Team El: Give Me A Sign

Leia Park, Ran Fang, Sejal Madan

There exists communication barriers between the deaf community and those who are not familiar with sign language.

Our Solution:

Real-time ASL Translator App + Phone Attachment

Quantitative Design Requirements

Requirement	Quantitative/Qualitative Specifications
Person must be near camera so gestures are visible and tracked	Distance
Gesture recognition should be accurate	<u>Accuracy@: >= 95%</u> → MediaPipe hand & pose recognition (21*2+22 = 64 landmarks) ^[2]
Translation should be accurate	<u>Accuracy@: >= 95%</u> → Use hybrid of CNN for static and LSTM for dynamic signing
Translation should be relatively immediate to work as "live subtitles"	<u>Latency え: I – 3s</u> → CV frame rate: 10–15 fps + ML processing + NLP correction
Good accessibility for positive user experience for both parties involved	<u>Satisfaction rate⇔: >=90%</u> → Minimalistic mobile app UI/UX design + near-random sampling

Solution Approach

Inclusivity of ASL users and for people to actively engage in conversations even with communication barriers

Our product aims to promote:

- ✓ Public Health & Welfare
- ✓ DEI & Social Support
- ✓ Accessibility

Evolved from proposal (Reach goals):

- Speech to text
- Signal end of sentence
- Facial recognition

Hardware Implementation Hello, may I please order... power 2 3 (4) Li-Ion Hello, may I please order... (1) Arduino Model: Nano 33 BLE \bigcirc Bluetooth connected to SW \bigcirc **2 OLED screen** (Alternative: LCD) Hello, may I please Diagonal size: 2.42" order... 0 (3) Li-lon battery 3.7V 1600mAh Rechargeable Ο **Phone attachment** (**4**) 3D printing prototype Ο

Adjustable

Software Implementation

Integration Plan

Test, Verification & Validation

Use-Case Metric	How to test	Passing Metric	Risk Mitigation
Signing to occur I-3.9ft from the camera	 →] live signing & pose into camera at <u>different distances</u> ←] landmarks 	Proper landmarks should appear at <3.9 ft	- Investigate potential factors (camera resolution, lighting conditions, etc.) and adjust accordingly
High accuracy (~95%) for gesture detection	 →] live signing & pose into camera w/ various <u>distractions</u>, <u>lighting</u>, <u>backgrounds</u> ←] landmarks 	CV/MediaPipe should display proper landmarks of the hands and upper body 95% of the time	 Optimize <u>MediaPipe params</u> Enhance <u>noise reduction</u> Provide <u>user guidance</u> on optimal signing conditions
High accuracy (~95%) for sign language translation	 →] live signing of singular words & complex sentences ←] English text 	English text should appear and be 95% accurate in semantic meaning	 Refine translation algorithms Expand the training <u>dataset</u>

Test, Verification & Validation (continued)

Use-Case Metric	How to test	Passing Metric	Risk Mitigation
Low latency (I–3s) in translation	 →] live signing / recording into camera ←] time (ms) elapsed before the translation appears 	Translation should appear 1000–3000ms after a gesture	 Experiment on and assess different algorithms before implementation Test <u>cloud</u> transmission speed on dynamic data
Product user satisfaction >= 90%	 →] invited sign language users ←] oral feedback & survey results 	90% user satisfaction	- Redesign the UI to improve clarity and intuitiveness
Ease of phone attachment use	 →] invited sign language users ←] oral feedback & survey results 	90% user satisfaction	- Redesigning attachment mechanism to improve comfort and convenience * Pivot: Laptop-based app

Project Management

Ran

Video processing with openCV Hand & pose detection with mediaPipe

Sejal

Word translation ML model Sentence structuring and optimization

Leia

LCD screen integration Device fabrication Mobile app front end design

Conclusion

Through a simple and sleek phone attachment and combined mobile app, we can break down language barriers and ensure accessibility for deaf and hard of hearing community

References:

[1] https://greenbusinesslight.com/resources/lighting-lux-lumens-watts/

- [2] Amit, M. L., Fajardo, A. C., & Medina, R. P. (2022). Recognition of real-time hand gestures using mediapipe holistic model and lstm with mlp architecture. 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC), 292–295. https://doi.org/10.1109/ICSPC55597.2022.10001800
- [3] Zhu, H., Deng, C., & Zhu, Y. (2023). Mediapipe based gesture recognition system for english letters. Proceedings of the 2022 11th International Conference on Networks, Communication and Computing, 24–30. https://doi.org/10.1145/3579895.3579900

[4] What is time to first byte & how to improve it. (n.d.). Sematext. Retrieved February 18, 2024, from https://sematext.com/glossary/time-to-first-byte/
 [5] https://web.dev/articles/ttfb#:~:text=As%20a%20rough%20guide%2C%20most.on%20the%20metrics%20that%20matter