

Team E0: Focus Tracker App

Arnav Arora, Karen Li, Rohan Sonecha

The Problem and Solution

The Focus Tracker App helps users **measure their focus levels and associated distractions** during work sessions and **provides feedback and data** to users. We will **inform users**, allowing them to understand how their focus varies over time and what is holding them back. This **empowers users to take actionable steps to improve their focus**.

Solution Approach

- **Real-time monitoring** of focus levels, distracted behaviors, and environmental distractions
- Measure focus levels using **EEG headset**, and distractions using **camera**
- Identify distracted behaviors and environmental distractions
 - Yawning, microsleeps, off-screen gazing, background motion, phone pick-ups, disruptions from others, room lighting
- Dashboard to visualize focus level and distractions over **historical work sessions**
- Summarize **productivity score**, **top distractions**, **and behaviors** for a given work session

Use-Case Requirements

Focus State and Productivity Score Accuracy	≥90% of users find the Focus State/Productivity Score match personal assessment [1]
Usability and Usefulness	≥90% of users find the user experience to be seamless and easy to use
Distraction and Distracted Behavior Detection	F-score ≥ 0.7 (industry standard) Recall ≥ 0.9
Real-time Monitoring	≤ 3s delay between data capture and analysis (some latency is acceptable)

Technical Challenges

EEG-based Focus State Detection	 Emotiv performance metrics (stress, relax, interest, etc.) Collab w/ focus-detection professional Prof. Jocelyn Dueck Risk mitigation Microphone-based distraction detection LLM-based suggestions for focus improvement
Distraction and Behavior Detection	 Achieving an F-score ≥ 0.7, recall ≥ 0.9 for classifiers Creating a diverse and high-quality dataset
Data Capture and Analysis Latency	 ≤3 latency between data capture and analysis Optimize neural network for simplicity while maintaining high accuracy
Defining a Holistic Productivity Score	 Incorporate multiple signals Higher score for better productivity

Implementation

• Software Systems

- React (Frontend)
- Django, PostgreSQL (Backend)

Machine Learning and Signal Processing

- Python, NumPy, TensorFlow
- OpenCV
- MediaPipe
- EmotivPRO EEG headset SDK/API

Hardware Systems

- Emotiv EEG headset
- Camera

800

Existing

Library

Hardware

Designed

Algorithm

Frontend

Backend

Testing, Verification, & Metrics

Requirement	Validation Method	Metric
Focus Level and Productivity Score Accuracy	Survey users [1] User study	≥90% of users find the Focus Level/Productivity Score match personal assessment [1] Measure focus levels in distracting and non-distracting environments
Usability and Usefulness	Survey users	≥90% of users report little to no issues with the setup ≥90% of users find the user experience to be seamless and easy to use

Testing, Verification, & Metrics

Requirement	Validation Method	Metric
Distraction and Distracted Behavior Detection	Check for correct classification of distractions and behaviors by binary classifiers	F-score ≥ 0.7 Recall ≥ 0.9
Real-time Monitoring	Measure latency between data capture and data analysis (record timestamps)	≤3 second latency

Tasks and Division of Labor

- Frontend and UI Design
- Backend Integration

- Camera-based Detection, Identify & Classify:
 - Distracted Behavior
 - Environmental Distractions

- EEG Headset-based Signal Processing:
 - Process EEG Input Signals to Detect Focus State
 - Compute Time spent in Focused State

Schedule

