Carnegie Mellon University

Team E0: Focus Tracker App

Arnav Arora, Karen Li, Rohan Sonecha

Solution Approach

- **Real-time monitoring** of flow and focus states, distracted behaviors, and environmental distractions
- Measure flow and focus states using **EEG headset**, and distractions using **camera**
- Identify distracted behaviors and environmental distractions
 - Yawning, sleeping, off-screen gazing, phone pick-ups, disruptions from others, user leaving the workspace
- Dashboard to visualize focus level and distractions over **historical work sessions**
- Summarize top distractions and behaviors for a given work session

Solution Approach

Use-Case and Design Requirements

Flow State Accuracy	F-score ≥ 0.7 (across multiple test sets) Recall ≥ 0.9 (across multiple test sets) Prominent features in model match <u>existing EEG flow state research</u>
Focus State Accuracy	F-score ≥ 0.7 (across multiple test sets) Recall ≥ 0.9 (across multiple test sets) Prominent features in model match <u>existing EEG focus state research</u>
Usability and Usefulness	≥90% of users find the user experience to be seamless and easy to use
Distraction and Distracted Behavior Detection	F-score ≥ 0.7 Recall ≥ 0.9
Real-time Monitoring	Solution States Stat

Complete Solution

AI meets opera: A new blended class at CMU yields insights on music and flow | Pittsburgh Post-Gazette

Quantitative Tests

	Yawning	Sleeping	Off-Screen Gaze	Phone Pick-Up	Other People	User Away
Recall	0.96	0.98	0.92	0.90	0.92	1.00
F-Score	0.94	0.97	0.96	0.95	0.96	0.84
Met						

- Test among 5 different users
- Engage in each behavior 10 times over 10-minute session
- Record number of true positives, false positives, and false negatives

Precision = $\frac{TP}{TP + FP}$ Recall = $\frac{TP}{TP + FN}$

F1 Score = $\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

- Target
 - **Recall ≥ 0.9**
 - **F-score ≥ 0.7**

Quantitative Tests (cont.)

Metric	Test	Target	Actual	Met
YOLOv8 Phone Object Detection	Evaluate model on test set (15 different phones)	Recall ≥ 0.9 F-score ≥ 0.7	Recall = 0.9 F-score = 0.93	
Data Capture & Analysis Latency	Measure video processing speed Measure model evaluation time	≤ 3s delay between data capture and analysis	0.1s to process each video frame focus state model: 4 μs flow state model: 7 μs	
Usability and Usefulness	Survey users on usability and usefulness	≥90% of users find app usable and useful	90% of users find app usable and useful	
				negie lon versity

Quantitative Tests (cont.)

Metric	Test	Target	Actual	Met
Flow State	Test data from same recordings as train/validation (music setting)	Recall ≥ 0.7 F1 Score ≥ 0.9	Recall: 0.9205 F1 Score: 0.9151	
	setting, subject not included in training)		Recall: 0.6415 F1 Score: 0.6896	×
Focus State	Test data from same recordings as train/validation (work setting)	Recall ≥ 0.7 F1 Score ≥ 0.9	Recall: 0.9141 F1 Score: 0.9199	
	Test data from new recording (work setting, subject included in training)		Recall: 0.5570 F1 Score: 0.6004	×

Brain State Model Explainability

POW.Pz.Theta POW.AF3.Gamma POW.AF4.Gamma POW.AF4.Alpha POW.Pz.Gamma POW.AF4.Theta POW.Pz.Alpha POW.AF4.BetaH POW.AF3.Betal POW.AF3.Alpha POW.AF3.Theta POW.AF3.Betah POW.Pz.Betal POW.AF4.Betal POW.Pz.BetaH 0.00 0.02 0.04 0.06 0.08 0.10 mean([SHAP value]) (average impact on model output magnitude)

Focus SHAP values

Trade-Offs (Flow State Classification)

	Thresholding Approach	SVM Classifier	Neural Network Classifier
Pros	Simple to implement and understand Backed by existing research	Linear classifier is easy to implement, visualize, and understand Backed by existing research	Can pick up on non-linear relationships between features and flow vs not in flow brain state Explainable via SHAP values
Cons	The average/stdev power values for flow vs not in flow were not distinct enough	Our input features for flow vs not in flow were not linearly distinguishable	Prone to overfitting

Trade-Offs (Distraction Detection)

Binary Image Classification	DLib Face Detection and Landmarking	MediaPipe Face Detection and Landmarking
 Requires large amounts of data collection and labelling No need to understand facial features/key facial landmarks 	 Requires calibration/thresholding Requires understanding of key facial landmarks 60 fps 68 2D face landmarks 	 Requires calibration/thresholding Requires understanding of key facial landmarks Hand landmarking for phone pick-ups 120 fps 468 3D face landmarks

