Team D8: Traffix

Ankita Chatterjee, Kaitlyn Liu, Zina Zarzycki

Use Case

- Americans drive a lot
- Current traffic light implementations are:
 - Inefficient
 - Environmentally unfriendly
 - Unsafe

Total number of car trips taken by Americans per month [1]

- Our solution
 - Design a smart traffic light that optimizes light timings in real time based on car/pedestrian density and flow data obtained via cameras + traffic API calls
 - Requires hardware, software, and circuits knowledge

Use Case Requirements

- Efficiency improvement
 - Average wait time reduction >10%
- Safety
 - Abides by traffic guidelines
- High traffic situations
 - Can handle >20 cars waiting at each side of the intersection

Use Case Requirements

- Can handle up to a four-way intersection of two-lane streets
 - Think Fifth & Craig
- Can default to a standard fixed-time light protocol

Technical Challenges

- Differentiating between relevant and irrelevant objects
- Optimizing light interval timings
- Syncing all lights at an intersection
- Real-world testing

https://medium.com/@kaanerdenn/introduction-to-object-detection-vehicle-detection-with-opency-and-cascade-classifiers-8c6834191a0b

Solution Approach - Hardware

- 4 IP Cameras:
 - Reolink Argus Eco
 - Battery-powered
 - Take pictures/video of intersection
 - Fifth Ave and Craig St
 - Data sent to Raspberry Pi via WiFi connection

https://reolink.com/us/product/argus-eco/?attribute_pa_version=1-pack-3mp-white-solar-panel-white

- Traffic Light Prototype:
 - PCB (breakout board for an Arduino or other microcontroller)
 - Addressable LEDs (Neopixels)

https://www.adafruit.com/product/1586

Solution Approach - Software

- Program to extract relevant traffic object counts
 - Current state data sourced from camera feeds
 - Haar feature-based cascade classifiers^[1]
 - Future state data sourced from traffic API

- Traffic flow optimization algorithm
 - Local descent algorithm^[2]
 - Optimize green light intervals to minimize avg. time spent waiting by all cars in one cycle

"Investigating Advanced Traffic Signal Control", California Department of Transportation https://www.fhwa.dot.gov/publications/research/ear/11044/index.cfm

Solution Approach

Testing Strategy

- Traffic Object Detection Algorithm
 - Collect video samples and verify correct counts are achieved
- Optimization Algorithm
 - Simulate variety of randomized traffic scenarios
- Traffic Light Prototype
 - Test that PCB functionality matches that of breadboarded circuit

Verification Metrics

- Object detection accuracy
 - Car detection accuracy > 90% [1]
 - Pedestrian detection accuracy > 80% [2]
- Optimization
 - >10% average wait time reduction compared to existing protocols
- Latency
 - Expected light change delay < 3 sec.
 - Traffic object counts update every 5 sec.
 - Traffic API and camera data offset < 5 seconds

Division of Labor

- Data collection
 - Zina
- OpenCV car-counting algorithm
 - Ankita, Kaitlyn
- Traffic API data integration
 - Kaitlyn
- Light timing optimization algorithm
 - o Ankita, Kaitlyn
- Raspberry Pi integration
 - o Ankita, Zina
- Traffic light prototype design and implementation
 - o Zina

Tasks		February 2024			March 2024				April 2024					May 2024
	28	4 11	18	25	3	10	17	24 3	11	7	14	21	28	
OpenCV detection algorithm		Data collection (traffic camera Feb 5 - Feb 12 Camera research - Ankita Feb 5 - Feb 12 Code for Feb 12 - F	car detection • Ankita	Feb 26 - Ma	algorithm data pipeline to o	ptimization algorit	use case requirements and	d safety • Ankita, Kaitlyn			*Course	deliverables	not pic	tured
Optimization algorithm		Data collection • Zina Feb 5 - Feb 12 Traffic optimization research • Feb 5 - Feb 12	Kaitlyn											
Traffic API integration		API research - Kaitlyn Feb 5 - Feb 8 Data col Feb 12 - 8	Unit testing • Ka Feb 19 • Feb 22	optimization pipe - Feb 24	eline - Kaitlyn									
Raspberry Pi integration		Setting Feb 12 - F				between RPi and r	nicrocontroller • Zina sting • Ankita, Zina 18							
Traffic light circuit (TLC)			Build small LED Feb 19 - Feb 26		Order PCB for larger scale T or 4	LC system with add	fressable LEDS • Zina	Test PCB with bread Mar 25 - Apr 1			whole system) • Zina			
Slack Time										All Apr 8 - Apr 2	22			