Team E0: Focus Tracker App Arnav Arora, Karen Li, Rohan Sonecha ### The Problem and Solution The Focus Tracker App helps users **measure their focus levels and associated distractions** during work sessions and **provides feedback and data** to users. We will **inform users**, allowing them to understand how their focus varies over time and what is holding them back. This **empowers users to take actionable steps to improve their focus**. ### **Solution Approach** - **Real-time monitoring** of focus levels, distracted behaviors, and environmental distractions - Measure focus levels using **EEG headset**, and distractions using **camera** - Identify distracted behaviors and environmental distractions - Yawning, microsleeps, off-screen gazing, background motion, phone pick-ups, disruptions from others, room lighting - Dashboard to visualize focus level and distractions over **historical work sessions** - Summarize **productivity score**, **top distractions**, **and behaviors** for a given work session # **Use-Case Requirements** | Focus State and Productivity Score Accuracy | ≥90% of users find the Focus State/Productivity Score match personal assessment [1] | |--|---| | Usability and Usefulness | ≥90% of users find the user experience to be seamless and easy to use | | Distraction and Distracted Behavior
Detection | F-score ≥ 0.7 (industry standard)
Recall ≥ 0.9 | | Real-time Monitoring | ≤ 3s delay between data capture and analysis (some latency is acceptable) | # **Technical Challenges** | EEG-based Focus State Detection | Emotiv performance metrics (stress, relax, interest, etc.) Collab w/ focus-detection professional Prof. Jocelyn Dueck Risk mitigation Microphone-based distraction detection LLM-based suggestions for focus improvement | |--|--| | Distraction and Behavior Detection | Achieving an F-score ≥ 0.7, recall ≥ 0.9 for classifiers Creating a diverse and high-quality dataset | | Data Capture and Analysis Latency | ≤3 latency between data capture and analysis Optimize neural network for simplicity while maintaining high accuracy | | Defining a Holistic Productivity Score | Incorporate multiple signals Higher score for better productivity | ### **Implementation** #### • Software Systems - React (Frontend) - Django, PostgreSQL (Backend) #### Machine Learning and Signal Processing - Python, NumPy, TensorFlow - OpenCV - MediaPipe - EmotivPRO EEG headset SDK/API #### Hardware Systems - Emotiv EEG headset - Camera 800 Existing Library Hardware Designed Algorithm Frontend Backend ## **Testing, Verification, & Metrics** | Requirement | Validation Method | Metric | |--|-----------------------------|---| | Focus Level and Productivity Score
Accuracy | Survey users [1] User study | ≥90% of users find the Focus Level/Productivity Score match personal assessment [1] Measure focus levels in distracting and non-distracting environments | | Usability and Usefulness | Survey users | ≥90% of users report little to no issues with the setup ≥90% of users find the user experience to be seamless and easy to use | ## **Testing, Verification, & Metrics** | Requirement | Validation Method | Metric | |--|--|-------------------------------| | Distraction and Distracted Behavior
Detection | Check for correct classification of distractions and behaviors by binary classifiers | F-score ≥ 0.7
Recall ≥ 0.9 | | Real-time Monitoring | Measure latency between data capture and data analysis (record timestamps) | ≤3 second latency | ### Tasks and Division of Labor - Frontend and UI Design - Backend Integration - Camera-based Detection, Identify & Classify: - Distracted Behavior - Environmental Distractions - EEG Headset-based Signal Processing: - Process EEG Input Signals to Detect Focus State - Compute Time spent in Focused State ### Schedule