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System Architecture

Product Pitch
The average American spends two-and-a-half work weeks in traffic 

per year. Congestion at intersections fluctuates frequently throughout 
the course of a day, and most traffic lights cannot anticipate sudden 
variations in traffic flow. This is especially evident in scenarios where 
roads are closed and detours are in place or other events that cause 
drastic changes in traffic density over a short period in time.

Traffix aims to reduce traffic congestion by creating a smart traffic 
light that leverages machine learning and computer vision to identify 
cars and pedestrians at intersections and dynamically calculate light 
interval times using a Q-learning algorithm. This will benefit drivers by 
reducing wait times in traffic as well as benefit the city by providing a 
lasting system that increases city efficiency as the online machine 
learning model adapts to changes in traffic over time. Optimization

We used a deep Q-learning reinforcement learning model to optimize the timing of 
the traffic light. At a fixed rate, the model outputs how long each side of the 
intersection should be green.

http://www.ece.cmu.edu/~ece500
/projects/S24-teamD8

System Description

System Evaluation

Conclusions & Additional Information

Our system has 3 main subsystems: the object detection, the 
optimization algorithm, and the traffic light PCB. The object detection 
code takes in 4 pre-recorded videos of the intersection and uses the 
pretrained YOLOv3 model and additional image processing to determine 
the number of cars and pedestrians in each lane. The optimization 
algorithm runs on the Raspberry Pi and uses simulated vehicle and 
pedestrian counts to determine an optimal light interval, and uses 
feedback from the SUMO simulation to update the Q-learning model. 
The Arduino receives the updated light states every second and changes 
the LEDs on the traffic circuit PCB accordingly. In an ideal 
implementation, the Raspberry Pi would run both the object detection 
and the optimization algorithm, but because the videos do not reflect the 
behavior of the simulation (i.e. the light states in real life and our 
simulation are not the same, so the car behavior will not be the same) we 
chose not to integrate them and instead demonstrate them separately.

Flow Calibrators

SUMO Simulation at Fifth and Craig

For our optimization testing, we tested with a control using a fixed light timing 
system at the Fifth and Craig intersection, which we gathered from footage 
recorded from the actual light, comparing those wait times to wait times while 
using our Q-learning model.
To test the object detection model, we evaluated the accuracy of our 
calculated vehicle and pedestrian counts over 100 frames, taken from 4 
videos corresponding to each side of the Fifth and Craig intersection. We 
determined how many cars the model could handle per side by noting the 
maximum number of vehicles that the model could count accurately.

Through our testing, we realized that our optimization algorithm 
does converge to a fixed light interval, however we saw decreased 
wait times and more variation in the model output for extreme 
scenarios where car density was extremely high due to traffic jams. 
We hope to continue adjusting our product to be more sensitive to 
changes in the state and support more connected systems across 
cities rather than at individual lights.
Also, we would have liked to use the live IP camera video feed 
rather than pre-recorded footage to run the object detection model, 
and do a better job of integrating the two. As it stands, the object 
detection model processes frames from all 4 sides of the 
intersection simultaneously, which ended up being too 
computationally intensive for the Raspberry Pi 4 to handle (note 
that we weren’t able to meet our latency requirements for that 
metric.). Other than that, however, our system meets the desired 
metrics for wait time reduction and complexity handling.

Lane Area Detectors

Entire SUMO Simulation
Light Phase

Flow Calibrators

Fifth and Craig Intersection

Metric Target Actual

CV Model Accuracy 
(cars)

90% 80%

CV Model Accuracy
(pedestrians)

80% 90%

Optimization Wait Time Reduction 
(regular conditions)

10% 16.4%

Optimization Wait Time Reduction 
(stress conditions)

10% 42.2%

CV Model Latency 5s ~12s*

Optimization Model Latency 100ms ~100ms

Complexity Handling 10 cars per side 11 cars per side

Constant LED Forward Current 10 to 15 mA 10.7 mA
(using 4.7kΩ resistor)

Object Detection
We used a pretrained YOLOv3 
model to detect the total number of 
vehicles and pedestrians in one 
frame. The bright green line 
indicates the determined lane 
boundary for the frame, and only 
cars within that boundary are 
included in the final count. 

Legend
            Hardware
            Software
            Camera/CV
------     Ideal implementation

We initially intended on processing IP camera footage instead of pre-recorded 
videos but had difficulties accessing the IP camera stream from the Raspberry Pi 
and chose to simplify our demo.

* Time taken for the Raspberry Pi to process 4 frames at a time. ~4s to process 1 frame alone.

Traffic Light Circuit
To demonstrate our system’s ability to react 
to observed traffic situations, we designed 
and assembled a custom PCB to model a 
four-way intersection. In this circuit, the 
Arduino gets current state information from 
the RPi, then transmits a corresponding 
16-bit data string to the TLC5928 LED 
driver chip to enable the desired lights.

Traffic Light Circuit in action

Pedestrian crossing 
indicator

Model 
traffic light

TLC5928 chip


