
Traffix
D8 - Ankita Chatterjee, Kaitlyn Liu, Zina Zarzycki

18-500 Capstone Design, Spring 2024
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
The average American spends two-and-a-half work weeks in traffic

per year. Congestion at intersections fluctuates frequently throughout
the course of a day, and most traffic lights cannot anticipate sudden
variations in traffic flow. This is especially evident in scenarios where
roads are closed and detours are in place or other events that cause
drastic changes in traffic density over a short period in time.

Traffix aims to reduce traffic congestion by creating a smart traffic
light that leverages machine learning and computer vision to identify
cars and pedestrians at intersections and dynamically calculate light
interval times using a Q-learning algorithm. This will benefit drivers by
reducing wait times in traffic as well as benefit the city by providing a
lasting system that increases city efficiency as the online machine
learning model adapts to changes in traffic over time. Optimization

We used a deep Q-learning reinforcement learning model to optimize the timing of
the traffic light. At a fixed rate, the model outputs how long each side of the
intersection should be green.

http://www.ece.cmu.edu/~ece500
/projects/S24-teamD8

System Description

System Evaluation

Conclusions & Additional Information

Our system has 3 main subsystems: the object detection, the
optimization algorithm, and the traffic light PCB. The object detection
code takes in 4 pre-recorded videos of the intersection and uses the
pretrained YOLOv3 model and additional image processing to determine
the number of cars and pedestrians in each lane. The optimization
algorithm runs on the Raspberry Pi and uses simulated vehicle and
pedestrian counts to determine an optimal light interval, and uses
feedback from the SUMO simulation to update the Q-learning model.
The Arduino receives the updated light states every second and changes
the LEDs on the traffic circuit PCB accordingly. In an ideal
implementation, the Raspberry Pi would run both the object detection
and the optimization algorithm, but because the videos do not reflect the
behavior of the simulation (i.e. the light states in real life and our
simulation are not the same, so the car behavior will not be the same) we
chose not to integrate them and instead demonstrate them separately.

Flow Calibrators

SUMO Simulation at Fifth and Craig

For our optimization testing, we tested with a control using a fixed light timing
system at the Fifth and Craig intersection, which we gathered from footage
recorded from the actual light, comparing those wait times to wait times while
using our Q-learning model.
To test the object detection model, we evaluated the accuracy of our
calculated vehicle and pedestrian counts over 100 frames, taken from 4
videos corresponding to each side of the Fifth and Craig intersection. We
determined how many cars the model could handle per side by noting the
maximum number of vehicles that the model could count accurately.

Through our testing, we realized that our optimization algorithm
does converge to a fixed light interval, however we saw decreased
wait times and more variation in the model output for extreme
scenarios where car density was extremely high due to traffic jams.
We hope to continue adjusting our product to be more sensitive to
changes in the state and support more connected systems across
cities rather than at individual lights.
Also, we would have liked to use the live IP camera video feed
rather than pre-recorded footage to run the object detection model,
and do a better job of integrating the two. As it stands, the object
detection model processes frames from all 4 sides of the
intersection simultaneously, which ended up being too
computationally intensive for the Raspberry Pi 4 to handle (note
that we weren’t able to meet our latency requirements for that
metric.). Other than that, however, our system meets the desired
metrics for wait time reduction and complexity handling.

Lane Area Detectors

Entire SUMO Simulation
Light Phase

Flow Calibrators

Fifth and Craig Intersection

Metric Target Actual

CV Model Accuracy
(cars)

90% 80%

CV Model Accuracy
(pedestrians)

80% 90%

Optimization Wait Time Reduction
(regular conditions)

10% 16.4%

Optimization Wait Time Reduction
(stress conditions)

10% 42.2%

CV Model Latency 5s ~12s*

Optimization Model Latency 100ms ~100ms

Complexity Handling 10 cars per side 11 cars per side

Constant LED Forward Current 10 to 15 mA 10.7 mA
(using 4.7kΩ resistor)

Object Detection
We used a pretrained YOLOv3
model to detect the total number of
vehicles and pedestrians in one
frame. The bright green line
indicates the determined lane
boundary for the frame, and only
cars within that boundary are
included in the final count.

Legend
 Hardware
 Software
 Camera/CV
------ Ideal implementation

We initially intended on processing IP camera footage instead of pre-recorded
videos but had difficulties accessing the IP camera stream from the Raspberry Pi
and chose to simplify our demo.

* Time taken for the Raspberry Pi to process 4 frames at a time. ~4s to process 1 frame alone.

Traffic Light Circuit
To demonstrate our system’s ability to react
to observed traffic situations, we designed
and assembled a custom PCB to model a
four-way intersection. In this circuit, the
Arduino gets current state information from
the RPi, then transmits a corresponding
16-bit data string to the TLC5928 LED
driver chip to enable the desired lights.

Traffic Light Circuit in action

Pedestrian crossing
indicator

Model
traffic light

TLC5928 chip

