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Use Case

STAKEHOLDERS
Local transportation authorities save on long term costs to 
optimize traffic
Average commuter saves on time wasted while commuting

THE PROBLEM
Current traffic lights waste time and fuel because they are 
not optimized for varying traffic conditions
Existing technologies like induction sensors don’t adapt to 
evolving traffic patterns

OUR SOLUTION
Design a smart traffic light that continuously optimizes light 
timings based on car/pedestrian density and flow data
Replacement to existing traffic lights
Can be implemented in isolation or at city-wide level
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90% for cars
80% for pedestrians

Quantitative Design Requirements
DESIGN REQUIREMENT SPECIFICATION USE CASE JUSTIFICATION

CV MODEL ACCURACY Users should feel like light timings 
reflect actual traffic density

Avg. wait time reduced >10% 
compared to fixed-time lightOPTIMIZATION Q.O.L. improvement should be 

noticeable to drivers + pedestrians

Models can handle a minimum of 10 
cars at each side of intersection + 
complex API data

STRESS/COMPLEXITY 
HANDLING

Product is most useful if it can be 
used to alleviate high-density traffic

< 5s total between traffic data 
input and time interval updateLATENCY Light changes should accurately 

reflect the current situation



Implementation - Object Detection

● Run on 4 concurrent videos from each 
side of Fifth & Craig intersection

● Detect number of pedestrians and 
cars in each frame with YOLOv3 
model

● Determine lane boundaries in order to 
output number of cars and 
pedestrians on each side of the 
intersection
○ Currently using hard-coded 

coordinates as opposed to an 
edge detection algorithm

Using YOLOv3 model instead of cascade 
classifiers
● Haar cascade accuracy was very 

low <50% due to false positives
● YOLOv4 model provided similar 

accuracy to YOLOv3 but higher 
latency

Using pre-recorded footage instead of a 
live camera feed for demo purposes
● Using wired IP cameras (powered 

with portable batteries) due to 
inability to access live stream of 
battery-powered IP cameras (Real 
Time Streaming Protocol 
incompatibility)

Overall Solution Key Changes & Tradeoffs

Demo Details
● Object detection code will run on 

pre-recorded footage
● Display vehicle and pedestrian counts 

for each side on monitor

● Run on 4 concurrent videos from 
each side of Fifth & Craig 
intersection

● Detect number of pedestrians and 
cars in each frame with YOLOv3 
model

● Determine lane boundaries in order 
to output number of cars and 
pedestrians on each side of the 
intersection
○ Currently using hard-coded 

coordinates as opposed to an 
edge detection algorithm

Using YOLOv3 model instead of cascade classifiers
● Haar cascade accuracy was very low <50% due to false 

positives
● YOLOv4 model provided similar accuracy to YOLOv3 but 

higher latency
Using pre-recorded footage instead of a live camera feed for 
demo purposes
● Using wired IP cameras (powered with portable 

batteries) due to inability to access live stream of 
battery-powered IP cameras

● Object detection code will run on 
pre-recorded footage

● Display vehicle and pedestrian 
counts for each side on monitor

Overall Solution Key Changes & Tradeoffs

Demo Details



Implementation - Optimization

● Deep Q-learning model with Pytorch
○ 2 layered neural network
○ Huber loss function

● Toggleable online or offline model 
● Called in TraCI script code to constantly 

update SUMO simulation traffic lights
● Outputs (North-South Green duration, 

East-West Green duration) to the simulation
● State input:

○ queue length, average speed, current 
light phase, time left in phase

Overall Solution Key Changes

Demo Details
● Using simulated pedestrian and vehicle counts 

during demo instead of camera data input
● Vehicles in footage will not respond to 

simulated light changes leading to 
optimization not working

Light interval instead of color action 
states 
● (North-South green duration, 

East-West green duration) vs 
North-South at single time/interval

● Safety - delayed updates don’t harm 
upcoming cycles

● Easier to implement - no need for 
external timing mechanism

Action representation:

MIN NS 
GREEN

MAX NS 
GREEN

MIN EW GREEN MAX EW GREEN



Implementation - Simulation

● Using SUMO traffic simulator w/ 
TraCI Python

● Polled constantly by traffic light 
circuit to determine current state of 
physical traffic light

● Lane area detectors to mimic object 
detection model

● Calibrators to simulate real life traffic 
flow from TomTom API

Overall Solution Key Changes

Example Simulation Feed

Demo Details
● Plans to implement 3D modeled 

simulation for demo
● Will also output live state data

○ Cars at each side of intersection, 
average wait time, etc

● Only using TomTom API instead of 
TomTom and HERE
○ Redundant flow information



Implementation - Circuit

Overall Solution Key Changes

Demo Details

● RPi outputs current light state 
information, sends to Arduino using 
serial communication

● Arduino uses SPI transmission to 
update light ON/OFF states stored in 
the TLC5928 LED Driver chip

● LED Driver outputs are connected to 
12 LEDs that model a four-way 
intersection

● Packaged together as a custom 
Arduino shield PCB

● The traffic light circuit will be 
connected to the RPi output, reflecting 
the optimized light timing patterns 

● Using an LED driver chip to control an 
array of individual LEDs, rather than 
using addressable LED strips



HOW WE TESTED
● Comparing average wait time of cars in 

SUMO simulation with ML model 
controlling light durations to same 
periods without using the ML model
○ Over 8 periods of 1hr in simulation 

time for both trials
● Latency: tested over 10 iterations of 

interval calculation

Testing, Verification, Metrics - Optimization

48.90 %
TIME REDUCTION

WITHOUT 
OPTIMIZATION 30.87 s

WITH
OPTIMIZATION 15.78 s

AVERAGE WAIT TIME

0.1024 s
LATENCY

● Simulation currently does not have a 
lot of randomness and could be closer 
to real life environment
○ Improve before demo with more 

route variability

FURTHER IMPROVEMENTS



HOW WE TESTED
● 100 frames of pre-recorded video at 

Fifth and Craig intersection; all 
metrics averaged over those frames

● Compared actual object counts to 
object vehicle counts

● Maximum vehicles detected on one 
side with full accuracy was 11

Testing, Verification, Metrics - Object Detection

11
MAXIMUM 

VEHICLE COUNT

~ 4 s
LATENCY

● Need to re-test latency when all 4 
frames are being processed 
concurrently; will probably get 
worse

● Only tested with 3 sides of the 
intersection because that is the only 
stable footage we have as of now

● Used hard-coded lane boundaries - 
may test edge detection algorithm

FURTHER IMPROVEMENTS

80 %
VEHICLE COUNT 

ACCURACY

90 %
PEDESTRIAN 

COUNT ACCURACY



HOW WE TESTED
●

Testing, Verification, Metrics - Circuit

●

FURTHER IMPROVEMENTS

HOW WE TESTED
● Partially assembled one of the PCBs and wired it to 

breadboarded LEDs
● Ran Arduino TB to verify lights transition as intended

○ Discovered wiring issue with RIREF 
● Connected Arduino to RPi to verify 

serially-communicated control over light states
● Error statements printed to serial monitor allow us 

to ensure that no illegal light patterns happen 

● Correctly wired PCBs have been ordered 

FURTHER IMPROVEMENTS

<20 us
LATENCY

LATCH
BLANK

CLOCK



Schedule

*February tasks and deliverables not included, see website schedule for more details



Key Takeaways

TRY TO STICK TO WIDELY 
USED TOOLS/LIBRARIES
● Better documentation = more 

gentle learning curve
● More/quicker support

EVERYTHING TAKES LONGER 
THAN YOU THINK IT WILL
● Leave lots of slack time
● Check that things work ASAP

RESEARCH WHAT YOU 
ORDER 

● Double and triple check that the 
parts you order are capable of 
doing what you need them to do 
to avoid setbacks and 
unnecessary purchases


