
Team D8

Traffix
Ankita Chatterjee, Kaitlyn Liu, Zina Zarzycki

Use Case

STAKEHOLDERS
Local transportation authorities save on long term costs to
optimize traffic
Average commuter saves on time wasted while commuting

THE PROBLEM
Current traffic lights waste time and fuel because they are
not optimized for varying traffic conditions
Existing technologies like induction sensors don’t adapt to
evolving traffic patterns

OUR SOLUTION
Design a smart traffic light that continuously optimizes light
timings based on car/pedestrian density and flow data
Replacement to existing traffic lights
Can be implemented in isolation or at city-wide level

System Specification

TomTom Traffic
API Data

Raspberry Pi 4

OpenCV object detection

YOLO v3 model

Optimization algorithm

SUMO Simulation

Traffic Light Circuit

Cameras
IP Camera Video

Feed
WiFi

every
minute

Arduino

USB / Serial
connection

PCB

 Hardware
 Software
 Camera/CV

Pre-recorded
Footage

---- Ideal implementation

cu
rr

en
t l

ig
ht

 s
ta

te

Q-Learning

updated
Interval

wait
times

90% for cars
80% for pedestrians

Quantitative Design Requirements
DESIGN REQUIREMENT SPECIFICATION USE CASE JUSTIFICATION

CV MODEL ACCURACY Users should feel like light timings
reflect actual traffic density

Avg. wait time reduced >10%
compared to fixed-time lightOPTIMIZATION Q.O.L. improvement should be

noticeable to drivers + pedestrians

Models can handle a minimum of 10
cars at each side of intersection +
complex API data

STRESS/COMPLEXITY
HANDLING

Product is most useful if it can be
used to alleviate high-density traffic

< 5s total between traffic data
input and time interval updateLATENCY Light changes should accurately

reflect the current situation

Implementation - Object Detection

● Run on 4 concurrent videos from each
side of Fifth & Craig intersection

● Detect number of pedestrians and
cars in each frame with YOLOv3
model

● Determine lane boundaries in order to
output number of cars and
pedestrians on each side of the
intersection
○ Currently using hard-coded

coordinates as opposed to an
edge detection algorithm

Using YOLOv3 model instead of cascade
classifiers
● Haar cascade accuracy was very

low <50% due to false positives
● YOLOv4 model provided similar

accuracy to YOLOv3 but higher
latency

Using pre-recorded footage instead of a
live camera feed for demo purposes
● Using wired IP cameras (powered

with portable batteries) due to
inability to access live stream of
battery-powered IP cameras (Real
Time Streaming Protocol
incompatibility)

Overall Solution Key Changes & Tradeoffs

Demo Details
● Object detection code will run on

pre-recorded footage
● Display vehicle and pedestrian counts

for each side on monitor

● Run on 4 concurrent videos from
each side of Fifth & Craig
intersection

● Detect number of pedestrians and
cars in each frame with YOLOv3
model

● Determine lane boundaries in order
to output number of cars and
pedestrians on each side of the
intersection
○ Currently using hard-coded

coordinates as opposed to an
edge detection algorithm

Using YOLOv3 model instead of cascade classifiers
● Haar cascade accuracy was very low <50% due to false

positives
● YOLOv4 model provided similar accuracy to YOLOv3 but

higher latency
Using pre-recorded footage instead of a live camera feed for
demo purposes
● Using wired IP cameras (powered with portable

batteries) due to inability to access live stream of
battery-powered IP cameras

● Object detection code will run on
pre-recorded footage

● Display vehicle and pedestrian
counts for each side on monitor

Overall Solution Key Changes & Tradeoffs

Demo Details

Implementation - Optimization

● Deep Q-learning model with Pytorch
○ 2 layered neural network
○ Huber loss function

● Toggleable online or offline model
● Called in TraCI script code to constantly

update SUMO simulation traffic lights
● Outputs (North-South Green duration,

East-West Green duration) to the simulation
● State input:

○ queue length, average speed, current
light phase, time left in phase

Overall Solution Key Changes

Demo Details
● Using simulated pedestrian and vehicle counts

during demo instead of camera data input
● Vehicles in footage will not respond to

simulated light changes leading to
optimization not working

Light interval instead of color action
states
● (North-South green duration,

East-West green duration) vs
North-South at single time/interval

● Safety - delayed updates don’t harm
upcoming cycles

● Easier to implement - no need for
external timing mechanism

Action representation:

MIN NS
GREEN

MAX NS
GREEN

MIN EW GREEN MAX EW GREEN

Implementation - Simulation

● Using SUMO traffic simulator w/
TraCI Python

● Polled constantly by traffic light
circuit to determine current state of
physical traffic light

● Lane area detectors to mimic object
detection model

● Calibrators to simulate real life traffic
flow from TomTom API

Overall Solution Key Changes

Example Simulation Feed

Demo Details
● Plans to implement 3D modeled

simulation for demo
● Will also output live state data

○ Cars at each side of intersection,
average wait time, etc

● Only using TomTom API instead of
TomTom and HERE
○ Redundant flow information

Implementation - Circuit

Overall Solution Key Changes

Demo Details

● RPi outputs current light state
information, sends to Arduino using
serial communication

● Arduino uses SPI transmission to
update light ON/OFF states stored in
the TLC5928 LED Driver chip

● LED Driver outputs are connected to
12 LEDs that model a four-way
intersection

● Packaged together as a custom
Arduino shield PCB

● The traffic light circuit will be
connected to the RPi output, reflecting
the optimized light timing patterns

● Using an LED driver chip to control an
array of individual LEDs, rather than
using addressable LED strips

HOW WE TESTED
● Comparing average wait time of cars in

SUMO simulation with ML model
controlling light durations to same
periods without using the ML model
○ Over 8 periods of 1hr in simulation

time for both trials
● Latency: tested over 10 iterations of

interval calculation

Testing, Verification, Metrics - Optimization

48.90 %
TIME REDUCTION

WITHOUT
OPTIMIZATION 30.87 s

WITH
OPTIMIZATION 15.78 s

AVERAGE WAIT TIME

0.1024 s
LATENCY

● Simulation currently does not have a
lot of randomness and could be closer
to real life environment
○ Improve before demo with more

route variability

FURTHER IMPROVEMENTS

HOW WE TESTED
● 100 frames of pre-recorded video at

Fifth and Craig intersection; all
metrics averaged over those frames

● Compared actual object counts to
object vehicle counts

● Maximum vehicles detected on one
side with full accuracy was 11

Testing, Verification, Metrics - Object Detection

11
MAXIMUM

VEHICLE COUNT

~ 4 s
LATENCY

● Need to re-test latency when all 4
frames are being processed
concurrently; will probably get
worse

● Only tested with 3 sides of the
intersection because that is the only
stable footage we have as of now

● Used hard-coded lane boundaries -
may test edge detection algorithm

FURTHER IMPROVEMENTS

80 %
VEHICLE COUNT

ACCURACY

90 %
PEDESTRIAN

COUNT ACCURACY

HOW WE TESTED
●

Testing, Verification, Metrics - Circuit

●

FURTHER IMPROVEMENTS

HOW WE TESTED
● Partially assembled one of the PCBs and wired it to

breadboarded LEDs
● Ran Arduino TB to verify lights transition as intended

○ Discovered wiring issue with RIREF
● Connected Arduino to RPi to verify

serially-communicated control over light states
● Error statements printed to serial monitor allow us

to ensure that no illegal light patterns happen

● Correctly wired PCBs have been ordered

FURTHER IMPROVEMENTS

<20 us
LATENCY

LATCH
BLANK

CLOCK

Schedule

*February tasks and deliverables not included, see website schedule for more details

Key Takeaways

TRY TO STICK TO WIDELY
USED TOOLS/LIBRARIES
● Better documentation = more

gentle learning curve
● More/quicker support

EVERYTHING TAKES LONGER
THAN YOU THINK IT WILL
● Leave lots of slack time
● Check that things work ASAP

RESEARCH WHAT YOU
ORDER

● Double and triple check that the
parts you order are capable of
doing what you need them to do
to avoid setbacks and
unnecessary purchases

