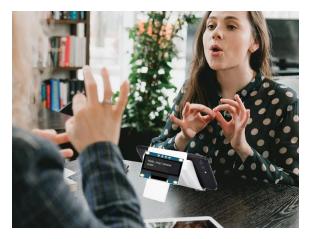

Team El: Give Me A Sign

Leia Park, Ran Fang, Sejal Madan



There exists communication barriers between the deaf community and those who are not familiar with sign language.

Our Solution:

Real-time ASL Translator App + Phone Attachment

Quantitative Design Requirements

Requirement	Quantitative/Qualitative Specifications
Person must be near camera so gestures are visible and tracked	Distance <a>: 1.0 - 3.9 ft + Brightness <a>: 10 - 500 lux [1] → Process image (resize, grayscale, normalize) and reduce noise using temporal/spatial filtering and/or background subtraction
Gesture recognition should be accurate	<u>Accuracy@: >= 95%</u> → MediaPipe hand & pose recognition (21*2+22 = 64 landmarks) ^[2]
Translation should be accurate	<u>Accuracy@: >= 95%</u> → Use hybrid of CNN for static and LSTM for dynamic signing
Translation should be relatively immediate to work as "live subtitles"	Latency <u>}: I - 3s</u> → CV frame rate: 10–15 fps + ML processing + NLP correction
Good accessibility for positive user experience for both parties involved	Satisfaction rate⇔: >=90% → Minimalistic mobile app UI/UX design + near-random sampling

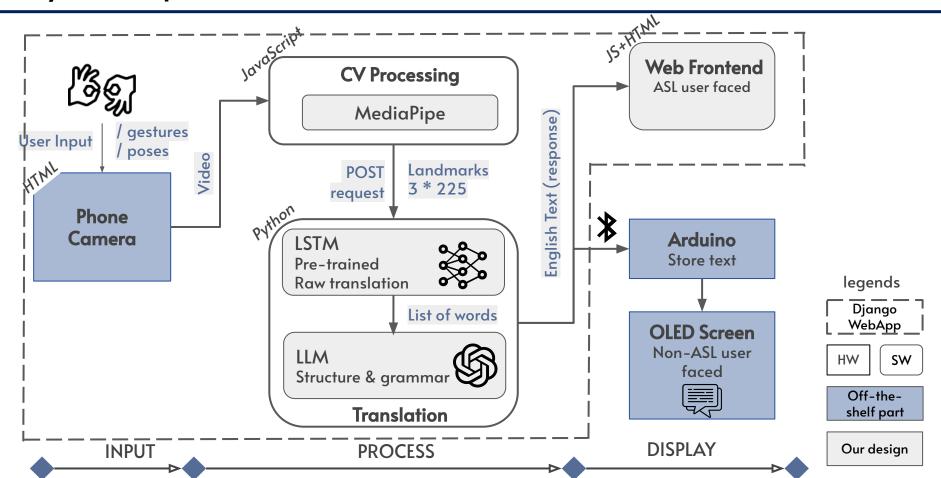
Solution Approach

Inclusivity of ASL users and for people to actively engage in conversations even with communication barriers

Our product aims to promote:

- ✓ Public Health & Welfare
- ✓ DEI & Social Support
- ✓ Accessibility

New Developments:


- Web App Conversion
- Versatility
- Local Packaging

System Specification

Complete Solution

T

GiveMeASign: Sign Language Translator

Instructions: Click 'Enable Webcam' to start your video. Once video and landmarks are loaded (might take a few seconds), start signing on the screen and watch your translated text appear. Click 'Disable Predictions' to stop predicting gestures.

ENABLE WEBCAM

https://drive.google.com/file/d/1mlokBxdzZHNwwxahjLRvPVLH6H23mJe4/view?usp=sharing

Final demo will include web app integrated with bluetooth + second screen

Test, Verification & Validation

Use-Case Metric	How we tested	Passing Metric	Results
Signing to occur I-3.9ft from the camera	 →] <u>Different distances</u> 5 samples at each interval: Ift, I.5ft, 2.0ft, 2.5ft, 3ft, 3.5ft, 4ft 	Proper landmarks should appear at <3.9 ft	Proper landmarks appear 100% of the time at distances between 1-3.9ft
High accuracy (~95%) for gesture detection	 →] <u>Different BG settings:</u> 2 samples at each trial: I-I0 distractors in the background ←] landmarks 	CV/MediaPipe should display proper landmarks of the hands and upper body 95% of the time	Landmarks are drawn on the target subject 95% of time Exceptions: humans in background
High accuracy (~95%) for sign language translation	 →] <u>Different signings:</u> 3 members sign each phrase 3 times and 3 complex sentences ←] English text 	English text should appear and be 95% accurate in semantic meaning	Phrases translation accuracy: 91.1% Sentences translation accuracy: 88.9%

Test, Verification & Validation (continued)

Use-Case Metric	How to test	Passing Metric	Results
Low latency (1–3s) in translation	 →] each team member signs each <u>phrase</u> 3 times ←] time (ms) elapsed before the translation appears 	Translation should appear 1000-3000ms after a gesture	Prediction of words appear an average of II00ms after a gesture Translation appeared an average of 2900ms after a sentence
Product user satisfaction >= 90%	 →] invite sign language users ←] oral feedback & survey results 	90% user satisfaction	Our fully integrated product is still in progress, so user satisfaction is unavailable now
Ease of phone attachment use	 →] invited sign language users ←] oral feedback & survey results 	90% user satisfaction	Our fully integrated product is still in progress, so user satisfaction is unavailable now

Design Trade-offs

- Mobile app \rightarrow Web app
 - **Bottleneck I**: <u>Real-time</u> video transmission between <u>phone camera</u> and <u>cloud</u> <u>server</u>
 - Mitigation: Discard cloud server, process everything locally in mobile app
 - Trade-off(s):
 - Increased programming complexity: 33% → 100% in Swift :
 - **Bottleneck 2**: <u>Integration</u> issues w/ keras-trained ML model (CoreML is tricky!)
 - Mitigation: Convert to a web app that can be opened up via url on the phone
 - Trade-off(s):
 - Reduced development time due to design change: 4 → 2 weeks
 - Decreased accuracy due to separation of codelayers for CV and ML 😐
 - Decreased complexity, no major compromise in functionality 😳

Design Trade-offs

- Limited Amount of Phrases
 - **Bottleneck I**: <u>Minimal</u> translations able to be generated
 - Mitigation: Focus on correctness of translations, quality over quantity
 - Trade-off(s):
 - Increased accuracy with focused batch of words: $30\% \rightarrow 90\%$ (**)
 - Decreased scope of phrases app is capable of: $20 \rightarrow 10$ phrases (2)
- NLP \rightarrow LLM
 - **Bottleneck I**: NLP requires <u>extensive training</u> of another model
 - Mitigation: Switch to LLM with OpenAl API integration instead
 - Trade-off(s):
 - Greater compatibility with our needs and current implementation 🙂
 - Decreased complexity, no major compromise in functionality 🕐

Project Management

GiveMeASign	1/29	2/5	2/12	2/19	2/26	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22	4/29	
Hardware Device														Ran	Changes due to
Product Trade Analysis & Order														Leia	design change
Arduino & BLE & OLED														S eja l	design change
Milestone 4: Display Device														Ran & Sejal	
Computer Vision														Leia & Sejal	Major changes
Video Processing														Leia & Ran	happened when we
Detect Gestures Alphabetically														All	decided to switch
Milestone 1: Accurate Recognition					•	-									
Machine Learning Model						Spring									from mobile app to
Data Collection & Models Testing						ring								1	web app.
Model Training - Word Translation						g Bre	1							1	web app.
Milestone 2: Word Translation						reak	-	•							
Model Training - Sentence + LLM															Remaining tasks before public demo:
Milestone 3: Sentence Translation						(Sla			•						
Mobile App (depreciated)						lick				Discard					public dello.
Testing & Verification						₹e								1	
Accuracy				Recog	Recog	Week)		Translation	Translation					1	- Integrate OLED screen - Improve web app UI
Latency						Ŭ					Sentence				
Various Skin Tone, Hand Size, etc.											2				
ntegration															- Collect more user
WebApp Development	1														experience feedback
CV and ML															
Phone and LCD Screen															*Speech-to-text
System Integration															
Post-MVP: Speech-to-text															

- Lessons Learned
 - 1. Overestimation/Underestimation 🤸
 - 2. Time Allocation 🕓
 - 3. What We Want vs. What Is Possible 🏠
 - 4. Being Resourceful 🛠

Through a **simple and sleek** phone attachment and combined web app, we can **break down language barriers** and ensure **accessibility** for deaf and hard of hearing community