
Design
Review

Presentation
D8 - Traffix

The Problem:
○ Current traffic lights waste

time and fuel
○ Stakeholders:

■ Local transportation
authorities

■ Average commuter

Use Case

The Solution:
○ Design a smart traffic light that continuously optimizes light timings based

on car/pedestrian density and flow data

[1]

[1] https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter6.htm
[2] https://www.researchgate.net/figure/Inductive-loop-detectors-based-traffic-management_fig1_274270897

[2]

https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter6.htm
https://www.researchgate.net/figure/Inductive-loop-detectors-based-traffic-management_fig1_274270897

Quantitative Design Requirements
Design Requirement Specification Use Case Justification

CV model accuracy ~90% for cars
~80% for pedestrians

Users should feel like light timings
reflect actual traffic density

Optimization Avg. wait time reduced >10%
compared to fixed-time light

Q.O.L. improvement should be
noticeable to drivers + pedestrians

Stress/complexity handling Models can handle a minimum
of 10 cars at each side of
intersection + complex API data

Product is most useful if it can be
used to alleviate high-density traffic

Latency < 5s total between traffic data
input and time interval update

Light changes should accurately
reflect the current situation

System Specification

Traffic API Data
(TomTom, HERE)

Raspberry Pi 4

OpenCV object detection

Haar Cascade
Classifiers

Optimization algorithm

Q-Learning

Traffic Light Circuit

Cameras

Car & Pedestrian
Haar Cascades

IP Camera Video
Feed

training

Past Video Data

WiFi

every
minute

Arduino
USB / Serial
connection

Addressable LEDs

PCB

 Software
 Hardware
 Camera/CV

Cameras
● 4 IP cameras to capture each side of the intersection
● Live video data streamed to RPi (WiFi connection)

Traffic Light Mockup
● Addressable LED Ring
● Controlled by Arduino

○ USB connection to RPi

Solution Approach - Hardware

Traffic Light Circuit (TLC)
● Custom PCB: breakout board mounted on an Arduino
● Arduino fed light timing data from RPi

○ Translates data to control addressable LEDs

Camera Setup
● 4 WiFi enabled cameras, one for each street direction
● Camera positions must be fairly consistent for image

identification model
○ Depending on testing process, may need to

construct a mount of some sort

Implementation - Hardware

Reolink Argus 2E

https://reolink.com/us/product/argus-2e/?attribute_pa_version=1-pack-3mp-white&gad_source=1&gclid=CjwKCAiAibeuBhAAEiwAiXBoJLuAiGhPrFbGxidtc-j_S0zDi00zJcOhyUd0__EwFcOTSix4VqHpVBoCB28QAvD_BwE

Traffic Object Identification Model
● Identify number of cars and number of pedestrians
● Feed into optimization model to determine how to

change light intervals

Optimization Model
● Traffic APIs for live data of nearby intersections with

oncoming traffic
● Data from object identification model to get current

intersection data
● Reinforcement learning to allow historical data to

influence future light intervals

Solution Approach - Software

https://medium.com/@kaanerdenn/introduction-to-object-detection-vehicle-det
ection-with-opencv-and-cascade-classifiers-8c6834191a0b

https://medium.com/@kaanerdenn/introduction-to-object-detection-vehicle-detection-with-opencv-and-cascade-classifiers-8c6834191a0b
https://medium.com/@kaanerdenn/introduction-to-object-detection-vehicle-detection-with-opencv-and-cascade-classifiers-8c6834191a0b

Optimization Model
● Live traffic data of nearby roads: TomTom Traffic API and HERE

Traffic API
○ Free for our usage

● Reinforcement learning techniques: Q-learning[1]

● Pytorch

Object Detection Model
● Haar cascade - easy to implement on constrained hardware
● Train different cascades for different objects

○ Use existing XML files for cars and pedestrians[2]

● OpenCV

Implementation - Software

[1] Based off of similar research: https://cs229.stanford.edu/proj2016spr/report/047.pdf
[2] Sourced by this repo: https://github.com/AdityaPai2398/Vehicle-And-Pedestrian-Detection-Using-Haar-Cascades/tree/master

https://cs229.stanford.edu/proj2016spr/report/047.pdf
https://github.com/AdityaPai2398/Vehicle-And-Pedestrian-Detection-Using-Haar-Cascades/tree/master

Processing/Computation
● Raspberry Pi 4 will run CV and optimization models

○ Connected to common WiFi network with cameras to receive their live data
■ CMU-SECURE or Mobile WiFi hotspot

○ Make API calls from RPi
○ Output light timing info sent through Serial communication to Arduino

Implementation - Integration

[1] https://www.luisllamas.es/en/raspberry-pi-wifi/

[1]

https://www.luisllamas.es/en/raspberry-pi-wifi/

Optimization Model
● Compare average wait time of cars & pedestrians over multiple traffic

cycles (2-5)
○ With simulated car and pedestrian counts using SUMO, against

simulated fixed-interval model
○ With actual footage taken on each side of the intersection
○ > 10% reduction in average wait time

Object Detection Model
● Run on video samples and verify correct counts are achieved

○ ~90% accuracy with vehicles
○ ~80% accuracy with pedestrians

Testing, Verification, Metrics

https://sumo.dlr.de/docs/index.html

Traffic Light Circuit (TLC)
● Integration tests to ensure:

○ Input RPi data is received properly
○ Output to LEDs reflects desired functionality

● RPi data receipt -> LED change latency should be < 1s

RPi Integration
● Test WiFi connection with cameras and ability to receive API call data
● Stress tests to verify latency < 5s between input and output to TLC

○ “stress” = high-complexity data, rather than high-speed

Testing, Verification, Metrics

Cameras
● Reduce initial 4-camera plan to 2 cameras (simulate other sides based on API data)
● Use standard wired RPi cameras if IP cameras fail
● Use pre-recorded videos / existing traffic camera footage if image identification

model does not work reliably with live camera feed

Software
● If latency requirements not met

○ Only keep track of wait time for specific cars
○ Only run image identification model on 2 sides of the intersection
○ Only consider vehicles for optimization algorithm

Risk Mitigation

Schedule
(link)

https://docs.google.com/spreadsheets/d/1FeZNBSSRzhEHRE2YrkCVK8h6L6SjY-L5-esknwc0SsM/edit?usp=sharing

