
1
18-500 Final Project Report: Traffix 05/03/2024

Traffix
Ankita Chatterjee, Kaitlyn Liu, Zina Zarzycki

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Current fixed-interval traffic light implementations
can be time-consuming and inefficient, making commuters wait
for long periods of time in low-traffic situations. Traffix presents
an optimized solution that uses camera footage from each side of
an intersection to determine the number of cars and pedestrians
on each side of an intersection and calculate the optimal light
timing interval accordingly. This will reduce the average wait
time of both cars and pedestrians at intersections, especially in
sudden high traffic scenarios operating on fixed-interval light
timings.

Index Terms—Computer Vision, Machine Learning, Object
Detection, Optimization, Printed Circuit Board, PyTorch,
Q-learning, Reinforcement Learning, Traffic

I. INTRODUCTION

THE average American spends two-and-a-half work weeks

in traffic per year. Congestion at intersections fluctuates
frequently throughout the course of a day, and most traffic
lights cannot anticipate sudden variations in traffic flow. This
is especially evident in scenarios where roads are closed and
detours are in place or other events that cause drastic changes
in traffic density over a short period in time. This can include
high density traffic scenarios such as road closures and detours
as well as community events that cause an increase in traffic
flow to a specific location.

Traffix aims to reduce traffic congestion by creating a
smart traffic light that leverages machine learning and
computer vision to identify cars and pedestrians at
intersections and dynamically calculate light interval times
using a Q-learning algorithm. This will benefit drivers by
reducing wait times in traffic as well as benefit the city by
providing a lasting system that increases city efficiency as the
online machine learning model adapts to changes in traffic
over time.

Although many cities have implemented traffic sensors that
sense when no cars are present at a side of an intersection,
then allowing the perpendicular traffic light to turn green,
Traffix aims to provide optimization at another level by
calculating future traffic through the use of API calls as well
as an online machine learning model.

Even Los Angeles, one of the most congested cities in
America, has made attempts to synchronize traffic lights using
a system of induction sensors, however no attempts to use
machine learning to optimize traffic have been made. The

California Department of Transportation has indicated a need
for AI to help reduce traffic, suggesting a need for a system
like Traffix to optimize traffic using machine learning [1].

Overall, Traffix aims to leverage the power of machine
learning to calculate and predict the most optimal light
intervals to minimize wait times for commuters overall.

II. USE-CASE REQUIREMENTS

Because transportation networks can result in such a wide
variety of dynamic real-world scenarios, it’s important for us
to carefully narrow the scope of our particular project and
define some metrics that can help us evaluate the success of
our final product. First of all, the exact physical layout that we
are aiming to simulate is a four-pronged, two-way, two-lane
intersection with traffic lights without protected left turns. To
help visualize this, you can think about the Fifth and Craig
intersection a few blocks from campus, as shown in Fig. 1.
below. Additionally, we are only going to be considering
day-time and high-visibility scenarios, because it will be too
difficult to process low-light camera footage given this
course’s constraints.

Fig. 1. Google Maps satellite image of Fifth & Craig intersection with
traffic overlay.

We have decided to focus our optimization efforts on
situations in which there are at most 20 cars on each side of an
intersection, with any scenarios above that being lumped
together in our algorithms.

The most vital metric to aim for will be achieving a 10%
reduction in average wait time as compared to a fixed-timing
traffic light implementation, which we will measure using
simulations. This is to ensure that commuters do in fact
experience an efficiency improvement with our system. Lastly,
we will need to ensure that our system adheres to all existing
traffic laws to avoid creating unsafe scenarios for drivers and
pedestrians.

2
18-500 Final Project Report: Traffix 05/03/2024

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 2. A block diagram of the overall system.

Fig. 3. Camera setup configurations. The color of each highlighted section
corresponds to the camera that will be filming it. We went with a
4-camera setup.

The overall architecture of the system is described in Fig. 2
above. We did not end up using video feed from internet
protocol (IP) cameras placed at each side of the intersection
(as shown in Fig. 3), as we had difficulties accessing the RTSP
(real-time streaming protocol) URL from the Raspberry Pi 4B.
Instead, for demonstration purposes, we filmed videos on all 4
sides of the intersection at the same time, which was then
processed using our object detection algorithm to obtain
vehicle and pedestrian counts. Those counts would ideally be
used along with traffic flow data from calls to the TomTom
Traffic API by our optimization algorithm to determine
whether or not the light should change state. The adjusted light

state is used by the SUMO simulation, which computes the

state used by the SUMO simulation, which computes the wait
times of each car at the intersection. Those values are fed back
into the optimization algorithm. We also communicate the
updated light state at each simulation step to the traffic light
circuit, on which the corresponding LEDs light up
accordingly.

There are three main parts to this system: the object
detection model, the optimization algorithm running on the
RPi, and the traffic light mockup circuit.

We ended up not fully integrating the object detection model
with the optimization algorithm in our final demonstration for
two reasons.

The first was that the latency of the object detection model
when run on the RPi fell very far short of our latency
requirements, to the point where it would compromise the
accuracy of our simulation. The overhead added by processing
each video frame would have added more than ten seconds of
delay to the simulation, which is supposed to match real-time
conditions as closely as possible.

The second reason is that the cars and pedestrians detected
in the pre-recorded videos do not match the behavior expected
by the simulation, as they move according to the actual light
timings and not those calculated by our optimization
algorithm. As a result, the wait times calculated by the
simulation would not be accurate.

Instead, we included a user interface for the simulation that
would prompt the user every minute to specify how many cars
and pedestrians to simulate on each side of the intersection.

3
18-500 Final Project Report: Traffix 05/03/2024

This served as a stand-in for the object counts determined by
the detection model, and we demonstrated the detection model
separately.

The object detection algorithm uses the YOLOv3 pre-
trained classifier instead of a Haar cascade classifier to
determine the number of vehicles and pedestrians waiting at
each side of the intersection.
The optimization algorithm uses the vehicle and pedestrian

counts from the object detection algorithm (for current traffic
at the intersection) as well as traffic flow data obtained from
API calls to the TomTom Traffic API (for future traffic at the
intersection) to determine when the light should change. The
SUMO traffic simulation platform is used to train the
optimization model, since we used it to obtain the average
wait time for cars and pedestrians. This metric is the reward
function for the Q-learning model we employ for the
optimization.

The traffic light mockup circuit consists of a
custom-designed printed circuit board (PCB) mounted on an
Arduino Uno. The RPi communicates with this circuit via a
Serial connection to the Arduino, telling it when to change
traffic light state. These light changes are reflected in the LED
intersection on the PCB.

In our final product, the principles of engineering that we
used the most were breaking down a large system into
multiple different components that could be worked on and
debugged separately, then integrated together once complete.
We also implemented a Q-learning optimization model,
experimenting with different action and state representations
to determine what implementation would give us the best
optimization.

Many of the principles of mathematics that we used came
into play for our object detection model, where we used
geometric concepts in 3-dimensional spaces to determine lane
boundaries for each side of the intersection. Using those
concepts, we were able to only include cars detected within
our specified lane boundaries in our final counts.

The main applications of principles of science in our project
had to do with testing and data collection. In accordance with
the scientific method, we made sure to design our testing
approaches in such a way that we were only manipulating one
variable at a time. For example, when we tested our system’s
wait-time reduction, we held all variables constant in the
simulation besides the swap between controlling the light
timings with a fixed-time interval and our algorithm.
Additionally, we made sure to collect different sets of data for
the purposes of testing our object detection model.

IV. DESIGN REQUIREMENTS

We have compiled a list of various design requirements that
we need to meet in order to satisfy the use case requirements
we highlighted in section 2.

For our overall system, we want to keep the total delay (i.e.
the time between initial frame capture and calculation of
traffic light state change) below five seconds, as we intend to
recalculate the light state every five seconds. We were
conservative with this requirement as we do not yet know
what kind of overhead we will see with both the object
detection and optimization algorithms running on the
Raspberry Pi. Five seconds is a period of time that is short
enough for traffic conditions to remain mostly the same but
long enough to account for any unanticipated overhead.

For our object detection algorithm, we want to be 90%
accurate with the number of cars that we detect on each side of
the intersection and 80% accurate with the number of
pedestrians. This is in order to satisfy our requirement that the
commuters that interact with our system feel that the light
timings reflect actual traffic density conditions. Similarly, our
object detection algorithm should be able to detect at least 10
cars on each side of the intersection to ensure that the system
works in relatively high-traffic conditions.

Our optimization algorithm must demonstrate a 10%
reduction in average wait time (for both cars and pedestrians)
as compared to a simulated fixed-time light implementation
using the same vehicle and pedestrian counts over multiple
traffic cycles (2-5). This is to meet our requirement that there
is in fact a noticeable improvement in wait time for
commuters and pedestrians that use our system, and that the
objective of our system — to make traffic light
implementations more time-efficient — is satisfied.

We also want to ensure the accuracy of our traffic light
mockup circuit. It must accurately reflect the optimization
algorithm output (i.e. lights should change state when the
algorithm determines they should), and the delay between the
state change determination and the physical light change must
be less than 0.5 s in order to ensure timely reflection of the
current conditions.

Finally, we want to ensure that our system meets our safety
requirement, which is that no two perpendicular lights are
green at the same time. In other words, our optimization
algorithm must guarantee that perpendicular lights do not
overlap their green light intervals. We also want to make sure
that we have a “minimum” time for each light to be green so
that vehicles and pedestrians alike are given enough time to
cross; this minimum time will depend on average vehicle
velocity through the intersection and be determined through
traffic simulations for the intersection we have chosen for our
system, Fifth and Craig.

4
18-500 Final Project Report: Traffix 05/03/2024

TABLE I. SPECIFICATION VS REQUIREMENTS

Specification Requirement

Average wait time > 10% reduction

Object detection accuracy 90% vehicles, 80% pedestrians

Object detection range ≥ 10 vehicles on each side

System latency < 5 s

Traffic Light Mockup Accuracy 100%

Safety 0 overlapping green lights

V. DESIGN TRADE STUDIES

A. Raspberry Pi 4 Model B vs. NVIDIA Jetson Nano
Because a large part of our project used the OpenCV

framework and we trained and ran various different machine
learning models, we seriously considered using the NVIDIA
Jetson Nano due to its more powerful hardware.

However, the Raspberry Pi has stronger community support
and none of our group members have experience with the
Jetson platform. Furthermore, because we’ll be making API
calls from the RPi and interfacing with the SUMO simulation
platform, the flexibility provided by the Raspberry Pi was
preferable for our uses.

In hindsight, it may have been worth investigating the
Jetson option further, as the object detection model was too
computationally complex for the Raspberry Pi 4B to handle.

B. Haar Cascade Classifiers vs. YOLOv3 Model vs.
YOLOv4 Model

For our object detection models, we chose to use Haar
cascade classifiers rather than the more complex YOLOv3 or
YOLOv4 models. In general, the YOLO models boast a higher
accuracy than Haar cascades, especially in complex scenes.
They are also able to detect objects at various sizes, rotations,
and light conditions, while Haar cascades tend to be limited to
detecting objects at specific lighting and positions.

On the other hand, Haar classifiers are far less
computationally intensive than the YOLO models, which was
a big plus considering our limited compute power.
Ultimately, we went with the YOLOv3 model because the

accuracy of the Haar classifier was nowhere near meeting our
design requirements (the accuracy was less than 50% due to
an abundance of false positives in each frame.) We tested the
YOLOv4 model as well, but the accuracy matched that of the
YOLOv3 model (~90%) and the overall latency was higher
(~6 seconds to process one frame as compared to ~4 seconds.)

C. Q-learning vs. Model Predictive Control
For our optimization algorithm, we examined many

different solutions but mostly focused on machine learning
versus model predictive control (MPC). After looking into
MPC more thoroughly, we realized that it would be a great
way to model traffic and allow us a lot of control over the
constraints of the system, however we would need an accurate
traffic model, which we cannot obtain even with simulation
softwares and API data. Additionally, machine learning is
much more adaptable to change over time and does not require
an accurate traffic model. Existing literature comparing the
two algorithms indicates that Q-learning is more effective
when we lack a precise mathematical model to mimic the
system [2].

We ultimately chose deep Q-learning for our specific type of
machine learning model because it can handle complex
scenarios and is a form of unsupervised learning, which is
necessary in our scenario since we would not need to label
what traffic timings are the most optimal ourselves. Instead,
Q-learning allows us to implement a reward function based off
of the wait time generated by our simulation software.

D. SUMO vs Aimsun
We chose to use SUMO as a starting point for traffic

simulation in our project because existing research used this
software for machine learning and saw successful results [3].
SUMO is also a free software and is open source, so we can
make modifications to the code if we need to as well. We also
believe that the TraCI library that comes with this software
makes it easy for us to integrate with our optimization
algorithm and allows us to train our model easily. We can use
the TraCI library to programmatically step through and control
the simulation and use the simulation to generate the average
wait time of cars in the intersection for our optimization
algorithm’s reward function.

We also looked into Aimsun, another urban planning
software that has similar features to SUMO but is commercial
and more user friendly than SUMO. We ultimately decided not
to use Aimsun for the time being because the student version
provides limited features, however if we feel that SUMO is
not sufficient or lacks documentation, we may switch to
Aimsun. Aimsun also has a scripting library called Aimsun
Next which would act similarly to TraCI if we decided to use
Aimsun over SUMO, however we found that Aimsun Next
does not have the function calls well documented to
demonstrate possible inputs unlike TraCI. The full version of
Aimsun is also not available for free, so we ultimately decided
to choose SUMO.

E. HERE API vs TomTom API vs Google Maps API
There are many traffic APIs available on the market that

provide data on traffic flow and car density at specific

5
18-500 Final Project Report: Traffix 05/03/2024

locations. We narrowed down our research to the HERE,
TomTom, and Google Maps APIs. We chose these because
they had large user bases and a lot of documentation, which
we felt would be useful when trying to integrate them into our
project, since we had no prior experience with any of these
APIs in the past. We ultimately decided to choose the
TomTom API because the Google Maps API does not provide
traffic flow data and mostly focuses on routing and map image
data, which is not useful to our project and HERE provides
similar data to TomTom while updating less frequently (every
30 seconds in contrast to every 60 seconds). Both HERE and
TomTom provide the current speed of cars passing through a
coordinate area as well as the free flow speed of cars in an
ideal environment. The TomTom traffic API will be used to
sync our simulation to match real life flow and density,
allowing us to accurately determine what state the traffic light
should be in.

F. Standard vs. Addressable LEDs
Initially, we had planned to implement the Traffic Light

Circuit (TLC) mockup using addressable LEDs to achieve the
various representations of traffic light timings. However, after
further investigation, it has become clear that addressable
LEDs cause a number of problems. The biggest issue is that
each addressable LED draws too high of a maximum current.
The Arduino UNO we will be using to control the light
transitions cannot supply more than 40mA per output pin, and
each addressable LED can draw up to 60mA. Therefore, using
the addressable LEDs without an external power source is
untenable. Therefore, we will be using standard LEDs instead,
which typically only draw up to a maximum of 30mA, which
is within the safe range for the Arduino output pins.

VI. SYSTEM IMPLEMENTATION

The system consists of 3 main subsystems — the object
detection algorithm, the optimization algorithm, and the traffic
light mockup circuit.

A. Object Detection Algorithm

Fig. 4. Previous block diagram of object detection subsystem.

We modified the original approach to the object detection
model, shown above in Figure 4, quite a bit. We discovered,

after some discussion with the vendor, that the
battery-powered IP cameras we purchased were not
RTSP-compatible; as a result, we could not access the live
video feed from the Raspberry Pi. We purchased alternatives,
but while we were able to access the feeds from a personal
computer, we were unable to replicate that behavior on the
RPi. As a result, we decided to demonstrate our object
detection model using pre-recorded videos from the
intersection.

As specified previously, we used a YOLOv3 classifier for
our object detection model. While we were initially planning
on using a Haar cascade classifier that we trained ourselves,
that classifier had very poor accuracy on videos we recorded
at the Fifth and Craig intersection. We were unable to address
the issues we faced with the pre-trained Haar cascade
classifier, where there were a large number of false positives;
we still encountered a large number of false positives on the
model we trained ourselves. We may have seen better results if
we trained the model on a larger dataset, as we only ended up
using about 100 tagged images of the intersection. However,
due to the high accuracy of the YOLOv3 classifier and ease
with which we could use it in our project, we decided to
change our model, especially because much of the support for
training Haar cascade classifiers in OpenCV has been
deprecated for several years.

Fig. 5. Updated block diagram of object detection subsystem.

In our design report, we neglected to account for the fact that
not all cars detected in a frame should be included in the
overall vehicle count; only those detected in the lane that is
waiting at the light should be considered.

To determine these lane boundaries, we initially attempted to
use Canny edge detection, a well-documented CV algorithm
that converts an image into a set of edges according to some
threshold values, to find the edges of the lane and then
transform those coordinates into lines using the method
described in this article [4]. However, due to inconsistent
lighting conditions and cases where cars would drive past the
camera’s field of view and block the lane, this approach did
not provide us with reliable results. Instead, we ended up
hard-coding the lines for the lane boundaries, which required a
stable video as input without hand-shake. We felt that this

6
18-500 Final Project Report: Traffix 05/03/2024

design choice was acceptable, as the ideal implementation of
this product would anyways require cameras mounted in a
stable location.

After determining equations for the lane boundary lines, of
which there were typically two, we simply checked the
following inequalities for each detected vehicle’s bounding
box coordinates, where m and b are the slopes and y-intercepts
of each lane boundary line:

1) ytop-left < m*xtop-left + b
2) ybottom-right < m*xbottom-right + b

Fig. 6. An example frame from the Fifth and Craig intersection, with the lane
boundaries marked in green. The cars included in the vehicle count are boxed
in blue, while the cars not included in the vehicle count are boxed in red.

B. Optimization Algorithm

Fig. 7. Block diagram of optimization algorithm subsystem.

1) Traffic API Integration
We used the TomTom traffic API to gather data about the

current state of incoming traffic to our targeted intersection.
The API’s “traffic/services/flowsegmentdata” endpoint
provided data such as the current speed as well as free flow
speed at the coordinate queried and a confidence level for the
values returned by the call to the endpoint. See Appendix Fig.
II for a more detailed JSON response from the API.

We used this data to accurately sync our SUMO simulation
by syncing the flow speed with the calibrators in the
simulation. These calibrators adjust how often cars spawn
according to the flow (miles per hour of cars passing through
the area) and cars per hour.

When the API outputs values with a confidence level over
0.5, we update the simulation to set the flow speed of the
calibrator according to the flow speed from the API. We also
take a baseline number of cars per hour that we estimated from
regular traffic flow we gathered in our video footage and scale

the baseline according to the ratio of currentSpeed output by
the API to freeFlowSpeed. We currently have the program set
up to allow the new vehicles per hour value set as a range of
0.8 to 1.2 times the baseline to prevent extreme fluctuations in
car values.

2) Q-Learning Algorithm
We used a deep Q-learning algorithm with Pytorch and a

single agent representing the light of the Fifth and Craig
intersection we tested on. The Q-learning algorithm consists of
a two layered neural network which has a number of input
nodes to match the size of the state and a number of output
nodes to match the number of actions the agent can take.

For the initial structure of the code, we referenced the
classic Q-learning CartPole example [6]. We adapted this to
work with the simulation and set a maximum duration for the
episodes.

For our state data, we called functions to retrieve the state of
the current SUMO simulation. The state data included the
queue length for the north, east, south, and west sides of the
intersection as separate parameters, the average speed of cars
at each side of the intersection, the current phase of the light,
as well as the time spent in the current phase of the cycle.

Our reward function is calculated by taking the mean wait
time of cars at the simulated intersection detected by the lane
detectors discussed in the Training Simulation section. We
chose to only limit the area of the lane detectors at the
intersection to 50 meters long to mimic the real life limitations
of the object detection algorithm, since we would only have
access to the counts of cars up to around 50 meters from the
light via our camera feed.

Eq. 1. Huber Loss Function
Our loss function was the Huber loss function, because we

wanted to use a function that was less susceptible to outliers
than Mean Squared Error because it treats values outside of a
certain range linearly.

For our action states, we originally considered two different
state implementations. We initially went with an action output
of how long each parallel pair of directions (North-South,
East-West) would turn green for. We considered that this
would be a safer implementation since the light would have a
fallback in the event that our optimization algorithm went
down and could no longer output actions, since the light would
continue changing phases according to the last input duration.
However, after some testing, which we discuss more in section
VII.B, we realized that the wait time reduction was minimal
(less than 5%) with this implementation. We realized that the
model was not reactive enough with this implementation.

https://www.codecogs.com/eqnedit.php?latex=L_%7B%5Cdelta%7D%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Cfrac%7B1%7D%7B2%7D(y%20-%20%5Chat%7By%7D)%5E%7B2%7D%20%26%20if%20%5Cleft%20%7C%20(y%20-%20%5Chat%7By%7D)%20%20%5Cright%20%7C%20%3C%20%5Cdelta%5C%5C%5C%5C%5C%5C%20%5Cdelta%20((y%20-%20%5Chat%7By%7D)%20-%20%5Cfrac1%202%20%5Cdelta)%20%26%20otherwise%5C%5C%5C%5C%20%5Cend%7Bmatrix%7D%5Cright.#0

7
18-500 Final Project Report: Traffix 05/03/2024

Due to the minimal wait times, we decided to try a different
action state representation to improve reactivity of the model.
We instead sampled the optimization algorithm at a constant
rate (2 seconds) and checked whether we should keep the
current green light state or switch to a different state. One of
the main considerations for this implementation was safety in
the event that the optimization algorithm stopped functioning
correctly, however we found that we can still have a fallback
fixed time light with this implementation.

TABLE II. TRAFFIC LIGHT PHASES

Index Description of Phase Default Duration (s)

0 East-West green 100

1 East-West yellow 4

2 Buffer - all red 2

3 North-South green 100

4 North-South yellow 4

5 Buffer- all red 2

6 Pedestrian crossing 40

For example, if the traffic light was in state 0, the
optimization algorithm would be sampled and if we received
an action to stay East-West green, we do nothing and allow
SUMO to continue cycling until the next iteration of updates.
Otherwise, if we receive a state change, we set the phase of
the light to 1, the East-West yellow phase. Since we are now in
a transition state, we wait until we are no longer in a transition
phase to call the optimization algorithm again. 6 seconds later,
the simulation is in phase 3, which is not a transition state. At
this point we start polling the optimization algorithm again to
see whether we change state or not.

To prevent a permanent deadlock or light intervals that are
too fast for cars to safely make it through, we set a minimum
duration of 10 seconds and a maximum duration of 90
seconds. In the case that the optimization algorithm
malfunctions, the fallback in this case is the fact that the light
keeps a default duration of 100s green each way, so it would
default to that if we do not receive actions from the
optimization algorithm. We purposely set the default duration
as an amount greater than the maximum duration so that the
green phase could be anywhere between the minimum and
maximum and we simply skip to the yellow phase to end the
phase accordingly.
3) Training Simulation

We used the built in OSM tool that SUMO provides to
generate a traffic network of the area near Fifth and Craig and

modify it to include sensors. We took this network and
simplified it by removing buildings and limited it to crucial
streets in the area nearby. See Appendix Fig. III for a
visualization of the OSM Web Wizard used to generate the
area near CMU. The OSM software prefills most of the data
for the simulation including right of way priorities, however
we did have to make additions to the simulation.

SUMO can simulate both car and pedestrian behavior so we
were able to spawn cars and pedestrians in. In an ideal
scenario, we would have integrated the object detection model
with the simulation by spawning in additional pedestrians and
cars to sum to the total provided by the object detection
model. We were unable to integrate the model, however we
have the framework for spawning pedestrians and cars on all
four sides of the intersection and randomized route generation
for the cars to add variability to the simulation, bringing it
closer to the real life environment.

To further increase real life accuracy, we added calibrators
at points approaching all four sides of the intersection to
simulate the flow of traffic received from our traffic API data,
as mentioned previously. We sync with the API every 60
seconds. We also have lane detectors which we use to
determine counts of cars as well as retrieve the correct cars in
the simulation, mimicking behavior of the cameras in our
system.

We then retrieve the average wait times and use them in our
Q-learning algorithm as the reward function. See Appendix
Fig. IV for a labeled diagram of the SUMO simulation. We
then update our simulation according to the action output by
the optimization algorithm and continuously step through the
simulation to keep generating the output in sync with real life
behavior.
4) Demo UI

As mentioned previously, we did not get output from the
object detection algorithm into the simulation, so during the
demonstration of our project, we took user input to replace
the object detection output. We designed a UI in PyQt to get
user input on how many pedestrians and cars to spawn in on
each side of the intersection.

Fig. 8. The pop-up to input cars and pedestrians to spawn.

8
18-500 Final Project Report: Traffix 05/03/2024

C. Traffic Light Circuit
The miniature model for the Traffic Light Circuit (TLC) can

be broken down into three functional blocks: the Arduino
UNO, the LED Driver, and the Traffic LED intersection. The
broad view is that information about the current light state
flows into this system from the RaspberryPi, which the
Arduino then translates so that the TLC5928 Constant Current
LED Driver chip can activate the Traffic LEDs in the
optimized pattern. We will now discuss how the three blocks
relate to each other in more detail. Refer to Appendix Fig. I to
see how the overall circuit is wired together.

The Arduino and LED Driver pin connections can be
visualized in Figures 9 and 10, respectively. We used four of
the Arduino’s digital GPIO pins to control the LED Driver,
with the designated SPI pins handling the actual data transfer.
The Arduino provides a reference clock for the Driver and
uses its data transfer protocol to tell the Driver what lights
should currently be active.

Additionally, the Arduino’s 5V power pin will be connected
to the Driver’s VCC input as well as the anodes of the LEDs.
Resistor R1, connected between the Driver’s IREF pin and
ground, is used to set the constant forward current applied to
each of its active outputs. We ended up using a 4.7kΩ resistor
for R1 to set IREF to approximately 10.7 mA. The formula that
was used to calculate this reference current is shown below:

Eq. 1. Ideal LED Driver output current.

Figure 11 shows how 12 of the Driver’s 16 outputs will be
wired to 12 LEDs, grouped into four sets of three to represent
the Red-Yellow-Green light sequence for each side of a
four-way intersection. The LEDs are connected to these
outputs at their cathodes, since the Driver acts as a current
sink rather than a current source [5]. This particular detail was
something that we failed to account for in our initial circuit
and corresponding PCB design process. Thus, the first set of
PCBs we ordered did not work when the LEDs were wired in
the way they had been designed to, but we were able to debug
the problem by wiring up some breadboarded LEDs to one of
the PCBs and seeing that these LEDs turned on as desired
when their anodes and cathodes were connected in the way
that the chip actually intended. We then modified the circuit
design and the PCB layout to reflect this functionality. When
the updated PCBs arrived, they ended up working exactly as
we needed them to.

The schematics were created using Eeschema, which is the
built-in circuit design tool for KiCAD, the software we used to
do the layout for our custom-designed PCB that integrated the
TLC system into a single unit.

Fig. 9. Final schematic for Arduino UNO block.

Fig. 10. Final schematic for LED Driver block.

Fig. 11. Final schematic for Traffic LED intersection block.

9
18-500 Final Project Report: Traffix 05/03/2024

VII. TEST, VERIFICATION AND VALIDATION

In order to validate that our system meets our design
requirements, we will be conducting a series of accuracy tests,
latency tests, and integration tests across all four subsystems.

A. Accuracy
1) Object Detection Algorithm

As we described in section 4, our object detection algorithm
needs to identify the number of vehicles and pedestrians on
each side of the intersection with 90% and 80% accuracy,
respectively. We tested this by looking at 200 frames captured
at the intersection (50 from each side) and determining by eye
the actual vehicle and pedestrian counts within the lane
boundary. We then determine the average accuracy by
comparing the vehicle and pedestrian counts determined by
our model to the actual vehicle and pedestrian counts for each
image.

This test is essential to ensure that our system determines
light transitions based on accurate traffic condition
information.

The table below shows how our object detection model
accuracy varied over different iterations.

TABLE III. SPECIFICATION VS REQUIREMENTS

Theoretical Haar Cascade YOLOv3

Car accuracy 90% <50% 84%

Ped accuracy 80% <50% 90%

We did not end up meeting the car accuracy requirements
with the YOLOv3 model primarily due to cases where cars
would drive in front of the camera’s field of view and block
the lane being analyzed. In those cases, we wrote code to
maintain the previous vehicle count in order to avoid letting
the count go to zero when there were in fact still cars waiting
at the light. However, this meant that new cars could not be
detected in that frame. We also faced some inaccuracies due to
parked cars being detected within our lane boundaries, but
were able to address this by adding additional boundaries to
exclude parked cars.

We were able to meet the pedestrian accuracy requirements
easily because no lane boundaries were required to determine
the number of pedestrians; the video was already cropped to
the pedestrian region of interest.

2) Optimization Algorithm
We aimed to improve wait times with our optimization

algorithm by 10% according to our design requirements. We
tested this by running our optimized simulation with our
Q-learning model changing the state of the traffic light at Fifth

and Craig against the same simulation without the model using
a fixed time interval for the traffic light instead.

To verify the accuracy of the simulation’s fixed time logic,
we measured the duration of each phase for the real Fifth and
Craig traffic light using recorded footage of the intersection.
We noticed that the light does change according to the time of
day and day of the week, however for simplicity when testing
we decided to set our control as the most frequent interval
pattern we saw in the recordings.

For our tests, we measured the average wait time of cars
within the lane detectors over 30 periods of 3600 seconds,
sampling every 60 seconds. During these tests, we randomly
spawn various amounts of cars at each side of the intersection
at random times to add variation to the simulation. We spawn
these cars at the same probability in both the control test and
experiment test. We then averaged the wait times of the 30
periods to produce the metrics and got an average wait time of
55.87 seconds for the control tests without the model and
49.10 seconds for the experimental tests using the model
yielding a wait time reduction of 12.12%, which is above our
goal of 10% for average wait time reduction. This relates to
our use case requirement of the product resulting in a
noticeable reduction in wait time for drivers.

During our initial tests for the Q-learning model using the
light timing action representation, we thought we yielded a
48.90% wait time reduction, however after we began getting
increasingly high wait time reductions, we realized that we
had a bug in our system which constantly skipped the
pedestrian state, making it an unreasonably short period of
time that pedestrians would not feasibly be able to cross
within. We fixed the bugs and only received a 5.4% wait time
reduction, below our target of 10%. When testing, we noticed
that the light timings output as the action for the Q-learning
model converged to a constant value and only changed for
extreme cases where there was a huge traffic jam in one
direction that backed up for multiple roads. We realized this
was likely due to the lack of responsivity in the model, since it
would sometimes take a full cycle to see the effects of the
action that the Q-learning model outputs, leading us to pivot to
the alternative implementation that only outputs which sides
of the intersection should be green, which is what resulted in
the 12.12% wait time reduction.

During our testing for the new model, we also did some
hyperparameter tuning and tested how different episode
lengths affected the training.

10
18-500 Final Project Report: Traffix 05/03/2024

(a)

(b)
Fig. 12. Average wait times over episodes trained for episode lengths of (a)
10000s and (b) 5000s.

We noticed that the 5000s episode length had much less
variance, although both seemed to converge to their average
wait time in about the same amount of time. We believe that
this could potentially be caused by the periodic random
exploration of the model sometimes leading to suboptimal
behavior which propagates, and the longer the episodes occur,
the more the traffic builds up, leading to the higher variance.

We also wanted to do more tuning on other hyperparameters
such as the learning rate and gamma, however we ended up
not having time to do so due to having to pivot our model
towards the end and the new model being slower to train.

Our final model’s main hyperparameters were a learning
rate of 0.01, a gamma (future reward importance) of 0.99, and
an episode length of 5000s.

3) Traffic Light Circuit
Testing the TLC was relatively straightforward. First, we

ensured that the PCB was working correctly by running a
testbench we wrote for the Arduino that attempted to activate
each LED one at a time. Using this code, we discovered that
our first circuit design was flawed, but got the LEDs to
activate when hooked up differently than intended. We then
used the same testbench on the new PCBs when they arrived,
and found that they worked exactly as we had hoped. Lastly,
we tested the interface between the TLC’s Arduino and the
RPi running our software sub-system and found that the serial
communication was being received as intended.

B. Latency
1) Software

The software components of our system must have an
overall latency of less than 5 seconds (i.e., the time between
an image capture and the calculation of the light state change
must be less than 5 seconds.) This means that it should take no
longer than 5 seconds to both update the vehicle and
pedestrian counts and calculate the new light state after a
frame is captured.

On its own, the optimization algorithm had a latency of
102.4 milliseconds. We calculated this by logging the time
stamps before and after the calculations necessary for one
iteration of the optimization algorithm calculations for 20
different iterations. We then averaged the difference between
the end and start times to get this metric.

The object detection model, when run on the Raspberry Pi,
had a latency of 12 seconds on average to process four frames
from four different sides of the intersection concurrently. It
took approximately 4 seconds to process one frame alone.
Clearly, this did not meet our latency requirements for the
object detection model; we ended up demonstrating it on a
laptop, instead, where the latency to process all 4 frames was
~2 seconds on average. This delay was calculated by starting a
timer before the frame enters the processing function and then
stopping the timer once the frame processing was complete.

2) Traffic Light Circuit
Since the data transfers from the RPi to the Arduino as well

as from the Arduino to the LED driver chip both took mere
microseconds to complete, we found that there was essentially
zero latency added to the system by the TLC sub-system.

C. Safety
We ensured that our system was safe by ensuring that

simultaneous green lights on perpendicular sides of the
intersection were never possible. We did so by explicitly
designing the traffic states to never overlap and also adding
buffer states where all sides are red to prevent potential
crashes. For our testing, we ran the simulation at a sped up
rate of 1000 seconds per second using our optimization
algorithm and ensuring we did not see warnings in SUMO,
since we receive warnings whenever cars suddenly need to
brake and there are dangerous conditions. This allowed us to
modify our minimum duration for a single green light phase.
We also observed to make sure that no states were being
skipped over a period of 10 minutes of sped up simulation
time. In the initial session of doing this test, we realized that
there was a bug in the code where pedestrian crossings were
being skipped, resulting in us realizing our initial wait time
metrics were incorrect and modifying our implementation to
actually meet our target metrics.

11
18-500 Final Project Report: Traffix 05/03/2024

VIII. PROJECT MANAGEMENT

A. Schedule
The Gantt chart in Appendix Table I shows the timeline for

this project throughout the Spring 2024 semester.
For Kaitlyn’s tasks, she ended up having to spend a lot more

time training the model than anticipated and also took longer
to create the simulation due to having to learn new software
that does not have a lot of documentation. We also ended up
not integrating the object detection model with the simulation
code, so she created a UI to allow users to input values during
the demo.

For Ankita’s tasks, she ended up taking much longer than
expected to code up the object detection model due to the
change in implementation. Also, the first few weeks after
spring break involved a lot of ordering and reordering of parts
due to the issues we had with the IP cameras, which delayed
finalizing the demo for the object detection model since we
weren’t sure if we were going to end up being able to use a
live camera feed. She also had to retake the videos taken at the
intersection multiple times, which required four people to film
at the intersection at the same time and thus took some time to
schedule. The demo ended up being finalized in the last two
weeks of the semester after the final videos were taken.

For Zina’s tasks, she ended up needing extra time to film the
initial videos used to train and test the initial iterations of the
object detection model. The circuit design process took longer
than expected, but since she ended up using a surface-mounted
chip for the implementation, there was no way to make a
breadboarded model of the circuit to test things out before
ordering and assembling the PCBs, thus this task was removed
from the schedule. Having to re-design the circuit and PCB
later on added time before final testing could take place, but
everything still got done with plenty of time before our final
demo.

B. Team Member Responsibilities
Our Gantt chart shows that our project is divided into five

main categories: OpenCV detection algorithm, optimization
algorithm, traffic simulation and API integration, Raspberry Pi
integration, and traffic light circuit.

Ankita worked on the OpenCV detection algorithm as well
as the Raspberry Pi integration and setup.

Kaitlyn worked on the optimization algorithm, traffic
simulation, traffic API integration and demo UI.

Zina worked on the traffic light circuit and Raspberry Pi
integration with Ankita.

C. Bill of Materials and Budget
The Bill of Materials is included in Appendix Table II. We

ended up spending $323.08. We ended up not using the IP
cameras. We also ended up having to purchase two sets of

PCBs rather than the one set we had planned because the first
circuit design was flawed.

D. Risk Management
1) Cameras and Live Video Feed

The biggest risk we had to manage was the fact that we did
not end up using the IP cameras. Thankfully, we had the
backup plan of using pre-recorded footage. We tried using
indoor wired cameras instead, and powered them with a
portable battery; however, we still were not able to access the
live video feed from the Raspberry Pi despite being able to
access it from a personal computer. Instead, we went out to the
Fifth and Craig intersection with tripods and filmed all 4 sides
of the intersection, then used those videos for our object
detection algorithm.

2) Object Detection Algorithm
As described in our design trade studies in section 5, we

decided to go with the YOLOv3 model over the simpler, less
accurate Haar cascade. This is something that we provided as
a backup plan in the design report, so it wasn’t necessarily
unexpected. However, it did mean that two or three weeks
were spent in trying to tune the Haar cascade to meet our
needs when we ultimately did not use it.

3) Optimization Algorithm
One of the main risks for this portion of the project was the

algorithm not actually being more optimized than a fixed time
system. Our initial implementation barely resulted in an
improvement in wait times, however we did plan on testing
out an alternative implementation if there was time throughout
the semester and had allotted enough slack time to make the
necessary changes. Since we realized the algorithm was not
very optimized early enough, we were able to shift to the
alternative implementation, which did meet our target wait
time reduction and we still were able to do some of the
hyperparameter optimization we initially planned.

Another risk related to the optimization algorithm was the
simulation not working as we expected it to or not having the
features we needed. We worked on the simulation earliest
because we knew that exploring a new software would take
time, so we were able to take time to ask users in the SUMO
forum for help when we needed to. Even still, we did find out
that there were unexpected behaviors in the simulation, such
as calibrators clumping the spawning of cars towards the end
of the time interval dictated instead of evenly distributing the
spawning. Since we had researched so much into the software
at that point, when a developer told us this on the forums, we
were able to adapt the calibration of the software by
modifying the intervals to be shorter and programmatically
spawning new intervals using Traci instead.

12
18-500 Final Project Report: Traffix 05/03/2024

4) Traffic Light Circuit
Although nothing went catastrophically wrong with the

design and implementation of the TLC and we were able to
have it working as intended by the end of the semester, there
were still some challenges that required risk management. As
mentioned previously, the initial PCB only worked when the
LEDs were wired in a way that the PCB had not been
designed for. We immediately re-designed and re-ordered
these PCBs, but we had a backup in place for our demo, which
consisted of the LED intersection being assembled on a
breadboard with wires making the functionally correct
connections to the PCB. Ultimately, we did not end up needing
to use this breadboarded version, as the final PCB design had
no issues, but it was helpful to have it on deck in case of
emergency.

IX. ETHICAL ISSUES

There are a few potential edge cases for the operation of
our product. We aim to improve the overall experience of
commuters by avoiding situations where cars on one side of an
intersection must wait unnecessarily long at lights where no
cars are going on the adjacent side. At the same time, we want
to avoid a situation where cars on a less busy side of the
intersection are waiting for absurdly long periods of time in
order to minimize the wait time of cars on the busier side,
which is why we implemented a maximum wait time in our
optimization algorithm.

In terms of public safety, our project has the potential to
create unsafe situations where cars or pedestrians may not
have enough time to cross the intersection or green/yellow
lights on adjacent sides of the intersection are overlapping.
These can cause accidents, which can be life-threatening. So
in our optimization algorithm, we also have a minimum
interval time (corresponding to the amount of time it takes to
cross the intersection). This is somewhat of a tradeoff with the
issue mentioned in the previous paragraph, because it may not
always reduce the average wait time of those at the
intersection.

We also guarantee that no two green lights are overlapping
by having discrete light states as outputs of our optimization
algorithm. There is no state where both sides of the
intersection are green.

Another potential ethical concern with the ideal
implementation of our project, involving the IP camera
subsystem, would be security and privacy risks with stored IP
camera footage. Malevolent actors may attempt to access the
footage in order to determine the whereabouts of certain cars
or people, so we would probably want to delete the stored
footage after a certain period of time. At the same time,
however, law enforcement may be able to use the footage as

evidence to determine fault for car accidents and other such
scenarios, so there are both benefits and drawbacks to this.

X. RELATED WORK

While doing research on existing projects related to traffic
optimization, we came across a research paper by Matt
Stevens and Christopher Yeh which details using SUMO and
Q-learning to optimize traffic [3]. This inspired some of our
optimization algorithm’s logic, however we believe that our
project remains novel in its use of deep Q-learning over
regular Q-learning and our integration of additional data
through live traffic API data and image recognition.
Additionally, we tested on a more precise simulation of real
roads in contrast to their approach of a simple network of four
intersections. Although aspects of our project are similar, we
implemented everything from scratch since their research
paper merely discussed the ideas and process they went
through and does not provide direct sources of code.

XI. SUMMARY

Traffix aims to improve the experience of the average
commuter — drivers and pedestrians alike — by providing an
optimized traffic light system that uses machine learning to
determine optimal light timing intervals so as to minimize the
average wait time of everyone at an intersection. Using
cameras and traffic API data to determine the volume of traffic
and piping that data into an optimization algorithm, Traffix
offers a far more efficient alternative to conventional
fixed-time interval traffic light implementations.

Stakeholders in our system, such as local transportation
authorities that may be looking to improve traffic flow at city
intersections, will appreciate our stated wait time reduction of
at least 10%; also, our design requirements for minimum light
time intervals and no overlapping green lights ensure that they
will not be compromising on safety in pursuit of making the
commuting process more efficient.

Ultimately, we were unable to fully integrate all the parts of
our project due to limitations of the Raspberry Pi, however
most of our other metrics achieved our target values or were
close to the target values. We ultimately had a working
optimization algorithm that could take in inputs from the
object detection model as well as a working object detection
model running separately. We also did have a working traffic
light circuit that synced with the state from the traffic
simulation.

A. Future Work
Some of the future expansions on this project we see

includes expanding the system to multiple Q-learning agents
rather than a single intersection. This would be possible by
representing each light with its own agent and implementing a

13
18-500 Final Project Report: Traffix 05/03/2024

pure cooperation system which would allow all the agents to
receive the same rewards so that they don’t try to compete
against each other and optimize at the expense of other traffic
lights. This is theoretically possible at the moment with our
implementation, however we have not tested it on an actual
simulation with multiple agents. The more agents in the
network, the more we expect to see decreases in wait times.

Another potential addition to the system is speeding
detection. We could potentially alter our light to adjust when
we detect speeding vehicles, increasing road safety by
preventing perpendicular cars from going too early and
crashing into the speeding vehicle.

We could also use our object detection algorithm to detect
emergency vehicles and prioritize their wait times over other
wait times. This is similar to one of the initial ideas we had for
a project at the start of the semester to alert emergency
services if a car crash occurred at a red light.

As it stands, our project does not scale to lights with
protected left turns or consider the fact that some cars waiting
at one side of an intersection may plan to turn left or right
rather than go straight as the simulation assumes. The object
detection model could be modified to identify whether a
vehicle’s right or left blinker is on and communicate this
information to the simulation.
B. Lessons Learned

Throughout the project, we learned many lessons about
engineering as well as technical skills. One of the biggest
lessons we learned is that we should always allocate more
time for tasks than we expect. All three of us faced issues with
tasks taking longer than expected. This was especially true
with the simulation since none of us had experience using it
and did not anticipate it taking that long to set up. For future
students, researching technology they aren’t familiar with is
extremely important.

Another lesson we learned is to plan systems out as much as
possible and do as much research as possible. When initially
planning the optimization algorithm, we overlooked the fact
that Q-learning requires discrete action states and wished to
output a continuous integer instead. We had to adapt our
model to be discrete for the first implementation of our
algorithm. Additionally, we researched the cameras we
planned on using to make sure they supported RTSP streaming
and had accessible RTSP URLs, however we ended up finding

out that this was not the case despite them being advertised
otherwise. With some more research and planning, we could
have potentially caught this earlier and found better cameras.
We also did not anticipate the object detection model to be so
computationally intensive, so reserving hardware earlier so we
had access to better devices would have potentially resolved
this issue.

GLOSSARY OF ACRONYMS

IP – Internet Protocol
OBD – On-Board Diagnostics
OSM – Open Street Map
PCB – Printed Circuit Board
RPi – Raspberry Pi
RTSP – Real Time Streaming Protocol
SUMO – Simulation of Urban Mobility
TLC – Traffic Light Circuit

REFERENCES

[1] Queenie Wong, “California wants to reduce traffic. The Newsom
administration thinks AI can help,” Los Angeles Times, Jan. 08, 2024.
https://www.latimes.com/california/story/2024-01-08/california-traffic-r
oads-safer-generative-ai-help

[2] L. Suryana, “Which one is better: Reinforcement Learning or Model
Predictive Control? Inverted Pendulum — Case*,” Analytics Vidhya,
May 26, 2020.
https://medium.com/analytics-vidhya/which-one-is-better-reinforcement-
learning-or-model-predictive-control-inverted-pendulum-case-7fc29e52
bbfb

[3] M. Stevens and C. Yeh, “Reinforcement Learning for Traffic
Optimization.” Accessed: Mar. 01, 2024. [Online]. Available:
https://cs229.stanford.edu/proj2016spr/report/047.pdf

[4] Hardwick, Matt. “Simple Lane Detection with OpenCV.” Medium,
Medium, 22 Aug. 2018,
medium.com/@mrhwick/simple-lane-detection-with-opencv-bfeb6ae54e
c0

[5] Texas Instruments, “16-Channel, Constant-Current LED Driver with
LED Open Detection datasheet (Rev. E).”
https://www.ti.com/lit/ds/symlink/tlc5928.pdf?ts=1709206213832&ref_
url=https%253A%252F%252Fwww.mouser.co.uk%252F

[6] A. Fakhry, “Using Q-Learning for OpenAI’s CartPole-v1,” Medium,
Nov. 13, 2020.
https://medium.com/swlh/using-q-learning-for-openais-cartpole-v1-4a21
6ef237df

https://www.latimes.com/california/story/2024-01-08/california-traffic-roads-safer-generative-ai-help
https://www.latimes.com/california/story/2024-01-08/california-traffic-roads-safer-generative-ai-help
https://medium.com/analytics-vidhya/which-one-is-better-reinforcement-learning-or-model-predictive-control-inverted-pendulum-case-7fc29e52bbfb%E2%80%8C
https://medium.com/analytics-vidhya/which-one-is-better-reinforcement-learning-or-model-predictive-control-inverted-pendulum-case-7fc29e52bbfb%E2%80%8C
https://medium.com/analytics-vidhya/which-one-is-better-reinforcement-learning-or-model-predictive-control-inverted-pendulum-case-7fc29e52bbfb%E2%80%8C
https://cs229.stanford.edu/proj2016spr/report/047.pdf
http://medium.com/@mrhwick/simple-lane-detection-with-opencv-bfeb6ae54ec0
http://medium.com/@mrhwick/simple-lane-detection-with-opencv-bfeb6ae54ec0
https://www.ti.com/lit/ds/symlink/tlc5928.pdf?ts=1709206213832&ref_url=https%253A%252F%252Fwww.mouser.co.uk%252F
https://www.ti.com/lit/ds/symlink/tlc5928.pdf?ts=1709206213832&ref_url=https%253A%252F%252Fwww.mouser.co.uk%252F
https://medium.com/swlh/using-q-learning-for-openais-cartpole-v1-4a216ef237df
https://medium.com/swlh/using-q-learning-for-openais-cartpole-v1-4a216ef237df

14
18-500 Final Project Report: Traffix 05/03/2024

Table I. Schedule

Table II. Bill of Materials

15
18-500 Final Project Report: Traffix 05/03/2024

Figure I. Final Traffic Light Circuit Schematic

16
18-500 Final Project Report: Traffix 05/03/2024

Figure II. TomTom API Response

Figure III. OSMWeb Wizard

Figure IV. SUMO Simulation Diagram

