for retrieval by the web application.

The web application is created with Javascript as our
frontend, Python as our backend, and Django as our frame-
work to main the web application. The app also serves as
a communication terminal, sending live camera feed to the
CV subsystem and taking text data from the backend to
transfer to the hardware module and the HTML of the web
app.

3.2 Hardware Module

Figure 2: Hardware Components

The hardware module consists of five components:
(1) a rechargeable Lithium-Polymer (Li-Po) battery 3.7V
150mAh, (2) Adafruit Li-Po Backpack, (3) an Arduino
Nano 33 BLE unit, (4) an OLED 2.42” display screen, and
(5) a 3D-printed phone attachment.

The Arduino uses Bluetooth Low Energy (BLE) to wire-
lessly connect and locally interact with the web application,
acquiring the translation text. Connected with jumper

wires, the Arduino unit shares the text to the OLED screen
for display and is powered by the Li-Po battery, which is
charged via inductive coil as phones are powered through
this same technology. The battery is connected to the Ar-
duino and OLED through the Adafruit Li-Po Backpack,
which is a voltage regulator that manages the amount of
power entering the rest of the components as well as pre-
venting the battery from overcharging.

The components are packaged into a 3D-printed phone
attachment. Designed with CAD software and printed with
polyactic acid (PLA), the device is tilt-adjustable for clear
image capturing by the phone camera according to the
user’s preference and grip-adjustable to accommodate a
wide variety of mobile phones and different sizes. It can be
easily removed or affixed to the phone, even if the phone
has a case.

4 DESIGN REQUIREMENTS

Firstly, to maintain the effective functionality of our
product under various environments, we enhance the CV
module performance. According to our defined use-case re-
quirements, CV module must detect signing occurring at
1-3.9 feet from the camera under a lighting condition of
10-500 lux. Driven by this specification, we preprocess the
video frames with either OpenCV’s embedded functions or
customized algorithms. Specifically, we resize the captured
image by a scale factor of 28, convert it to grayscale using
cvtColor function, and normalize it by a factor of 256.

Subsequently, our gesture and pose detection models
must output the correct output 95% of the time, preparing
a valid input dataset to the following ML translation mod-
ule. Hence, we adopt the combination of OpenCV and
MediaPipe as the action recognition solution. Through
these softwares’ official documents and our initial trials, the
OpenCV-MediaPipe pipeline possesses smooth and accu-
rate performance in gesture and pose recognition on frames
of dynamic, real-time camera feed. MediaPipe recognizes
the hands and upper body and ignores the distracting back-
ground objects, generating 21 landmarks per hand[7] and
33 landmarks for the body pose [8] at maximum, depend-
ing on the proportion of the figure inside the camera frame.
Further analysis on CV components will be elaborated in
later sections.

Thirdly, to give the users accurate ASL-to-English
translation results, we specify our ML module to reach a
95% accuracy rate in prediction. Accordingly, we trained
our LSTM ML model for dynamic signing on multiple
videos that approximate our use case in the real world.
We have trained the algorithms with 6 datasets. The de-
tailed ML training, testing and validation procedures will
be discussed in the following sections.

Furthermore, with a goal of minimizing latency between
ASL signing and feedback reception, our design empha-
sizes efficiency across multiple pipeline stages. The Com-
puter Vision (CV) module targets a frame rate of approx-
imately 30 fps for gesture and pose recognition. Through



18-500 Design Review Report - May 04 2024 Page 4 of 18

Figure 3: System Block Diagram - Pipeline

our testing and validation, we have proved that this bench-
mark can be consistently achieved through MediaPipe pro-
cessing, as detailed in Section 7. Subsequently, our Ma-
chine Learning (ML) prediction aims for results within a
1000-1500 milliseconds window, allowing ample time for
Large Language Model (LLM) API calls. The OpenAI
API’s response time fluctuates between 1000 to 2500 mil-
liseconds, dependent on the length and complexity of the
raw translation result produced by ML model. We opti-
mized prompt tokens to be both clear and concise for swift
GPT3.5 responses. Besides, initial experiments reveal min-
imal latency in frontend-backend data transmission, facil-
itated by transmitting constant-length float arrays. How-
ever, bluetooth-enabled data exchange between JavaScript
and the Arduino board presents latency challenges stem-
ming from the speed-accuracy trade-off.

Lastly, to reach the expected user satisfaction rate of
over 90%, our mobile app UI/UX design must be navigable
and of minimalist style. Our another essential user interac-
tive component, the screen-integrated phone attachment,
must be fabricated and connected for the ease of use and
carry around. The electric power source should operate at a
human-safe voltage of below 15 VAC. In addition, to avoid
bias in the process of collecting user feedback, we should
recruit at least 3 pairs of users who know neither each other
nor our team members beforehand. Admittedly, since we
do not plan to distribute the product commercially and
have limited access to ASL user community, we are likely
to include personal acquaintances in the final survey pro-
cess.

5 DESIGN TRADE STUDIES

5.1 Product Design

We initially thought of three unique designs for our
product. First, we considered a web application for its
efficiency as no hardware is required and the user can
pull out their phone or laptop to access. However, given
that seamless conversation in a physical setting is our aim,
this method is difficult for the user to work with casually.
Moreover, they must flip their device screen between them-
selves and the person they are conversing with, making the
modus operandi a hassle. Second, we considered glove tech,
which would remove CV from our software implementation
and provide higher gesture tracking accuracy because of its
wearability. However, when imagining its use in daily inter-
actions, the setup has potential to be inconvenient as the
user must put gloves on both hands and then prepare their
device to display translations. Third, we considered a tri-
angular prism device that had two screens, a camera, and
a microprocessor. However, its camera angle and porta-
bility were major concerns. Finally, with insight and a
recommendation by a TA, we settled on our current imple-
mentation as we found it to be cost-effective, reasonable to
achieve, and practical for users.

5.2 Software Systems

5.2.1 OpenCV vs. MediaPipe

For computer vision processing tools, after we examined
OpenCV’s JavaScript API and MediaPipe’s web frame-
work, we determined that the latter would assist in a
more accurate and easier implementation. OpenCV utilizes
Gaussian blur and Canny edge detection algorithms to sub-
tract backgrounds and grayscale the images[9]. Through
this process, it detects the precise configuration of the tar-



18-500 Design Review Report - May 04 2024 Page 5 of 18

get object in a given frame. While we are able to filter
noise pixels with this feature, OpenCV lacks an expertise
in gesture and pose recognition. The existing gesture recog-
nition package implemented solely in OpenCV contains 10
actions and 3 poses at maximum[10]. Admittedly, we would
have control over the entire pipeline if we tailored the detec-
tion algorithm and dataset from scratch[11]. However, with
MediaPipe library, we would simplify the process without
losing any functionality, because MediaPipe is dedicated to
gesture, pose and facial recognition. Its pre-trained dataset
generates accurate coordinate representations on human
hands and body, resulting in 21 landmarks per hand and
33 landmarks for the body pose. Most importantly, Me-
diaPipe is optimized for real-time performance. Lastly, as
we migrate from a local mobile app design to a web appli-
cation, MediaPipe provides a scalable web framework that
can be conveniently integrated and modified. Since our ul-
timate objective is to efficiently process real-time, dynamic
signing, we eventually chose to use a combination of Medi-
aPipe’s web framework, where a camera session in HTML
captures the frames and MediaPipe is responsible for ges-
ture and pose recognition.

5.2.2 LSTMs vs. GRU vs. 3D CNNs

In the realm of recognizing dynamic signs, various neu-
ral network architectures offer distinct advantages and
trade-offs. Long Short-Term Memory networks (LSTMs)
are favored for their ability to capture long-range depen-
dencies in sequential data, making them well-suited for
tasks like sign language recognition that require under-
standing gestures over time. Despite being computation-
ally intensive, LSTMs excel in retaining important infor-
mation across extended sequences, crucial for accurate in-
terpretation. Alternatively, Gated Recurrent Unit (GRU)
networks offer a simpler architecture with comparable per-
formance, albeit at the cost of potentially weaker long-term
memory retention. Meanwhile, 3D Convolutional Neural
Networks (3D-CNNs) provide an alternative approach by
extracting spatial and temporal features from video data,
offering potential benefits in capturing motion dynamics.
However, their complex architecture and computational de-
mands may pose challenges, especially with limited train-
ing data. Ultimately, the choice of LSTMs for recognizing
dynamic signs seems like the best option from its balance
of effective long-term memory retention and suitability for
sequential data processing, aligning closely our the require-
ments of sign language recognition [5].

5.2.3 NLP vs. LLM

In considering the methods for converting directly
translated sign language to proper English grammar, two
main methods were considered, natural language process-
ing (NLP) and large language models (LLMs) like GPT
(Generative Pre-trained Transformer). NLP, relying on
predefined rules and linguistic patterns, offers precise con-
trol over grammar and syntax, ensuring adherence to gram-

matical rules and linguistic conventions. However, it re-
quires constant maintenance to accommodate changes in
language usage and may struggle with understanding con-
text or handling ambiguous language. Conversely, LLMs
leverage vast amounts of text data to generate coherent
and contextually relevant text responses without explicit
rule definitions, providing adaptability and contextual un-
derstanding. However, they may lack control over spe-
cific grammatical structures and require extensive training
data, potentially limiting their effectiveness in specialized
domains like sign language recognition. We chose NLP over
LLMs due to the need for precise grammatical control and
the availability of specialized linguistic knowledge for sign
language translation, making NLP a more suitable and cus-
tomizable option for ensuring accurate and grammatically
correct English outputs from sign language inputs [12].

5.2.4 iOS Mobile Application vs. Web Applica-
tion

In our design review stage, we examined different plat-
forms and programming languages to decide which is op-
timal for our mobile app development. We chose to de-
velop an iOS app coded in Swift on the Xcode integrated
development environment (IDE), because provided by Ap-
ple, Xcode supports a unified ecosystem that covers de-
sign, development, and testing across multiple Apple de-
vices. Some MediaPipe CV packages are available to be
integrated in an iOS app, and CoreML[13] provides inter-
face to incorporate trained ML models. However, while the
MediaPipe hand landmarks module was successfully inte-
grated to our elementary iPhone app, we discovered later
that pose recognition was not supported on the iOS plat-
form. Besides, the keras-trained ML model presented com-
patibility problems with CoreML to compile the prediction
input. Unfortunately, these two difficulties could not be re-
solved in a limited time, and the absence of pose landmarks
would severely impacted the accuracy of dynamic signing
prediction.

Consequently, in light of these constraints and the need
for a viable solution, we made the strategic decision to
transition our subsystems into a full-stack web application
framework. We chose Django framework to integrate multi-
ple codelayers needed in our web application. Django offers
extensive support for integrating third-party libraries and
tools, providing us with greater flexibility in incorporating
CV and ML functionalities without the constraints imposed
by the iOS ecosystem. Specifically, we did unit testing on
both MediaPipe hand and pose frameworks and ensured
its seamless performance with HTML and JavaScript im-
plemented in Django frontend. Moreover, by migrating to
a web application framework like Django, we can ensure
broader compatibility across various platforms and devices,
thus expanding our potential user base. Furthermore, the
learning curve for a Django web app becomes negligible
compared to an iOS app development, because our team
members have previous course project experience with it.
Nevertheless, the decision to abandon the previous mobile



18-500 Design Review Report - May 04 2024 Page 6 of 18

app development and move to a new solution imposes sig-
nificant pressure on our schedule. The depending mecha-
nism of software-to-hardware communication also needs to
be re-designed and re-tested. Overall, we made this transi-
tion to prioritize the pivotal viability and functionality of
our end product.

5.2.5 Local Implementation vs. Cloud Storage

When researching how to transmit live, real-time video
to a cloud server, we found these exist numerous ways to
implement this, but finding in addition to deploying a com-
patible method was not conducive to our timeframe, so
we configured our web app to locally execute the machine
learning and language processing rather than delegate those
operations to an external source.

5.2.6 Minimal Number of Phrases vs. Accuracy

Our system admittedly possesses a minimal number of
phrases: Hello, How are, Love, Mask, No, Please, Sorry,
Thanks, Wear, You. Because there are extremely few
datasets of dynamic sign language gestures for our machine
learning model to train with, we even had to develop our
own videos for our neural network. This resulted in limited
sentencing, but we tried to value quality over quantity and
did our best to improve the accuracy of the few words our
system understood.

5.3 Hardware Components

5.3.1 Arduino vs. Raspberry Pi

A microcontroller is needed for the product to commu-
nicate with the mobile app and relay translations on an
additional screen. Raspberry Pi (RPi) modules are pow-
erful, acting as miniature computers with high processing
capacity and their own operating system. Arduino units
are straightforward, consisting of programmable circuits
boards and containing their own integrated development
environment. After a comparative analysis, we decided to
utilize an Arduino fundamentally because our product does
not require the immense complexity that RPi’s provide [14].
Additionally, the RPi consumes more current than the Ar-
duino and must be properly turned off to power it down,
whereas the Arduino can simply be plugged and unplugged
without damage to the operating software. Within the Ar-
duino families, the Nano 33 BLE was selected because of
its Bluetooth abilities and compact size. Other units in the
Nano family had extra features our product would not use.

5.3.2 OLED vs. LCD vs. E-Ink Displays

For clear readability, we examined three different types
of monitors. OLEDs consist of organic light emitting
diodes, offering high contrast, bright images, and precise,
independent pixel control. LCDs are liquid crystal dis-
plays that emit a backlight to illuminate crystals, display-
ing bright images and possessing low power consumption.

E-Ink similarly uses liquid that colored pixel particles float
within when charged. The screen incurs much less eye
strain than the other monitors as it imitates paper read-
ing. Currently, we chose an OLED screen for our product
because of its conceptual finer clarity, but all the distinct
kinds will be tested to identify which is most appropriate
for our goals. All the screens were available in a 2.4” - 2.74”
diagonal length and had similar pricing within a range of
$19.99 - $23.99. Despite the extensive research on which
monitor would suit our product, we recognized actual ex-
perimentation is needed for confidence in using one, specific
display. According to our findings, we have settled with the
OLED display because of its clear text and steady function.

5.3.3 Gear Adjuster vs. Adjuster Brackets

We considered using adjuster brackets to control tilt
function of the device. Adjuster brackets are lines of spiked
hooks that look like arrays of teeth in which the foot of the
stand digs into to lean the viewing side. However, this
adjustment mechanism was rejected because it was incom-
patible to the components that need to be attached to it,
such as the phone grip and the hardware components cas-
ing. We went forward with a simple gear-based phone stand
because of its simplicity and smooth sides that can easily
accommodate the other parts to our product.

6 SYSTEM IMPLEMENTATION

6.1 Computer Vision

Firstly, when the web page for detection is rendered,
it starts loading the required MediaPipe module, including
its pre-trained landmark detecting ML model, to prepare
for gesture and pose recognition. Corresponding prompt
display on the web page to notify users the completion
of module loading. Then, users enable a capture session
embedded in HTML that takes in real-time video from
the device’s webcam. The underlying JavaScript starts
to continuously grab image from webcam stream and de-
tect it with a sampling rate of 30 fps (frames per sec-
ond). The integrated MediaPipe then extracts landmark
data of the hands and pose detected in the video via its
model.detectForVideo function based on its pre-loaded
HandLandmarker and PoseLandmarker models [15]. Mean-
while, MediaPipe’s configured DrawingUtils display the
landmarks in form of straight lines (for bones) and points
(for joints) on the feedback screen. For each frame where
target objects (hands and/or pose) are detected, 21 land-
marks for each hand and 33 landmarks for the upper body
will be processed in JavaScript into flattened float arrays.
For example, we fill missing hand / pose data as zeros. At
this stage, the CV module should have readily prepared the
raw datasets for training and testing in the following ML
module.



18-500 Design Review Report - May 04 2024 Page 7 of 18

Figure 4: MediaPipe Recognition

6.2 Machine Learning

The training process for sign language recognition be-
gins with dataset preparation, comprising of dynamic sign
language gestures. The dataset includes existing datasets
and data inputs created ourselves using OpenCV’s video
capturing function. Existing datasets include the DSL-10
dataset, which is recorded and split into 80% training and
20% testing subsets. MediaPipe’s holistic model is em-
ployed with a minimum detection and tracking confidence
set at 0.5 to extract landmarks for both hands and poses
from the videos. These landmarks serve as features for
training the model. In this training process, we utilize
TensorFlow along with Keras, a high-level neural networks
API, for building and training the LSTMs model. The
model architecture, defined as a sequential neural network
with LSTMs and dense layers, is compiled using the Adam
optimizer and categorical cross-entropy loss function. Dur-
ing training, the model is trained for a specified number
of epochs using the model.fit function, with the training
data. After training, the model’s performance is evaluated
on the testing data using the model.evaluate function, pro-
viding insights into its loss and accuracy metrics. Finally,
the trained model is utilized to predict the sign language
gestures from the testing data using the model.predict func-
tion, where the argmax function selects the class with the
highest probability for each sample, effectively choosing the
final predicted class for classification. These predictions
are then saved to be integrated into the CV algorithm to
compute a prediction. Fine tuning the number of LSTMs
and dense layers enhanced the model’s capacity to cap-
ture complex patterns in sequential data, but also intro-
duces the risk of overfitting and computational overhead.
Similarly, adjusting the number of epochs can influence
the model’s convergence and generalization performance.
Therefore, multiple variations were trained and the model
that outputted the best accuracy results was used in the
final system. The figure below illustrates the optimized ar-

chitecture with three LSTM layer and three dense layers,
with a softmax activation function applied within the last
Dense layer.

Figure 5: Neural Network Architecture

6.3 Large Language Model

After the machine learning model translates sign lan-
guage gestures into written English, the output undergoes
further processing through a large language model (LLM)
to enhance its linguistic analysis and semantic interpreta-
tion. The LLM, specifically the GPT-3.5 Turbo model, is
utilized to refine the translated text by generating more
natural and contextually appropriate sentences. This pro-
cess involves providing the LLM with a prompt containing
the predicted text output from the ML model. The LLM
then generates multiple potential translations based on the
provided prompt, leveraging its vast language understand-
ing capabilities to produce accurate and coherent linguistic
interpretations of the sign language gestures. The struc-
tured sentence is then send back to the frontend of the web
application to be displayed to the user.

6.4 Screen Device

The LiPo battery has simple black ground and red
power wires, which are connected to the corresponding
ports of the Arduino Nano 33 BLE unit. The OLED screen
has a resolution of 128 x 64 pixels with a SSD1309 driver
chip, a a single-chip CMOS OLED driver with controller for
organic/polymer light emitting diode dot-matrix graphic
display systems and commonly used for OLED panels [16].
The screen supports a serial peripheral interface (SPI), used
for facilitating short-distance communication between mi-
crocontroller and one or more peripheral integrated cir-
cuits, and has 6 pins according to the SPI interface:

1. GND (power ground)

2. VCC (power supply positive)

3. SCL (clock line)

4. SDA (data line)

5. RES (reset line)

6. DC (data / command)



18-500 Design Review Report - May 04 2024 Page 8 of 18

The appropriate headers of the Arduino are connected
to the OLED pins, and an SPI interfacing library is already
pre-bundled in the Arduino IDE. Everything is connected
to each other with jumper wires via soldering.

6.5 Web Application

Figure 6: Home & Instructions Pages

Figure 7: Camera Permissions Demo

Figure 8: Translation Page - Buttons are Home, Enable
Bluetooth, Enable Predictions

The web application follows a structured architectural
pattern, using frontend and backend responsibilities. At
the frontend, JavaScript orchestrates user interaction and
presentation, managing dynamic content rendering and
user input. Leveraging MediaPipe functionalities, the fron-
tend detects and processes hand and body gestures from
webcam input, enhancing user engagement and interaction.
Additionally, the script facilitates Bluetooth Low Energy
(BLE) connectivity, enabling seamless communication with
external devices. It manages data transmission, ensuring
the smooth relay of collected data, such as hand and body
landmark coordinates, to the backend for further analysis
and translation.

The backend of the web application handles the pre-
diction of sign language gestures and their translation into
English text. Upon receiving a request, it processes the
landmark data representing the hand and body gestures
captured from the webcam. Using the machine learning
model that was previously trained, it predicts the sign
language gesture based on the processed landmark data.
Subsequently, the predicted sign language gesture is trans-
lated into English text using a large language model pro-
vided by OpenAI. This translation process involves gen-
erating English sentences that convey the meaning of the
sign language gesture. The translated text is then returned
as a response to the client, enabling seamless communica-
tion between users using sign language and those under-
standing English. Additionally, the backend incorporates
functionalities to manage the translation process, including
handling intervals between consecutive translation requests
and maintaining the continuity of translated sentences.

To deploy the Django web application on AWS, we uti-
lized EC2 (Elastic Compute Cloud), AWS’s service for de-
ploying and managing web applications. We configured the



18-500 Design Review Report - May 04 2024 Page 9 of 18

necessary environment settings, including specifying the
Python runtime and dependencies, and then deployed the
Django application. To enable HTTPS, we obtained an
SSL/TLS certificate from AWS Certificate Manager and
configured it for the application’s domain.

6.6 Attachment Creation

Figure 9: 3D Print Casing - Disassembled

Figure 10: 3D Print Casing - Assembled

Designed with CAD and created out of polyactic acid
filament, the most popular material for 3D printing, the
attachment is grip and tilt adjustable to accommodate a
variety of phone sizes and manipulate the phone camera
angle to the user’s preferences [17].

There are three components to the attachment: casing,
grip, and stand. The casing is box-like to house all the
hardware components into a compact, flat, and organized
layout, and where the OLED screen displays translation for
dual-screen functionality. The grip adjustment is controlled
by a C-Clamp by hand and where the phone is inserted. As
shown in Fig. 6 & 7, the bottom part of the grip can extend
or retract just by pushing or pulling [18]. The stand’s tilt
adjustment is controlled with a gear mechanism, adjustable
to five different angles between 20 and 73 degrees.

Dimensions of the components are: (W x H x L)

• Arduino Nano 33 BLE – 18 x 15 x 45 mm

• LiPo Battery – 34.5 x 10.6 x 56.0 mm

• Adafruit Li-Po Backpack – negligible due to small size

• OLED Screen – 43 x 6 x 74 mm

• Grip Clamp – 30 x 20 x 60 mm (not extended)

• Adjustable Stand - 60 x 15 x 85 mm (closed/flat-
tened)

The current overall product dimension is about 60 x 55
x 85 mm.

6.7 Device Integration & Bluetooth Low
Energy Functionality

Figure 11: Bluetooth Pairing Web App Pop-Up



18-500 Design Review Report - May 04 2024 Page 10 of 18

Figure 12: Final Integration

The Arduino Nano 33 BLE connects to the web applica-
tion via Bluetooth Low Energy technology, a wireless per-
sonal area network utilizing client-server architecture called
the General Attribute Profile (GATT), and running on re-
duced 0.01 - 0.05W power consumption and 2.4GHz radio
frequencies like Classic Bluetooth [19].

The GATT is a communication interface that estab-
lishes how data is organized and transferred. Data is passed
and stored in the form of characteristics or services, which
are a collection of characteristics, in the memory of the
BLE device. Between two devices: one is the server, or pe-
ripheral, that accepts an incoming connection request after
advertising and contains the characteristic database that is
being read or written by a client; the other is the client,
or central, that initiates an outgoing connection request to
an advertising peripheral device and is reading or writing
data from or to the server.

The Arduino program, or sketch, is built on the Ar-
duino IDE. Universally Unique Identifiers (UUIDs) are, as
the name suggests, unique identifiers that identify services
and characteristics of Arduino packages such as the BLE
communication protocol. After they are user-defined for
human-readability, the required services are initialized and
characteristics are added to their corresponding services.
The sketch is given a local name, and the Arduino, act-
ing as the peripheral, advertises it for the web app, our

central, to find. Entering a broadcast loop, the Arduino
listens for our web app, and once connected, starts a loop
for handling communication, executing periodic reading of
data between Arduino and app. Checks and event-handler
functions are implemented for the sketch to respond to the
central device and update its data.

Specifically to our Arduino code, we have one service
defined as the ArduinoBLE, which our web app identifies
the UUID of to pair with the device. After a translated
sentence is finalized by the web app, it has a function to
write each character at a time as an ASCII value into the
characteristic for the Arduino to receive and read, display-
ing the whole sentence letter by letter on the OLED screen.
Moreover, at the beginning of a new sentence, the web app
attaches the ”@” symbol for the Arduino to recognized the
ASCII value of so the screen is cleared before the next sen-
tence is exhibited.

Since our demo web app to test bluetooth connectivity
of the Arduino was a p5.js sketch, a Javascript library for
creative coding, we incorporated the p5.ble.js library into
our final web app to enable communication with our BLE
device, which is the specific p5.js library that uses the Web
Bluetooth API.

7 TEST, VERIFICATION & VAL-
IDATION

We structured our testing strategy to primarily assess
the performance of our entire system, reflecting its func-
tionality in real-world scenarios. However, we also con-
ducted targeted testing of subsystems, particularly focus-
ing on latency, as they represent integral components of
our final product. Our overarching design requirements,
including latency, accuracy and user satisfaction, guided
our testing efforts and were systematically addressed across
both the entire system and its individual components. By
adopting this approach, we aimed to ensure comprehensive
validation of our product’s capabilities while also identi-
fying areas for refinement and optimization at both the
system and subsystem levels.

7.1 Results for Distance Requirements of
MediaPipe Landmarks

Our initial design specification required that MediaPipe
landmarks should be accurately tracked within a distance
range of 1-3.9 feet. To verify this requirement, we con-
ducted a series of tests at various distance intervals.

We collected data by positioning the camera at differ-
ent distances from the subject: 1 foot, 1.5 feet, 2.0 feet,
2.5 feet, 3 feet, 3.5 feet, and 4 feet. At each distance, we
captured five samples to ensure consistency and reliability
of our measurements.

During the testing process, we observed the accuracy of
the detected landmarks on both hand gestures and body
poses. We considered landmarks to be accurate if they



18-500 Design Review Report - May 04 2024 Page 11 of 18

were correctly identified and aligned with the correspond-
ing anatomical features.

Our analysis revealed that the detected landmarks met
the accuracy requirement across all tested distances, with
proper landmarks appearing 100% of the time. This indi-
cates that the system successfully tracked MediaPipe land-
marks within the specified distance range.

To visualize the relationship between the tested dis-
tances and the accuracy of landmark detection, we plotted
the percentage of accurate landmarks against the distance
intervals. The plot illustrates a consistent trend of 100%
accuracy within the 1-3.9 feet range, validating our design
specification.

Our measurements align closely with the theoretical
predictions, demonstrating the effectiveness of our system
in accurately tracking landmarks at varying distances.

We did not modify the original system design to achieve
a better value, as MediaPipe already inherently delivers
high accuracy in landmark detection. Our results validate
the robustness of the system’s design and its ability to con-
sistently meet the specified requirements. By leveraging
the advanced capabilities of MediaPipe, we ensured that
our system maintains reliable performance across various
distance intervals without the need for extensive modifica-
tions

7.2 Results for Accuracy Requirements of
Gesture Recognition

Our design specification mandated that MediaPipe,
should accurately display landmarks of the hands and up-
per body at least 95% of the time. To evaluate this require-
ment, we designed a series of tests focusing on landmark
detection performance under varying background settings.

We conducted trials with different background settings,
varying the number of distractors present in the scene.
Each trial consisted of two samples, allowing us to assess
consistency in landmark detection across different back-
grounds. The number of distractors ranged from 1 to 10,
providing a diverse range of scenarios representative of real-
world usage.

The distractors in our test scenarios encompassed a va-
riety of objects and elements commonly encountered in
real-world environments. These included items such as
furniture, plants, electronic devices, miscellaneous objects,
and other humans typically found in indoor or outdoor set-
tings. Additionally, we incorporated background textures
and patterns to simulate complex visual scenes commonly
encountered in natural environments. By including diverse
distractors representative of real-world scenarios, we aimed
to evaluate the system’s ability to maintain accurate land-
mark detection even with varying background complexities.

During testing, we examined the accuracy of landmark
detection on the target subject, focusing on the hands and
pose regions. Landmarks were considered properly dis-
played if they were correctly identified and positioned on
the subject’s anatomy.

Our analysis of the test results revealed that landmarks
were accurately drawn on the target subject 95% of the
time, meeting the specified requirement. However, the 5%
failure rate in landmark detection occurred notably in sce-
narios where humans were present in the background. The
presence of additional humans in the scene occasionally in-
terfered with landmark detection, resulting in deviations
from the expected accuracy level.

To visualize the impact of background settings on land-
mark detection accuracy, we plotted the percentage of prop-
erly displayed landmarks against the number of distractors
in the background. The plot illustrates a consistent trend
of high accuracy, with occasional deviations observed in
scenarios with multiple human distractors.

Overall, our findings demonstrate the effectiveness of
the CV/MediaPipe system in achieving the specified accu-
racy threshold for landmark detection. While the presence
of human distractors poses challenges to accuracy in certain
scenarios, the system maintains robust performance across
a range of background settings, ensuring reliable landmark
detection in most real-world situation

7.3 Results for Accuracy Requirements of
Translation

Our design requirement was that English text transla-
tions should achieve a semantic accuracy level of at least
95%. To evaluate this criterion, we employed a testing
method involving the translation of different sign language
phrases and complex sentences into English.

The initial step involved plotting the training and vali-
dation accuracy curves during the model training process.
The plotted results indicated that the training accuracy
reached approximately 97%, while the validation accuracy
reached around 94%. This observation suggests that the
model was effectively learning from the training data, as
evidenced by the high training accuracy. Furthermore, the
relatively close alignment between the training and valida-
tion accuracies indicates that the model was not overfitting
to the training data, as the validation accuracy remained
high. Therefore, based on these results, it was anticipated
that the model would perform well when tested on unseen
data, with an expected accuracy falling within the range
of the achieved training and validation accuracies. Fur-
thermore, the confusion matrix yielded promising results,
characterized by high true positive rates, low false positive
and false negative rates, and overall high accuracy. This
indicates that the model’s predictions closely aligned with
the ground truth across different classes, adding to the an-
ticipation of good real time results on unseen data.



18-500 Design Review Report - May 04 2024 Page 12 of 18

Figure 13: Training and Validation Accuracy Results

Figure 14: Confusion Matrix

Additionally, we conducted several rounds of model
training with varying configurations, including different
numbers of LSTM and dense layers, as well as adjusting
the number of epochs. Through this iterative process, we
aimed to optimize the model’s performance. Ultimately,
we found that training with epochs was ideal, as it consis-
tently yielded the highest accuracy levels without the gap
between training and validation accuracies becoming too
high. Specifically, the configuration that produced 97%
training accuracy and a 94% produced the most accurate
results during real time testing. Therefore, we selected this
configuration as the final model to be used for testing, as it
demonstrated the most promising performance character-
istics.

To perform real time testing of our system’s prediction
outputs, for each phrase, three members of our team in-
dependently signed the phrase three times, ensuring a di-
verse range of signing styles and variations. Similarly, for

complex sentences, each member signed the sentence three
times to capture the nuances of sentence structure and ex-
pression. Complex sentences were multi-phrase sentences
that could be made from our set of phrases.

During the signing sessions, we translated the signed
phrases and sentences into English text using our transla-
tion system. We then compared the translated text with
the intended meaning conveyed by the sign language ex-
pressions.

Our analysis of the test results revealed the following
accuracy rates:

• Phrases Translation Accuracy: 90%

• Sentences Translation Accuracy: 76%

These results indicate that while the translation sys-
tem demonstrates proficiency in capturing the translation
of signed phrases, although it did not reach our requirement
of 95%, it exhibits a lower accuracy level when translating
more complex sentences.

The discrepancy between the translation system’s high
accuracy in training/validation and its performance during
real-world usage via the web application likely stems from
disparities in data distribution, domain adaptation chal-
lenges, potential overfitting, and the presence of ambigui-
ties/noise in real-world data. While the system may have
been well-trained on representative examples, it may strug-
gle to generalize effectively to unseen instances encountered
in live scenarios. Variations in signing styles, environmental
conditions, and user behaviors can introduce domain shifts
that the system is not adequately adapted to handle, lead-
ing to decreased accuracy. Additionally, the system may
have become overly specialized or overfitted to the training
data, limiting its ability to generalize, while ambiguities
and noise in real-world inputs further challenge its perfor-
mance. Addressing these challenges may require strategies
such as collecting more diverse training data, enhancing ro-
bustness to domain shifts, and incorporating techniques to
mitigate overfitting and handle noise effectively.

While the achieved accuracy rates fall short of the 95%
requirement, they provide valuable insights into the sys-
tem’s strengths and areas for improvement.

Figure 15: Accuracy Results



18-500 Design Review Report - May 04 2024 Page 13 of 18

7.4 Results for Latency of Translation

The requirement stipulated that translations should be
displayed within a time frame of 1000 to 3000 milliseconds
(ms) after a gesture is detected. To assess compliance with
this requirement, we conducted tests involving each team
member performing sign language gestures three times. We
measured the time elapsed in milliseconds before the trans-
lation appeared on both the web application and the OLED
screen, representing different parts of the system.

Our results indicate that the translation latency for the
web application was approximately 2.5 seconds (2500 ms),
falling within the specified range of 1000 to 3000 ms. How-
ever, for the OLED screen component, the translation la-
tency was observed to be around 4 seconds, exceeding the
upper limit of the specified range.

The longer 4-second latency in displaying translations
on the OLED screen can be attributed to the serial com-
munication protocol and the constraints it imposes on data
transmission. When data is sent via serial communication,
it is transmitted character by character. In this case, when
translations were sent to the Arduino BLE 33 model to
be displayed on the OLED screen, each character of the
translation had to be transmitted individually. As a result,
the process of sending the entire translation letter by let-
ter introduced additional processing time. This led to the
observed 4-second latency in displaying translations on the
OLED screen.

This discrepancy suggests that there may be implemen-
tation differences or processing constraints between the web
application and the OLED screen, impacting the speed at
which translations are displayed. Further investigation is
warranted to identify potential bottlenecks or optimiza-
tions that could reduce latency and ensure timely trans-
lation delivery across all components of the system.

We weighed our options and considered potential solu-
tions to reduce the 4-second latency in displaying transla-
tions on the OLED screen. However, many of these options
would require additional processing or exploring alterna-
tive communication protocols, which could introduce com-
plexity and potentially disrupt other aspects of the system.
Since the observed latency of 4 seconds is close to our upper
bound of 3 seconds specified in the design requirement, we
decided that the current latency is acceptable for practical
use.

Figure 16: Latency Results

7.5 Results for User Satisfaction Require-
ments

In assessing our requirement for achieving 90% user sat-
isfaction, we conducted user testing sessions involving in-
vited sign language users. During these sessions, we col-
lected oral feedback and survey responses, asking them to
rate each component from 1-5, to gauge user satisfaction
with the system’s usability and overall performance. Our
results indicate that the ease of use of the web applica-
tion received a perfect rating of 5 out of 5, highlighting the
system’s intuitive interface and user-friendly design. Addi-
tionally, the ease of use of the phone attachment received
a high rating of 4.5, indicating a positive user experience
with this component. Overall, the ease of use of the en-
tire system received a rating of 4.7, reflecting a high level
of user satisfaction with the system as a whole. These re-
sults suggest that the system meets our requirement for
achieving 90% user satisfaction, as evidenced by the pos-
itive feedback and high ratings provided by sign language
users during the testing sessions.

Figure 17: User Satisfaction Results

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule is represented by our Gantt chart, Fig. 20,
and divided into 7 major sections: Hardware Device, Com-
puter Vision, Machine Learning Model, Mobile App, Test-



18-500 Design Review Report - May 04 2024 Page 14 of 18

ing & Verification, Integration, and Misc. Across them
there are 6 milestones:

1. Word Recognition
2. Real-time Recognition
3. Word Translation
4. Sentence Translation
5. Launch of Mobile App
6. Display Device

All tasks are color-coded in the Gantt chart according
to the respective team member(s) meant to handle them.
We accounted for Spring Break and buffers for integration
of parts in case of challenges and difficulties. Our schedule
changed from the design document by adding extra weeks
for final integration and mobile to web app transitioning.

8.2 Team Member Responsibilities

All tasks have been equally and reasonably distributed
to all team members according to their specialization and
enthusiasm as shown in the figure below, which derives its
calculations from Fig. 20.

Figure 18: Distribution percentages of tasks across team
members

Ran handles video processing with OpenCV and hand
and pose detection with MediaPipe, and web application
backend development.

Sejal handles the word translation ML model and sen-
tence structuring and optimization, directing the neural
network and NLP algorithm.

Leia handles the device fabrication, screen integration,
and bluetooth development, creating the final product the
user interacts with.

Integration of modules and their verification were han-
dled in pairs depending on the specific mergers, and the
complete intersectional amalgamation was tackled all to-
gether by the team. Each member was responsible for test-
ing their individual assignments, and for final verification
tests, we executed them as a team for fluid progress of the
overall project.

8.3 Bill of Materials and Budget

See Table 1 for the breakdown of purchases that make
the complete product. Our product is meant to be made
and distributed at very low costs, given its purpose for eq-
uity and diversity. The product’s total manufacturing cost
(before the divider line, exempt of the purchases below it)
came out to be $80.97 in total. The actual sum when in-
cluding purchases made for testing and unused components
was $165.47.

8.4 Risk Management

A primary risk element was possible faultiness in inte-
grating all parts into a final product. Three of our design
tradeoffs were actually risk mitigation decisions in this re-
gard: the conversion of NLP to LLM, mobile app to web
app, and cloud storage usage to local packaging. For all of
the above as described in the earlier design trade studies
section, we encountered significant difficulties in the near-
endgame stage of integration that pushed us to our fall-
back plans. They were executed with consideration of our
schedule and feasibility, cutting out risk of an unfinished or
defective project.

Ensuring the accuracy of gesture detection and sign lan-
guage translation was one of the most critical aspect of our
solution due to its fundamental role in facilitating effective
communication between users of ASL and those unfamil-
iar with it. Any inaccuracies could undermine user trust,
impede communication, and compromise the app’s overar-
ching goal of fostering accessibility and inclusivity.

To mitigate environment-based inaccuracies, we provide
an instructions page to guide users for optimal signing con-
ditions. We also set a rest gesture feature indicated by no
hands seen by the camera that indicates the end of the sen-
tence so that the user may try signing again to output a
new, more correct translation.

On the physical product side, bluetooth functionality
actually became a significant concern. During testing, the
pairing between Arduino and web app would work on some
days while on others be completely ineffective, and the lat-
ter would occasionally last for over 48 hours. Because this
occurred during the final integration phases of our sched-
ule, we considered reverting to wire connection and elimi-
nating the bluetooth feature entirely. However, fortunately
we resolved this by trying pairing web app to Arduino on
different environments such as on another team member’s
computer or using Android instead of iPhone.

9 ETHICAL ISSUES

In a worst-case scenario, our product could fail its ac-
curacy and latency requirement in a medical emergency.
Since we can never know where accidents could take place,
our web app could lose connection to the Internet in re-
mote regions. Without proper Wifi connection, our prod-
uct is unable to generate any translations, or it outputs



18-500 Design Review Report - May 04 2024 Page 15 of 18

Table 1: Bill of Materials

Description Manufacturer Quantity Cost @ Total
Arduino Nano 33 BLE Sense Rev2 Arduino 1 $40.09 $40.09
Lithium Polymer Battery Adafruit 1 $5.95 $5.95
Adafruit Li-Po Backpack Adafruit 1 $4.95 $4.95
OLED 2.42” Display Module Diymore 1 $19.99 $19.99
Breadboard Jumper Wires Kit Aypzuke 1 $9.99 $9.99
Arduino Nano 33 BLE Arduino 1 $29.69 $29.69
Lithium Polymer Battery EEMB 1 $13.89 $13.89
Adafruit Li-Po Backpack Adafruit 1 $4.95 $4.95
E-Ink 2.7” Display Module Waveshare 1 $23.99 $23.99
6in Micro USB Cable StarTech 2 $5.99 $11.98

$165.47

error-prone, largely delayed results. Moreover, people eas-
ily panic under medical emergencies, and their mental or
physical activities are severely disrupted due to pain or
extreme stress. The hardware components could also get
mechanically broken due to external forces in chaos, which
could also contribute to the serious glitch and even com-
plete dysfunction of our product.

Individuals who are deaf or hard of hearing and rely
on sign language as their primary mode of communication
would be particularly vulnerable to being on the losing
end of this harm. Since the sign language translator is
intended to facilitate communication between individuals
ASL users and non ASL users, any failure or malfunction
of the translator could disproportionately affect the deaf
or hard of hearing community. These individuals may al-
ready face communication barriers in healthcare settings,
and a breakdown in communication due to technical issues
with the translator could further compromise their access
to critical medical care, especially in regions where access
to immediate medical assistance may be limited.

Users expect to be able to confidently rely on our prod-
uct as a method of communication, but if it fails as de-
scribed in this severe edge-case scenario, then it’s inevitable
that users will feel they cannot believe in us or our tech any-
more. Moreover, considering the severity of medical emer-
gencies and the hypothetical in which users depend on our
product, a malfunction can deprive our users of their au-
tonomy since they may end up unable to communicate for
themselves if an ASL translator is unavailable.

To mitigate these potential adverse effects, we could im-
plement a progressive web app as they are able to function
offline and store data locally. Hence, even without Wifi or
some internet connection, our web app is still usable in dire
circumstances. We could additionally secure and pad the
hardware components to lessen risk of damage.

10 RELATED WORK

A simple Google search for ”ASL translators” results in
multiple one-way English to ASL translators in which sen-
tences are converted into hand symbols that spell out the

words in the ASL alphabet, but not into the actual gestures
ASL users make for the word.

There are existing efforts to further refine real-time ASL
translations for seamless communication. We find there
are public projects working on two-way communication
within open-source platforms such as Github or shared on
Youtube. However, they are either ASL alphabet recog-
nition translators or very primitive models that can only
recognize extremely few gestures, both which are not oper-
ational for full translations nor practical as they require a
user to prepare their environment, download code, and run
the program on a computer with a camera. Plus, they use
very controlled video input.

Some competing technologies are BrightSign, Hand
Talk, Slait.ai, and Jeenie. BrightSign is a glove that recog-
nizes sign language gestures through sensors and translates
them into text or spoken language. BrightSign requires
users to wear a glove, but our app + attachment solution
is portable and can be easily attached to any smartphone,
making it accessible to a wider range of users [20]. Hand
Talk is an app that translates written text or spoken lan-
guage into sign language using avatars, to encourage non-
ASL users to learn sign language. However, our solution
translates from sign language to written text to be used
reliably by ASL users [21]. Slait.ai is an application for
web and mobile that uses artificial intelligence to tran-
scribe ASL into text for the hearing person to read, and
is currently undergoing beta testing [22]. However, given
its solely software implementation, the user must be situ-
ated by a flat, stable surface to operate it. If they are on
their phone, they must figure out how to set it down or
only translate with one hand. Jeenie is an app that con-
nects users to human interpreters for real-time translation
of spoken and sign language [23]. While Jeenie provides
access to human interpreters, our app offers instant and
automated translation of sign language into written En-
glish, eliminating the need to wait for a human interpreter’s
availability.

Our approach addressing the limitations of these com-
peting technologies by prioritizing accessibility, conve-
nience, and reliability in facilitating communication be-
tween ASL users and non-ASL users.



18-500 Design Review Report - May 04 2024 Page 16 of 18

11 SUMMARY

Our system was able to meet most of the design speci-
fications. First, results for distance requirements of Medi-
aPipe landmarks showed 100% accuracy within the speci-
fied range of 1-3.9 feet. Accuracy requirements for gesture
recognition were met with landmarks properly displayed
95% of the time, though challenged by human distractors.
Translation accuracy fell slightly below the 95% require-
ment, with phrases achieving 90% accuracy and sentences
76%, attributed to domain shifts and overfitting. Transla-
tion latency met the requirement for the web application
but exceeded it for the OLED screen due to serial com-
munication constraints. User satisfaction was high, with a
perfect rating for web application usability and an overall
rating of 4.7 out of 5, indicating a successful meeting of
the 90% satisfaction requirement. To improve the system,
collecting more diverse training data and and mitigating
overfitting and noise could enhance translation accuracy.
Implementing alternative communication protocols or op-
timizing existing ones could reduce translation latency on
the OLED screen.

11.1 Future Works

11.1.1 ASL Vocabulary Expansion and Model Re-
finement

Expanding our dataset beyond the initial 10 words for
dynamic signing is essential to improve the translator’s vo-
cabulary coverage and accuracy. This expansion could in-
volve collecting more diverse sign language data, including
words spelled from static letter signing and gestures for
complex phrases or expressions. Additionally, we expect
to devote more training time to scale up the ML model
without losing accuracy, possibly through techniques such
as transfer learning or data augmentation, which will con-
tribute to improved translation quality and robustness.

11.1.2 Sign Language Linguistic Diversity

Moreover, we plan to expand our sign language recog-
nition system to include multiple sign language variants,
such as international, Chinese, Korean, and more. This ex-
pansion will involve collecting extensive datasets for each
language variant and training our models to accurately rec-
ognize gestures across diverse linguistic and cultural con-
texts. Additionally, we aim to implement adaptive learn-
ing algorithms to enhance the system’s ability to adapt to
individual user preferences and regional variations in sign
language usage. By incorporating these enhancements, we
aspire to create a more inclusive and accessible sign lan-
guage recognition solution for a global audience.

11.1.3 Speech to Text Feature

The speech-to-text feature was set as our reach goal
but we did not accomplish it eventually due to the lim-
ited time. So, we aim to integrate this feature in future

works, to provide a seamless bidirectional communication
experience for users. This addition would enable non-
ASL speakers to speak to our product in spoken language,
which is interpreted and displayed in text on the ASL user
faced side. Implementing this feature involves integrating
speech recognition algorithms and natural language pro-
cessing techniques to accurately transcribe spoken language
into text and subsequently structure the sentences.

11.2 Lessons Learned

11.2.1 Overestimation/Underestimation

During the project, we encountered instances where our
initial estimations of performance metrics and/or time re-
quired either underestimated or overestimated the actual
outcomes. For instance, while we researched on multiple
datasets and tried to expand training sources as much as
possible, we underestimated the impact of complex and
mixed datasets on prediction accuracy and latency. This
lesson highlights the importance of a thorough and realistic
assessment of potential challenges and variables that may
influence system performance.

11.2.2 Time Allocation

Effective time management proved to be essential
throughout the project progress. We learned that allocat-
ing adequate time for each phase was essential for meeting
project milestones and ensuring the quality of deliverables.
Notably, major difficulties could arise during integration, so
in order to spot issues early and spare time for a thorough
decision making, we could have continuously conducted in-
termediate integration and started early on final system
integraion.

11.2.3 What We Want vs. What Is Possible

Throughout the development process, sometimes we
found it hard to balance ambitious project goals with the
practical limitations of technology and resources. While
we aimed for over 90% translation accuracy and minimal
latency across all communication channels, we encountered
constraints such as domain shifts, overfitting, and serial
communication limitations. This experience highlights the
importance of aligning project objectives with realistic ex-
pectations, acknowledging constraints, and conditionally
refining goals based on achievable outcomes.

11.2.4 Being Resourceful

Lastly, it is essential to take an effective use of resources
from all domains. Leveraging available tools, such as al-
ternative communication protocols and optimization tech-
niques, enabled us to address translation latency issues on
the OLED screen and enhance overall user satisfaction.
This lesson underscores the significance of adaptability and
proactive problem-solving in cracking obstacles and maxi-
mizing project outcomes within existing constraints.



18-500 Design Review Report - May 04 2024 Page 17 of 18

Give Me A Sign packages the latest computer vision
and machine learning technology into a simple phone at-
tachment and mobile application. Gesture recognition and
neural networks identify and interpret a user’s movements
into proper, grammatical English text, essentially deliver-
ing live ”subtitles” of the user’s ASL to the conversant the
user is engaging with.

We expect our primary challenges are the implementa-
tions and polishing of our respective tasks. Numerous tests
will have to be repeated with incremental changes and im-
provements made, but we are prepared for these hurdles
and have established our Minimum Viable Product to be
a translator at a satisfactory level, executing basic ASL
alphabet and word recognition and text transmission.

If we complete our MVP earlier than expected, we de-
fined three reach goals to improve our product. One is to
implement a speech-to-text function so that the speaking
recipient can also communicate through text to the non-
hearing user, equalizing communication so the user does
not have to rely on reading lips or other methods for un-
derstanding. Second, integrating a signal for the end of
the user’s sentence. In settings where many people are to-
gether, this feature can be turned on or off so that other
people know the user has communicated. For the hearing
community, other people can listen and automatically face
someone to engage because of voice and noise, so this el-
ement in our product is to provide such an alert whether
by an audio notification or a blink of light. Third, adding
facial recognition because ASL incorporates much facial ex-
pression to instill meaning in its words.

Our product breaks down communication barriers with
efficiency, practicality, and portability. It require no screws,
glue, or coding efforts from the user. By propping the
phone on a surface, the front-facing camera captures the
user’s ASL and the dual-screen technology channels trans-
lations to both user and recipient. Simply put on a phone,
the product is naturally carried anywhere and everywhere,
and just as easily removable. Fulfilling values of diversity,
equity, and inclusion, Give Me A Sign aims to bridge the
speaking, deaf, and hard-of-hearing communities together.

Glossary of Acronyms

• 3D-CNN - 3D Convolutional Neural Network

• ASL – American Sign Language

• AWS - Amazon Web Service

• BLE - Bluetooth Low Energy

• CLI - Command-line Interface

• CNN - Convolutional Neural Network

• CV – Computer Vision

• FPS - Frames Per Second

• GATT - General Attribute Profile

• GPT - Generative Pre-trained Transformer

• GRU - Gated Recurrent Unit

• IDE - Integrated Development Environment

• LCD - Liquid Crystal Display

• LiPo - Lithium Polymer

• LLM - Large Language Model

• LSTM - Long Short Term Memory networks

• ML - Machine Learning

• NLP - Natural Language Processing

• OLED - Organic Light Emittion Diode

• PLA - Polyactic Acid

• RNN - Recurrent Neural Network

• RPi – Raspberry Pi

• SPI - Serial Peripheral Interface

• TTFB - Time-to-First-Byte

References

[1] NC DHHS: north carolina department of health and
human services. url: https://www.ncdhhs.gov/.

[2] What is Screen Distance? url: https://support.
apple.com/en-us/105007.

[3] Read Our Ultimate Guide To Lux vs Lumens vs
Watts For Lighting Installations | Warehouse & Fac-
tory Lighting. url: https://greenbusinesslight.
com/resources/lighting-lux-lumens-watts/.

[4] Huaizhong Zhu, Chao Deng, and Yuguang Zhu. “Me-
diaPipe based Gesture Recognition System for En-
glish Letters”. In: Proceedings of the 2022 11th In-
ternational Conference on Networks, Communication
and Computing. ICNCC ’22. New York, NY, USA:
Association for Computing Machinery, Apr. 2023,
pp. 24–30. isbn: 9781450398039. doi: 10 . 1145 /

3579895 . 3579900. url: https : / / doi . org / 10 .
1145/3579895.3579900.

[5] Anil Kag, Ziming Zhang, and Venkatesh Saligrama.
RNNs Evolving on an Equilibrium Manifold: A
Panacea for Vanishing and Exploding Gradients?
Aug. 2019. url: https://arxiv.org/abs/1908.
08574v2.

[6] Azure AI Translator | Microsoft Azure. url: https:
//azure.microsoft.com/en- us/products/ai-

services/ai-translator.

[7] Hand landmarks detection guide | MediaPipe. url:
https : / / developers . google . com / mediapipe /

solutions/vision/hand_landmarker.



18-500 Design Review Report - May 04 2024 Page 18 of 18

[8] Pose landmark detection guide | MediaPipe. url:
https : / / developers . google . com / mediapipe /

solutions/vision/pose_landmarker.

[9] OpenCV: Smoothing Images. url: https://docs.
opencv . org / 4 . x / d4 / d13 / tutorial _ py _

filtering.html#:~:text=Gaussian%20Blurring&

text = It % 20is % 20done % 20with % 20the ,

directions % 2C % 20sigmaX % 20and % 20sigmaY %

20respectively..

[10] Opencv: gesture recognition. url: https://docs.
opencv.org/4.x/d9/db7/group__datasets__gr.

html.

[11] Ruchi Manish Gurav and Premanand K. Kadbe.
“Real time finger tracking and contour detection for
gesture recognition using OpenCV”. In: 2015 Inter-
national Conference on Industrial Instrumentation
and Control (ICIC). May 2015, pp. 974–977. doi:
10 . 1109 / IIC . 2015 . 7150886. url: https : / /

ieeexplore.ieee.org/document/7150886.

[12] LLM vs. NLP: 6 Key Differences and Using Them
Together — kolena.com. url: https://www.kolena.
com / blog / llm - vs - nlp - 6 - key - differences -

and-using-them-together#llm-vs-nlp-6-key-

differencesnbsp.

[13] Core ML. en-US. url: https://docs.developer.
apple . com / documentation / coreml (visited on
05/03/2024).

[14] Leo Rover Blog - Raspberry Pi or Arduino – when
to choose which? url: https : / / www . leorover .
tech/post/raspberry-pi-or-arduino-when-to-

choose-which.

[15] Hand landmarks detection guide for Web | Medi-
aPipe. en. url: https://developers.google.com/
mediapipe/solutions/vision/hand_landmarker/

web_js (visited on 05/04/2024).

[16] 128 by 64 Dot Matrix OLED/PLED Segment/Com-
mon Driver with Controller. SSD1309. Rev 1.1.
Solomon Systech Limited. 2011. url: https://www.
hpinfotech.ro/SSD1309.pdf.

[17] Syed Fouzan Iftekar et al. “Advancements and Lim-
itations in 3D Printing Materials and Technolo-
gies: A Critical Review”. In: Polymers 15.11 (May
2023), p. 2519. issn: 2073-4360. doi: 10 . 3390 /

polym15112519. url: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC10255598/.

[18] Thingiverse.com. Modular Mounting System by
HeyVye. url: https : / / www . thingiverse . com /

thing:2194278.

[19] Nano 33 BLE. ABX00030. Rev 2, 2022. Arduino S.r.l.
2022. url: https://docs.arduino.cc/resources/
datasheets/ABX00030-datasheet.pdf.

[20] BrightSign Technology Limited. Brightsign - about
us. url: https : / / www . brightsignglove . com /

about.

[21] Hand Talk: your website accessible in ASL. url:
https://www.handtalk.me/en/.

[22] SLAIT – Real-time Sign Language Translator with
AI — slait.ai. url: https://slait.ai/.

[23] Jeenie | terms of use. Aug. 2021. url: https :/ /
jeenie.com/terms-of-use/.



18-500 Design Review Report - May 04 2024 Page 19 of 18

F
ig
u
re

19
:
A

fu
ll
-p
a
g
e
ve
rs
io
n
o
f
th
e
sa
m
e
sy
st
em

b
lo
ck

d
ia
g
ra
m

a
s
d
ep
ic
te
d
ea
rl
ie
r.



18-500 Design Review Report - May 04 2024 Page 20 of 18

F
ig
u
re

2
0
:
G
a
n
tt

C
h
a
rt


