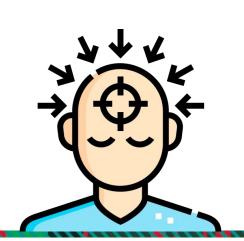
Carnegie Mellon University

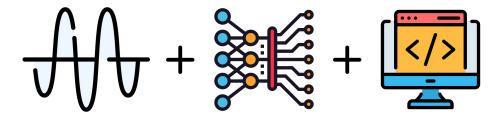
Team E0: Focus Tracker App

Arnav Arora, Karen Li, Rohan Sonecha

The Problem

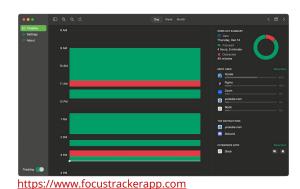
Do you find yourself distracted and unable to stay focused for long periods of time?


The typical student is **distracted for at least five out of every 15 minutes** they set aside to study [1].



The Solution

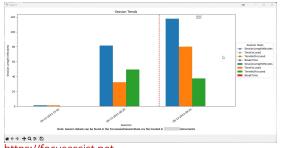
The Focus Tracker App helps users **measure their focus levels and associated distractions** during work sessions and **provides feedback and data** to users. We will **inform users**, allowing them to understand how their focus varies over time and what is holding them back. This **empowers users to take actionable steps to improve their focus**.



Existing Solutions

Focus Time Tracker

- Tracks time spent in certain apps
- No focus level or distraction metrics
- Exclusive to Mac


Forest

- Locks user out of phone during session
- Track session length
- No focus level or distraction metrics

Focus Assist

- Detects distractions and focus time
- Unintuitive UI
- **Exclusive to Windows**

Carnegie Mellon

University

https://focusassist.net

Use-Case Requirements

- Focus Level and Productivity Score Accuracy
 - ≥90% of users find the Focus Level/Productivity Score match personal assessment
- Usability and Usefulness
 - ≥90% of users find the user experience to be seamless and easy to use
- Distraction and Distracted Behavior Detection
 - \circ F-score ≥ 0.7 (industry standard)
- Real-time Monitoring
 - \circ \leq 3s delay between data capture and analysis (some latency is acceptable)

Technical Challenges

Defining a Holistic Productivity Score

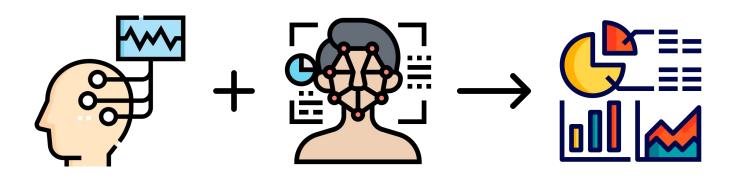
- Desirable Properties
 - incorporate multiple signals
 - higher score for better focus
 - value between 0 and 100

Achieving an F-score ≥ 0.7 for Binary Classifiers

- Creating a diverse and high-quality dataset
- Precision "Of all the instances the model labeled as positive, how many are actually positive?"
- Recall "Of all the positive instances in the data, how many did the model correctly identify?"

• Achieving ≤ 3s Latency between Data Capture and Analysis

- o Optimize neural network for simplicity while maintaining high accuracy
- Efficiently combine inputs from camera and EEG


• Risk Mitigation

Alternative formats to convey work session metrics

Solution Approach

- **Real-time monitoring** of focus levels, distracted behaviors, and environmental distractions
- Measure focus levels using EEG headset, and distractions using camera
- Identify distracted behaviors and environmental distractions
 - Phone pick-ups, off-screen gazing, yawning, interactions with others, and visual distractions
- Dashboard to visualize focus level and distractions over historical work sessions
- Summarize **productivity score**, **top distractions**, **and behaviors** for a given work session

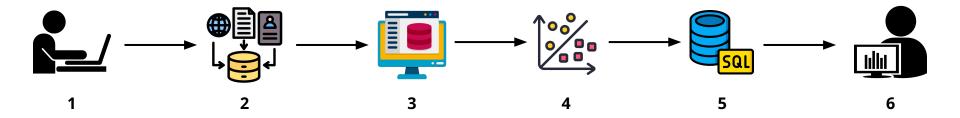
Solution Approach (cont.)

Software Systems

- React (Frontend)
- Django, PostgreSQL (Backend)

Machine Learning and Signal processing

- Python, Pandas, NumPy, TensorFlow (Feature Engineering & Model Training)
- Google Cloud Al Platform (Model Deployment)
- WebGazer.js, PyGaze (Eye-Tracking)
- EEG headset SDK/API



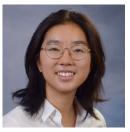
Hardware Systems

- FFG headset
- Camera

Flow Chart

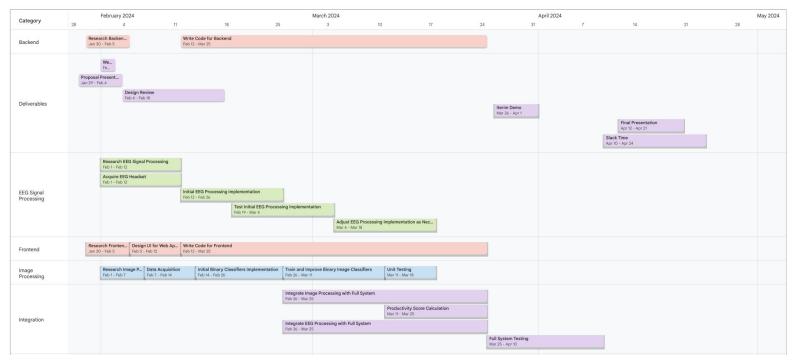
- **1.** User accesses web application
- **2.** Data collection (from hardware components)
- **3.** Data sent to backend
- **4.** Model classification
- **5.** Update database + send real-time updates to frontend
- **6.** User interacts with dashboards

Testing, Verification, & Metrics


Requirement	Validation Method	Metric
Focus Level and Productivity Score Accuracy	Survey users [1]	≥90% of users find the Focus Level/Productivity Score match personal assessment
Usability and Usefulness	Survey users	≥90% of users report little to no issues with the setup ≥90% of users find the user experience to be seamless and easy to use
Distraction and Distracted Behavior Detection	Check for correct classification of distractions and behaviors by binary classifiers	F-score ≥ 0.7
Real-time Monitoring	Measure latency between data capture and data analysis	≤3 second latency

Tasks and Division of Labor

- Frontend and UI Design
- Backend Integration


- Camera-based Detection, Identify & Classify:
 - Distracted Behavior
 - Environmental Distractions

- EEG Headset-based Signal Processing:
 - Process EEG Input Signals to Detect Focus State
 - Compute Time spent in Focused State

Schedule

