
18-500 Design Review Report - 2 March 2024 Page 1 of 13

EchoSign
Authors: Ria Balli, Ricky Gao, Somya Pathak

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A pair of sensor-based gloves capable of
identifying double handed ASL words in real time and
translating them to speech. This product is designed
to be portable, accurate, and easy to use.

Index Terms—Flex sensor, Gesture Detection,
IMU, Machine Learning

1 INTRODUCTION

The goal of our product is to devise a pair of gloves
that have the ability to translate double-handed American
Sign Language (ASL) words to speech output. Its purpose
is to help facilitate communication between the deaf and
non-deaf population. The deaf/hard of hearing community
primarily communicates through sign language, and our
device will rely on training a machine learning model with
sensor information of the gestures that make up sign lan-
guage. Our hope is that our product is lightweight, easy to
use, and has a sign-to-identification accuracy and speed of
classification that is as high as possible. For some example
words in our vocabulary, please refer to Figure 1.

2 USE-CASE REQUIREMENTS

Based on our goal of providing seamless communica-
tion from a deaf speaker to a non-deaf speaker, we focused
our use-case requirements on both the performance of the
system itself as well as its usability.

EchoSign should have an accuracy of 85% on the
targeted vocabulary. This means that for every time a
specific sign is performed, the predicted letter/word should
match the sign at least 85% of the time. This aligns with
our original goal to provide an avenue of communication
between deaf to non-deaf speakers and accuracy is a cor-
nerstone of that conversation. We settled on 85% because
it was a nice middle-ground between professional research
group performance (98.63% by UCLA [4]) and past cap-
stone groups (75.86% by Gesture Glove [3]). This value is
motivated by specific considerations into public health and
safety. If this system becomes widely used, it needs to be
as accurate as possible so accurate information can be con-
veyed which is especially important in emergency settings.

EchoSign should be able to output a prediction
500ms after the user signed. This means that after the
user has signed, the non-deaf speaker should expect to hear
the corresponding letter at latest 500ms from the signing.
If nothing is announced after the 500ms, the recipient is
expected to interpret that as a no signing gesture. The

major concern that motivated this requirement is a social
one. We wish to create a product that allows for a seam-
less conversation between deaf and non-deaf speakers. The
rate at which conversation can occur is important for this
and it will inherently be limited by our product. With this
in mind, we seek to have only 500ms of delay because this
reflects past research that identified that the average speed
of signing is 2 signs per second [1]. With this goal, we can
try to match the seamlessness of a signed conversation.

EchoSign should be able to classify a set of 10
gestures from the ASL vocabulary that span various
parts of speech. A significant portion of the ASL vocabu-
lary makes use of both hands to distinguish themselves from
other words and signings. Therefore, the set represents a
perfect vocabulary for us to represent. However, due to the
vastness of the vocabulary, it would be infeasible to classify
all possible words. Thus, our goal has shifted to represent
words from each part-of-speech from the ASL vocabulary.
Specifically, the set of words are: what, time, car, church,
family, meet, live, big, more, but, and an additional ”no-
sign” state. These words were selected because they were
present as some of the most used words [2] and represent
various parts-of-speech like nouns, verbs, prepositions, etc.

EchoSign should be a durable product that can
last multiple hours on a single battery and with-
stand repeated signings without need for repairs or
replacements. Again, our reasoning relates to social and
safety factors. We want to create a product that people
can depend on with confidence for a significant period of
time. With this in mind we want to ensure that the gloves
can be powered by the selected battery for 2 hours at a
time. We also want to ensure that our physical design of
the glove allows it to be used for multiple charged sessions.
The product shouldn’t need to be fixed more often than it
needs to be recharged or have the battery replaced.

EchoSign should be a comfortable product to use
and light (100g). This is primarily motivated from a
health perspective. As this is a product that is mean to
be worn, we want to ensure that it is minimally impactful
and easy to use. Comfort will be evaluated by user testing
as we have people rate how easy it is to use. Weight will
be measured by the different components that are added
to the glove so we can evaluate their cumulative impact.

18-500 Design Review Report - 2 March 2024 Page 2 of 13

Figure 1: ASL Words (from top-to-bottom: car, church,
family)

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

EchoSign’s design can be partitioned into its software
and hardware components. There are three main compo-
nents in EchoSign’s MVP structure: Glove 1, Glove 2, and
the Main Compute Unit. The figure below outlines the
various components that make up EchoSign’s glove archi-
tecture.

Glove 1 comprises the 5 flex sensors from which we
will read voltage output from using our on-hand compute
board. This computer on the glove is labeled “Arduino” in
the diagram. Trade studies on our board specifications can
be seen in section 5. For the MVP, we are using the Ar-
duino Nano 33 BLE Sense Rev2 for its compact design, on
board IMU, and BLE capabilities. Notably, the IMU data
will also be read by the Arduino and sent to the laptop as
a datapoint alongside the flex sensor readings. Feedback is
also controlled with this compute unit to the haptic vibra-
tion motor mounted on the hand. Our batteries, two 3.7V
550 mAh lithium polymer battery, will power this system.
To turn on the glove system, we will have the user con-
nect two cables into the designated power pins labeled on
the side of the PCB. Once turned on, they will serve as
Bluetooth clients and wait until they can connect to the
laptop.

Glove 2 differs from Glove 1 solely by the fact that the
haptic feedback component will not be included. But for
operating purposes, it has the same principle of operation

as the previous glove. Note that the main changes from the
design report include the removal of the speaker system on
the glove and the incorporation of a PCB on the glove.

The last component of our system contains primarily
software implementation. The overall system starts when
the user runs a specific python script for detection in a va-
riety of modes. We currently have three modes: one model,
two models, or time-series detection. For most purposes,
the two models detection scheme will suffice. Afterwards,
the laptop will attempt to connect to the Arduino via the
Bluetooth connection. After connection has been estab-
lished, the software will attempt to calibrate to the user’s
maximum and minimum range of finger flexion. Then, af-
ter the calibration has been set, the main loop of inference
will commence. The software will receive data from the
Arduino. This data will be passed to the ML model which
will return a predicted word. Once the ML model pre-
dicts the same word multiple times in a row, the speaker
will output the predicted word and a signal will be sent to
the Arduino for the haptic feedback feature. 7. Note that
the main changes here are based in the focus on neural
networks and the ML classification algorithm. The other
software components remain the same.

For engineering principles, we emphasized an iterative
approach with out prototype scheduling. By developing dif-
ferent subsystems sequentially, we were able to verify the
functionality of those subsystems before they were incor-
porated into the overall design. We also created a simpler
product halfway into the semester for our interim demo
before proceeding to our final MVP. This scheduling of de-
velopment allowed us to set smaller goals during our system
which helped to keep us motivated and gave us opportuni-
ties to verify our theoretical designs in real life.

For science principles, we emphasized some of the con-
tent we learned from our classes. For our circuit design, we
drew from our knowledge of op-amps and how to amplify
voltages so that we could increase the range of detection
for our flex sensors. For the ML algorithm, we drew from
past knowledge about collecting data, over-fitting issues,
and how to create ensembles of models to improve perfor-
mance.

For math principles, we didn’t use too much but we did
use specific numbers to derive the resistors that we needed
for our op-amp circuit design. This allowed us to circum-
vent the tedious process of testing various resistors and let
us find the optimal resistance immediately.

18-500 Design Review Report - 2 March 2024 Page 3 of 13

(a)

(b)

(c)

Figure 2: System block diagram.

Figure 3: Full block diagram.

4 DESIGN REQUIREMENTS

To achieve our use-case requirements, we have set out
the following list of design requirements. The actual re-
quirement is marked in bold, while the explanation sur-
round them.

An IMU was included in this list due to its ability to pro-
vide positional measurements. Most 6 axis and 9 axis IMUs
include a triaxial accelerometer which will be integral to our
data collection. Since our design requires positional
and gyroscopic data regarding hand placement, we
found it optimal for space and weight considera-
tions to use a board with an on board IMU. There is
a constant gravitational force pointed downward, and the
x, y, and z components of acceleration of the glove at rest
should add up to this download gravitational force. Given
each component, we are presented with a unique orienta-
tion of the hand at some angle.

Further expanding on our sensor reading requirements,
we need at least 5 analog input pins on our board to
connect five flex sensors to. Typical flex sensors (and
all of the ones we looked into) need a power source, a con-
nection to ground, and a connection to an analog input pin
on the board. This means that the board we choose must
have at least 5 analog input pins. We also need at least
one digital out pin for our haptic motor. In addition,
we would like the range of voltage values outputted by the
flex sensors to be as wide as possible. This is to ensure
that the feature vector corresponding to one gesture is as
distinct as possible from another. To accomplish this, we
need to appropriately choose the pull-down resistor value
that each flex sensor will be connected in series with.

The next feature we wanted to be built into our
board was Bluetooth capability, preferable at least
4.x LE for its improved latency compared to older
models. If we were to use a board without a built in
Bluetooth controller, we would have to attach one to it
and they are typically the length and width of an Arduino

18-500 Design Review Report - 2 March 2024 Page 4 of 13

Nano but much thicker than them. This would likely cause
us to exceed our weight requirements and size use case re-
quirements so we prioritized having Bluetooth built into
the board.

Finally, we preferred to purchase a board with a
sufficient processor that would be capable of trans-
mitting data as fast as possible to our remote MCU
and, in a later prototyping stage, running our ML
model on board. We determined that it is approximately
32MHz. With 25 readings per second, this would leave us
with approximately 5 million clock ticks in between read-
ings. This leaves a lot of room for other computation that
we may want to move onto the board later on. The board
we decided on is the Arduino Nano 33 BLE Sense Rev2.
The range of its IMU is ±16g. We decided to base our
IMU selection on the board we choose (instead of first de-
ciding which IMU meets our needs) because this project
does not require a state of the art accelerometer and we
felt that the one mounted on the Arduino Nano 33 BLE
Sense Rev2 satisfied our sensitivity needs.

We then needed to determine latency targets for our
data flow and transmission to get a better idea of how we
will reach our target use case requirement of .5 seconds
from sign to speech. For general device communication
like sensor readings and based on BLE specifications, we
can expect latencies of about 10 ms to 100 ms. Based on
this data, we will strive to achieve a sign to ML in-
put latency of 100 ms. We will achieve this by making
the data we send as compact as possible when formatting
sensor readings. We also determined that we will al-
low 25 ms for our ML model to output a prediction
based on a past capstone project’s results, and we will wait
for 8 consecutive gestures that are the same to classify the
predictions as a gesture with confidence. This gives us a
total of 200 ms to classify a sign. Then we will then
strive for 200 ms for data to go back to the gloves
for haptic feedback and speaker output. Bluetooth
latency for fully wireless headphones can range from 100 to
300 ms so we will set our requirement to 200 ms since we are
not transmitting high quality audio data but want a conser-
vative estimate. Adding these values together gives us 500
ms, our use case latency requirement. We will attempt to
minimize latency in all cases and identify bottlenecks that
can help us go below this number if possible. If we find
that Bluetooth is a bottleneck, we will consider moving to
a WiFi communication protocol with the Arduino Nano 33
IoT. See 5 for more information.

The ML model should be able to perform in-
ference at a rate of less than 25ms per prediction.
This metric is directly tied to the speed use-case require-
ment. We predicted that the bulk of the time delay will
stem from the latency caused by the wireless transmission.
With this in mind, we hoped that the classification section
will only take up less than half of the allotted 500ms re-
quirement from sign to prediction. Then, since our final
classification module might require repeat ML model pre-
dictions, we divided that time by 8 to arrive at our design

goal of 25ms.

The ML should be able to achieve a testing ac-
curacy of 90% on excluded test data. This is directly
tied with the accuracy use-case requirement. We plan on
adding additional checks on the output of the ML model to
make the entire system more robust to noise and interfer-
ence. With that in mind, we at least wanted to start out
with a solid baseline with a model that performs relatively
well as a standalone. We arrived at 90% because we be-
lieve that we can correctly fix the small case of errors with
our additional final classification paradigms we will present
later.

Our software should be ready to collect around
2000 datapoints per letter with a variety of different
signers. This design requirement is directly tied to our
accuracy requirements and indirectly tied to our desired
vocabulary size. The main hope with this requirement is
to establish enough data to train all our ML models suf-
ficiently while leaving enough wiggle room for additional
testing or cross-validation. By seeking a variety of signers
to collect our data, we hope to make the model more robust
to achieve our use-case requirement in accuracy.

5 DESIGN TRADE STUDIES

Glove Sensors vs Computer Vision

When we came up with our initial goals to enable com-
munication from deaf to non-deaf speakers, we were im-
mediately faced with a decision to make: whether to use
a glove-based sensor design or a camera with a computer
vision backend.

A computer vision based approach would involve having
a camera take images of someone else while they are sign-
ing. The resulting images would be passed into a CV/ML
backend for classification. The pros of this method is that
the high dimensionality of the input data allows for more
minute movements to be detected. Even slight flexions in
a particular finger might be detected due to the nuances
of CV techniques. Additionally, we would most likely be
able to make a less user-impactful product, meaning that
a camera alone would most likely be easier to carry. How-
ever, the cons are that the CV setup requires a lot of train-
ing and a consistent background environment. Due to the
high dimensionality of images, CV methods often require
collecting a huge dataset to train the proper CNN architec-
tures for performance. Collecting data can be very labor-
intensive due to the time collecting the data as well as the
additional effort to label each image. Additionally, there
is a requirement to match the background and framing of
the training data. If this requirement isn’t matched, per-
formance is very likely to suffer. This makes this product
extremely hard to use in an uncontrolled environment.

A glove-based approach involves using flex sensors and
IMUs to detect the positioning of the fingers and hand to
predict the corresponding signed letter. The pros involve
a quicker training process and a system that is more ro-

18-500 Design Review Report - 2 March 2024 Page 5 of 13

bust to varying environmental factors. The quicker train-
ing process stems from the smaller dimensionality of the
data, namely only the flex sensors and the IMU. And since
the readings will be relatively consistent regardless of vary-
ing conditions, we can expect a similar performance at all
times. The cons are the sensitivity of the sensors. Being
less information dense than an image, we are at the mercy
of the sensors being able to convey enough information to
make accurate predictions.

At the end of the day, based on previous groups’ suc-
cess, and the more robust design, we decided to choose our
glove sensor to tackle the problem of deaf communication
to non-deaf speakers.

New User Calibration / Adaptability

One of the initial considerations for the project was to
develop an additional calibration mode for new users to
adjust the ML model backend to fit the current user more
closely. This was inspired by similar designs like Apple’s
face recognition or fingerprint identification. The premise
is that the way that people vary from person to person and
the classification might suffer if the variations differ from
the training set too much.

Ultimately, we decided to put adaptability as a stretch
goal of ours. This was due to our belief that the variabil-
ity will be minimal enough to still maintain a relatively
high performance even with outside testing input. If we
have enough slack time, this would be a feature we would
definitely implement to maximize accuracy across different
users.

Choice of Sensors

We have decided to use Spectra Symbol’s ’Original Flex
Sensors’ for a variety of reasons, the first being precedent—
this type of sensor was most commonly used by similar
projects. The second primary reason was cost. Since our
design has two gloves, we need 12 sensors (ten for each fin-
ger, two for slack), so cost was important to keep in mind,
especially if the goal of this project in the distant future is
to be as accessible as possible. Spectra Symbol has since
come out with the more lightweight and sensitive ’Spec-
traFlex Flex Sensors’, but these were $12.5 more expensive
than the sensors we went with. We were also looking into
Bend Lab’s flexible soft sensors, which were appealing due
to their silicone-based material that seemed to offer higher
sensitivity, but at $49.00 a sensor this was unfeasible in
terms of cost. In addition, we considered other sensor op-
tions, like Hall effect sensors and conductive thread based
sensors but opted against these as they were not as com-
mon and used by research groups with significantly more
resources.

BLE Sense Rev2 Board vs IoT Board

As described in the design requirements, we are using
the Arduino Nano 33 BLE Sense Rev2 board. This board

has a 64MHz clock frequency, BMI270 and BMM150 IMU’s
on board (totalling to 9 degrees of freedom) giving us ac-
celerometer, gyroscope, and magnetometer readings. It was
stated that we are considering using the Arduino Nano 33
IoT in the near future due to its WiFi communication ca-
pability. WiFi is faster than BLE, which is why we will
utilize it if we fail to meet latency use case requirements
with Bluetooth. The reason we are not using WiFi right
off the bat is because Bluetooth is simpler to use and the
BLE Sense board has more computing power. Since we
plan to move some computation to the board in our final
prototype as described in system implementation, it was
clear that our priorities meant that the BLE Sense board
was more appropriate. However, the 48MHz clock speed
on the IoT board is not trivial and we may be able to take
some advantage of its compute power if the BLE does not
allow us to meet latency requirements.

One other factor we considered is that the IoT board’s
IMU is the LSM6DS3 which gives us 6 degrees of freedom
whereas the BMI270 and BMM150 on the Sense Rev2 gives
us 9 (additional magnetometer). While we do not foresee
using a magnetometer currently, it may be a datapoint of
interest if we decide to change the kind of data we gather at
any point. This may become useful if IMU and flex readings
for two gloves do not give us the accuracy we are looking
for causing us to want data about how far the hands are
from each other using a magnet. This additional benefit of
the BLE Sense further confirmed that we should start with
that board.

Presence of a Remote MCU

Part of our MVP design is that we have a laptop running
the classification model as well as noise reduction. Past
projects have used a smartphone or laptop to show proof
of concept speech output, however we believe the product
will be more versatile and useful if there is no dependency
on these devices. However, we are aware of the complexity
that such a change could bring to our system. Therefore,
our system implementation discusses how we will achieve
wireless, independent functionality only after our MVP re-
quirements have been met.

6 RAPID PROTOTYPES

We have adapted a rapid prototype approach to com-
pleting our product within the given class time.

Prototype 1

Our first prototype will be a one glove design with flex
sensors and an Arduino mounted on the glove. One of the
team members’ laptops will be used to do computation and
speaker output will be from the laptop. The ”haptic feed-
back” will initially be an LED lighting up on the Arduino
to visually inform the user that a sign was successfully con-
verted to speech. Communication will be done via USB for

18-500 Design Review Report - 2 March 2024 Page 6 of 13

this prototype. Our design will be able to interpret 10 ASL
letters. We chose this number because it is small and does
not require an ample amount of data to be collected but it
is large enough to give us some idea of our system accuracy.

Prototype 2

Our second prototype will have wireless communica-
tion (initially Bluetooth but optionally WiFi if we do not
meet latency requirements). We will duplicate our working
glove with one having a haptic vibration motor attached.
This design will be trained against data representing the
10 words ASL vocabulary as specified by or use-case re-
quirements. This data will need to be recollected as our
hardware and vocabulary changes. We have also developed
a PCB and outside case to hold the circuitry as part of
this prototype. Complete wirelessness is also achieved via
battery power. The overall physical design will be stream-
lined during this prototype to make the system as robust
to damage as possible as well.

7 SYSTEM IMPLEMENTATION

Physical Design

A significant step in our architecture design was decid-
ing how to mount everything on the user’s hands. Below is
a picture of our final glove design.

Figure 4: Final Glove Design

Figure 5: Case internals

The flex sensors are attached to the glove using a blend
of stitching at the joints with super glue used at the ex-
tremities of the hand. The flex sensors are connected to
the main PCB unit through the soldering of some wire con-
nections. Then, the battery and the PCB are placed onto
their carrier box, which was made via 3D printing. Once
the two components are placed into the case, the case is
covered with the help of screws and a bolt. Then, the case
is secured onto the glove with the use of super glue and
velcro straps. Lastly, the haptic motor on the left hand is
attached with some glue. The glove system can be turned
on wirelessly by having the user attach the battery connec-
tor wires to the extruding pins.

Flex Sensor Integration

Flex sensors are typically used in conjunction with a
pull-down resistor to form a voltage divider circuit. This
is because a flex sensor is a variable resistor that changes
its resistance based on the degree of bending. As such, a
voltage divider configuration allows for the conversion of
the resistance variations into a voltage signal that can be
easily read by the Arduino’s analog-to-digital converter. In
addition, the pull-down resistor ensures that there is a de-
fined voltage range across the flex sensor—we want as large
of a range as possible as this implies distinctiveness across
the data readings for each sign. In terms of unit testing, we
will test a series of resistors within a predetermined range
with a few of the letters in our MVP letter set to see which
produces the largest range of Vout. The flex sensors we
chose have a resistance range from ≈ 10,000 Ohms (flat
resistance value) to 20,000 Ohms (2x the flat resistance),
and our power supply is 4.8V.

Below is how we determined what this range will be,
given that we ideally want a voltage output range of 1V to
4V:

1 ≤ 4.8V · Rpull

10, 000 +Rpull
≤ 4 (1)

Solving for Rpull:

18-500 Design Review Report - 2 March 2024 Page 7 of 13

10, 000 +Rpull ≤
4.8Rpull

1
≤ 4(10, 000 +Rpull) (2)

Lower Bound: 10, 000 +Rpull ≤ 4.8Rpull

Subtract Rpull from both sides:

10, 000 ≤ 3.8Rpull (3)

Divide by 3.8:

Rpull ≥
10, 000

3.8
(4)

Upper Bound: 4.8Rpull ≤ 4(10, 000 +Rpull)
Distribute 4 on the right side:

4.8Rpull ≤ 40, 000 + 4Rpull (5)

Subtract 4Rpull from both sides:

0.8Rpull ≤ 40, 000 (6)

Divide by 0.8:

Rpull ≤
40, 000

0.8
(7)

Thus, by simplifying the inequality, the pull-down resis-
tor range becomes 2631.51Ω ≤ Rpull ≤ 50000Ω. The
most readily available resistors within this range are
2.7kΩ, 3.3kΩ, 4.7kΩ, 10kΩ and 47kΩ, so we will test all of
these. Below is a circuit schematic of our flex sensors’
wiring.

Figure 6: Flex sensor circuit diagram.

Initially, we planned on using a protoboard for our final
design encompassing the operational amplifiers to widen
the flexion voltage range as well as the haptic motor driver
for the feedback system. However, we found that this sys-
tem was too bulky and the attachment to the glove was
not secure. This caused us to collect and read noisy data
during detection which likely hurt our performance. There-
fore, we decided to make a small 1.5”x 1.5” PCB that we
can mount our Arduino onto and plug our sensors into.

Data Communication

Our final product will rely on Bluetooth communica-
tion between the Arduino and the python script on the
laptop. On the Arduino side, Bluetooth is handled via the
ArduinoBLE.h library. This essentially sets up the indi-
vidual Arduinos as advertisers of a specific service as they
continually transmit the data they read to all connected
subscribers. On the laptop side, Bluetooth is handled via
the SimplePyBLE package in Python. This package al-
lows for the easy connection to BLE devices from a Python
script. It follows a standard flow of selecting the adapter
(laptop), the BLE device, and then the service it should
subscribe to. Note that these steps can be automated if
the Python script knows what MAC address the Arduinos
use which is the setup we have for our project. Addition-
ally, note that BLE communication must always be done
in bytes so we have additional code on the Arduino side to
convert the float values to bytes and the reverse operation
within the Python script. Note that we attempted to use
the Bleak package in Python to handle BLE communica-
tion initially but scrapped it due to its lack of compatability
with Windows.

Data Collection

We will implement a rigorous number of scripts in
Python to handle data collection from all possible avenues.
Recall, though our system will be primarily implemented
for Bluetooth (wireless) performance, we will have access
to a USB connection to the micro-controller as well. There-
fore, we plan on designing a suite of scripts that can handle
data input from both a wired connection and a wireless con-
nection. Within the system, the data from the flex sensors
and IMU will be formatted in a pre-defined, consistent way
to make sure there are minimal issues with data compat-
ibility and reformatting. We will develop multiple scripts
to handle collecting data one class at a time or a consecu-
tive script that iterates through all classes for a full dataset
collection in one shot.

The data will be processed using the calibration met-
rics for normalization. This is new as our original approach
relied on the raw input readings from the Arduino. We be-
lieve that this approach will allow the product to be robust
against a variable set of hand sizes. We also want to em-
phasize that for our purposes we primarily used the wired,
manual data collection script. This method allows us to
collect data at the fastest rate and allows us to adjust the

18-500 Design Review Report - 2 March 2024 Page 8 of 13

sensor system more easily if we spot an issue within the
collected data.

Machine Learning Classification

The primary backbone of the software component will
be focused on the classification algorithm. We had origi-
nally planned on testing four different types of models. But
brief tests into accuracy and speed revealed that neural net-
works had the most accurate predictions with no sacrifice
on inference speed. Therefore, we focused the majority of
our efforts into refining the neural network architecture.

The training of models will be handled directly from the
laptop’s computing unit. The small scale of our dataset did
not warrant the use of a GPU for training so all training was
handled using our local laptop’s CPU. The trained models
will be saved in a separate directory, and can be loaded for
additional training or test-time inference. Saving of models
took leverage of the joblib and pytorch packages.

Within the training of models, there will be a heavy
emphasis placed on cross-validation training. For neural
networks, there are a large variety of hyperparamaters and
design choices that can affect performance. The most rel-
evant two that we looked into were the sizes of the hidden
layers and the choice of activation function. We eventually
settled on a size of 128 for our hidden layers as a balance
between speed and accuracy. We also settled on the sig-
moid function through testing as it seemed to have better
performance than a ReLU activation function.

For inference, we will have a final script that will load in
a pre-selected model that we have fully trained. This model
will continuously receive inputs from the microcontroller
and make predictions on the letter that is being signed.
Then, it will pass the predictions to another module re-
sponsible for final classification.

Final Classification Module

To prevent potential issues from noise or transition
states between different signings, we plan on implement-
ing an additional module that will take in the output from
the ML model and make a final prediction on the signing
of a letter. This module will collect and store a number of
the past ML model outputs and identify patterns to pre-
dict if a sign is actually being signed. We will primarily
implement this as a repetition check. This means that we
will like to see a specific number of repeats of the same
classification prediction before we are confident in the ML
model. Through testing, we determined the optimal num-
ber to be 4 repetitions to balance accuracy and speed of
inference. This idea was inspired by past implementations
from Gesture Glove [3] .

Feedback System

Once a classification is generated by our classification
module, we will send a signal to each glove indicating the
event that has occurred.

Haptic Feedback

When designing our system, we realized that there is
a huge need for some form of feedback given to the deaf
user to let them know that their word has been signed.
We initially planned to have a complex system where spe-
cific haptic signals would denote specific meanings. For
example, one beep for a successful sign, two beeps for an
incorrect sign. We realized, however, that this leaves a
lot of gaps in the deaf user’s understanding of the system.
How would the system know if the sign is incorrect? How
will the deaf user know if the sign is actually successful?
The solution we came up with for this was to have an LED
screen on the glove that could tell the user what word/let-
ter was signed. This was out of our scope for this project’s
timeline, so we decided to do a simple vibration to indicate
that something was signed, without any relation to if it
was what the signer intended to sign. We have also added
a beep for before and after calibration to let the user know
when they should be flexing their fingers to calibrate. This
is just a first step in the process of incorporating reliable
haptic feedback into the product.

Audio Output and Text to Speech

We used the win32com library to create audio signal
data. We originally were using the pyttsx3 library but
that has a requirement of a single-threaded environment
that conflicts with SimplePyBLE ’s multi-threaded require-
ments. Obviously, this limits the audio capabilities to Win-
dows devices.

Custom PCB

We created a custom PCB with amplification circuit
and haptic motor driver I2C circuit on board. Users sim-
ply have to plug in the battery, haptic motor, flex sensors
and the Arduino. This allows for a more compact design
of the board.

18-500 Design Review Report - 2 March 2024 Page 9 of 13

Figure 7: PCB diagram.

8 TEST & VALIDATION

Unit Tests

Unit Tests for Sensors

We want our sensors to have as high sensitivity as pos-
sible, as low sensor sensitivity is commonly listed as being
a challenge past projects faced. As such, we tested a spec-
trum of pull-down resistors to be used in conjunction with
the flex sensors that exist within a specific range (see Sys-
tem Implementation for the mathematical derivation of this
range). We also tested each resistor value on a few signs
that are distinct in shape, and whichever resistor yields the
widest range in voltage output we will select for our final
glove circuitry. In addition, since we still encountered low
sensitivity issues, we incorporated op-amps into our design,
as they can amplify the small voltage variations produced
by the flex sensor to a more measurable and usable level.

Figure 8: Circuit diagram of flex sensor, pull-down resistor,
and LM358 op-amp

Furthermore, after the calibration phase prior to data
collection, we manually inspected the flex sensor readings
to ensure they were on par with what we expected given
the handshapes. We also made sure to tug on the sensors
after soldering to try and mitigate breakage mid-signing,

as sometimes the sensors were prone to breakage especially
at the joints of the fingers.

Unit Tests for PCB

Our PCB design was relatively simple. To test, I first
plugged in the Arduino and powered it using the USB ca-
ble. Then I tested that all flex sensors had appropriate
reading values. Next, I plugged in the haptic motor driver
to the protoboard, tested a program on that, then moved
it over to the PCB to test there. Once that was working
as expected, I plugged our battery into the PCB and saw
that the Arduino lit up appropriately and we could carry on
with our Bluetooth connection as before. One deviation of
plans we faced was that we were no longer using a step-up
DC-DC converter that we considered at some point. This
is because it draws too much current and drains the bat-
tery too fast due to the inductor on board. The PCB we
fabricated came with mounting pins for the converter, we
soldered two small wires onto the board to route the power
rails and then plugging in the battery was successful.

Unit Tests for Arduino Board

In order to unit test the sensor input from the Arduino,
we started by recording the maximum and minimum values
of each flex sensor. We checked what output we would get
if the sensor was totally detached or attached backwards.
This helped us understand inconsistencies and errors that
we got later down the road during integration. We then
tested Bluetooth integration at various distances from the
computer. Trivially, at closer distances we saw good results
and lower latency than at further distances. We were able
to see success at up to 30 feet away which we felt was a
sufficient amount of distance to demonstrate from for our
purposes. We did notice in some runs the connection would
be finicky if there was a lot of Bluetooth Low Energy in the
room nearby, however this is a problem we did not think
was feasible to resolve with the given time constraints.

Tests for Data Evaluation

Because the data is extremely critical for the perfor-
mance of the ML model, there were several steps we took
to ensure it’s quality. Testing of the data basically entails
inspecting the flex sensor values and comparing them to
our own assumptions for what the data should look like.
This allows us to quickly check for hardware issues and po-
tential outlier values. Below is an example visualization of
the data from our dataset.

18-500 Design Review Report - 2 March 2024 Page 10 of 13

Figure 9: Sample data from the time word. The left side
is data from Ricky, the right is data from Somya. The top
plot represents values from the thumb, and the bottom rep-
resents values from the pinky, with the rest of the fingers
in between. The blue values represent the right hand, the
orange represent the left hand

By manually checking the data for each word, we were
able to verify that the dataset was consistent with our ex-
pectation and free of outliers.

Tests for ML Model Speed

Latency of the ML model was calculated by using
Python’s timing module to evaluate the time for inference
when data is passed into the model. When calculating
the metric, we looked and averaged the latency over 50
signs. The time that they all took was infinitesimally small.
Therefore, we concluded that the delay caused by the ML
model is infinitesimally small. This met our original de-
sign requirement which stated that the latency should be
at most 25ms.

Tests for ML Model Accuracy

For testing the accuracy of the ML model, we used a 80-
20 split of our original dataset into training and test data.
Then, after the model has converged over the training set,
the accuracy performance of the ML model is evaluated
on the test data. This metric was evaluated to be 97.4%.

This meets our design requirement which states that the
ML model should have a test-time accuracy of at least 90%.
Pictured below is the test accuracy over the epochs as the
ML model trains.

Figure 10: Test Accuracy as ML Model Trains

Use Case Tests

Battery Life

In order to test the battery, we attached it to the glove
and made approximate measurements of how long they last.
Based on our calculations, it should last at least 2 hours.
Our battery is two 3.7V LiPo batteries in series each with
550 mAh. Our circuit’s current draw is 75 mA, so our sys-
tem should be up for 7 hours and 20 minutes which is well
above 2 hours.

Weight

We also want to ensure that the weight of each glove
is less than 100 g. Each component in our design added
together is approximately 50 grams with some give or take.
Adding wires and more slack gives us a 100g total that we
will stay under at every prototype completion checkpoint.
In order to minimize weight of our glove, we got rid of
our breadboard and printed an enclosure and PCB for our
design. Weighing all components, we calculated the total
weight for our gloves to be 71.7g for the left and 70.8g for
the right. This is well below our goal of 100g.

Testing Overall System Accuracy

These tests help us address our main use-case require-
ment of accuracy. To test this, we had one of us sign
our entire vocabulary several times and recorded the cor-
responding prediction. Specifically, we signed each words
approximately 12 times, in a random order, and recorded
the prediction (from speaker output) of the glove system.
This style of testing allowed us to find that the glove had a
real-time accuracy of 89-90%. This range was established
from multiple runs of this testing. This result does meet
our use-case requirement of ≥ 85%. Below is the confusion
matrix from one of our runs of the tests.

18-500 Design Review Report - 2 March 2024 Page 11 of 13

Figure 11: Confusion Matrix of Real-Time Testing

Notably, we have issues with the model distinguishing
”time” from ”church” and ”but” from ”meet”. However,
these errors are not significant enough to keep us from
meeting our use-case requirement.

Testing Overall System Speed

Our tests for speed was done concurrently with our tests
for accuracy. During each prediction, we take advantage of
Python’s timing module to evaluate the time it takes from
the initial sensor input for the system to make a firm pre-
diction and generate an audible response. By taking the
time for all the predictions and averaging them, we set-
tled on a value of 0.6-0.7s. Unfortunately, this is slightly
higher than our design requirement. However, we believe
that given other trade-offs, this would be an acceptable
outcome for our product.

9 PROJECT MANAGEMENT

Schedule

The schedule is shown in Fig. 13. We apologize for the
small font. A better computer version is available on our
website for reference.

The major changes involve the development cycle for
prototype 1 extending past the anticipated time during the
design report. This was due to the difficulty in integrating
the flex sensors as we worked out the exact nuances of the
glove design. Also, note that we used up all our slack time
due to our change in MVP. Since we changed the vocabu-
lary, this meant that we took a few extra weeks to collect
data, process it, train a model, then benchmark perfor-
mance. This ate up all of our slack time, so we finished
just in time.

Team Member Responsibilities

Ricky primarily on the ML integration, software, and
Bluetooth communication. Ria primarily worked on glove
hardware design and implementation, including PCB de-
sign and robustifying the entire structure. Somya worked
on sensor interfacing, haptic feedback design, and robus-
tification of flex sensor design. We will collect data, test,
and perform integration altogether.

Bill of Materials and Budget

The bill of materials is shown in Table 1.

Risk Mitigation

Ideally, our product would allow for complete wireless
sign language detection with all compute on the glove as
well as speaker output coming out of the glove. In order
to do this, we drafted a circuit with a small 8-ohm 1-watt
lightweight speaker that could amplify the sound signals
coming from Arduino to convert to audio. We looked at
various Arduino libraries that would allow us to easily con-
vert text to speech, namely Talkey. After reading the doc-
umentation, we found that it only worked with specific ar-
chitectures, and the Arduino BLE Sense was not listed as a
compatible board. At this point, we had already been us-
ing Bluetooth comfortably to communicate data between
the gloves and our machine, so we decided to scrap using
an onboard speaker and stick to using our laptop speaker
with a different library. We found it risky to switch boards
entirely and iron out a new communication protocol and it
would be really time-consuming to generate audible clean
audio output from our small speaker. Therefore, our risk
mitigation plan here was to eliminate this part of our final
design.

A major issue we noticed when testing our gloves was
that the fully flexed state for one person might be very dif-
ferent for another person. If we train our model on raw
flex values, one person’s fully flexed finger might get con-
fused with another person’s slightly flexed finger and this
will make it difficult for the machine learning model to dif-
ferentiate between the two. In order to mitigate this risk of
bad performance, we decided to add a calibration phase for
the glove. This would involve a user to fully flex and stretch
out their fingers for five seconds before sign detection be-
gins. The program will detect the maximum and minimum
flexion of the fingers and map all subsequent readings to a
value between 0 and 1 depending on where it was in the
user’s range of flexion. This normalization of data was nec-
essary to minimize unwanted uncertainty and errors with
the machine learning model we were using and it resulted
in us seeing better performance in later testing.

One of the major risks that we encountered was the per-
formance of the ML model. The first few times we trained
a model and tested real-time performance, the accuracy
of the model was around 50%. This was very concerning
since the test-time accuracy was around 97% which sug-

18-500 Design Review Report - 2 March 2024 Page 12 of 13

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Flex Sensors 182 Adafruit 12 $12.95 $160.55
Arduino Nano 33 BLE Sense Rev2 ABX00069 Arduino 2 $39.24 $239.03
Pair of Cotton Gloves N/A COYAHO 1 $6.99 $246.02
USB to USB-C Adapter N/A JSAUX 2 $8.09 $262.20
USB cables N/A JSAUX 2 $8.09 $278.38
PCB Fabrication N/A JLCPCB 1 $42.89 $321.27
Wires (Male-Male) N/A JSAUX 1 $8.99 $330.26
Wires (Female-Female) N/A JSAUX 1 $8.99 $339.25
3.7V LiPo Batteries N/A Adafruit 10 $5.99 $399.15

$399.15

gested that the model had converged on the optimal solu-
tion based on the training set. To mitigate this issue, we
tried two approaches. We first identified the words that
were commonly mistaken with each other and trained sep-
arate models on that subset of confused words. Then, we
developed a cascade of model architecture in which if the
output of the wider model was one of the commonly con-
fused words, it would then again pass the same input to
the smaller model for refined prediction. This allowed us
to boost performance to the metrics stated earlier. We
also played around with a time-series approach where we
trained a model on the last 5 frames of data. Performance
of this model was not as robust but served as an alternative
to the naive initial approach.

When we were first testing performance with the BSL
alphabet, we were immediately alerted by the poor per-
formance of the system. Upon further investigation, we
discovered that much of the alphabet was dependent on
touch, which made our system inadequate for detection.
With this in mind, we pivoted to the ASL word vocabu-
lary to mitigate the risk of complete system failure due to
sensor inadequacy.

There was also some concerns about the sensitivity of
the flex sensors when we started the project as well. How-
ever, upon testing the system’s performance with the flex
sensors, we determined that the classification algorithm was
robust enough and it was no longer a risk to consider.

10 ETHICAL ISSUES

Current society is progressing towards providing various
disabled communities with tools that they can use to seam-
lessly navigate daily life. Our goal is to extend this mission
to users who speak sign language wanting to communicate
with people who don’t. This is a step towards establishing
better conversions between the deaf community and those
who can hear. There are a few ethical issues that may
arise with our product that we would want to improve upon
and eliminate if given more time. When we conceptualized
this idea, our goal was to bridge the communication gap
between those with hearing difficulties and those without.
Our final design only addresses one way communication but

fails to bridge the gap between able users speaking to deaf
users without sign language. In terms of safety and usabil-
ity, our product could be really useful for the deaf to com-
municate in an emergency situation that could arise in any
location where there may not be anyone that understands
sign language. In such situations, timely communication
is of utmost importance, and our product will be designed
with this use case in mind. However, having emergency sig-
nals reach deaf people without the use of sign language can
pose a threat to them and could put them in unsafe situa-
tions. Nonetheless, our product not only attempts to solve
a complex problem, but it also raises awareness about the
nuanced challenges that the deaf communities face every
day. By learning more about their needs and struggles, we
are aiming to spark conversations - pun intended - about
how we can go even further. We hope that this project
adds a few cobblestones to the road being paved towards a
more inclusive society.

11 RELATED WORK

Sign-to-speech translation using machine-
learning-assisted stretchable sensor arrays [4] This
project was a collaboration between UCLA and Chongqing
Normal University to develop a new wearable system that
can detect a variety of signings. Their system consisted
of a singular glove paired with additional sensors on the
face to detect facial expressions. Their system primarily
innovated on the development of their own yarn-based flex
sensors to track the finger flexion. It also innovates on the
use of additional facial sensors to convey more meaning
than can be conveyed with solely the hands.

Although their research was a significant undertaking
with many collaborators, we hope to innovate on their work
by incorporating the use of the second glove. We believe
that if we can demonstrate a system with two gloves, we
can greatly improve the possibilities for communication be-
tween deaf and non-deaf speakers.

Gesture Glove [3] This was a past capstone group
who also sought to develop a glove that could read in ASL
sign language and convert it to speech. Their design uses
flex sensors, IMU, and tactile sensors as input. These are

18-500 Design Review Report - 2 March 2024 Page 13 of 13

processed using ML to predict letters at output. Notably,
their design requires a wired connection to their laptop for
performance.

We hope to use their insights and experience as a spring-
board for us to achieve higher accuracy and speed metrics.
We also hope to innovate from their past design by imple-
menting the bluetooth (wireless) component so users can
sign more freely.

12 SUMMARY

To summarize, we have provided in this report a com-
prehensive overview of how our gloves will be designed
from a hardware, signal processing, and software perspec-
tive. We have provided justification for each critical design
choice, namely our selection of sensors/computing units,
as well as the machine learning training scheme we plan
on using to enable accurate gesture identification. We have
made these decisions keeping the user’s experience in mind.
We have also outlined specific metrics that our system was
able to achieve. We were able to meet our requirements for
vocabulary and accuracy but were slightly short of our la-
tency goals. This speed issue could be addressed by using
different forms of communication beyond Bluetooth, like
WiFi. However, we are confident that our work serves a
great first step into the possibilities of dual-glove deigns for
ASL translation.

12.1 Future Works

For future works, there are many avenues to consider.
The first is an increase vocabulary and the inclusion of
additional sensors. One of the primary reasons why we
could not incorporate a larger vocabulary was due to the
various words in the ASL language that incorporate arm
movement or touch. Both of these would not be able to be
detected given our sensors. Future work can explore those
avenues. Additionally, we hypothesize that a more rigor-
ous assessment of different NN architectures could improve
performance. We primarily stuck to a fully-connected ar-
chitecture due to the scale of our project, but if one could
build on our datasets, additional architecture testing could
prove beneficial.

12.2 Lessons Learned

For lessons learned, one important thing is to always
test components before assembly/integration into the sys-
tem. We had many issues with our flex sensors at the be-
ginning of the project and the PCB towards the later end
of the project. We made the mistake of integrating those
components and then having to replace them after complete
system failure. This could be alleviated with more rigor-
ous unit tests. Also, we recommend finalizing the physical
design as soon as possible. This allows for software devel-
opment to properly match the expected final design. We
wasted a lot of time redeveloping software for a changing

hardware which made life difficult. Lastly, be prepared to
adapt. We changed our MVP and various stages of our pro-
totypes to ensure we would be able to ccomplete on time.
Being flexible will allow you the best chance for success.

Glossary of Acronyms

• ASL – American Serial Bus

• AWS – Amazon Web Services

• BLE – Bluetooth Low Energy

• BSL – British Sign Language

• CNN – Convolutional Neural Network

• CV – Computer Vision

• EDA – Exploratory Data Analysis

• GPU – Graphics Processing Unit

• IMU – Intertial Measurement Unit

• IoT – Internet of Things

• kNN – k Nearest Neighbors

• MCU – Main Computing Unit

• ML – Machine Learning

• MVP – Minimum Viable Product

• NN – Neural Network

• SVM – Support Vector Machine

• USB – Universal Serial Bus

References

[1] Ursula Bellugi and Susan Fischer. “A comparison of
sign language and spoken language”. In: Cognition 1
(1972), pp. 173–200. doi: 10.1016/0010-0277(72)
90018-2.

[2] Biyi Fang, Jillian Co, and Mi Zhang. “DeepASL:
Enabling Ubiquitous and Non-Intrusive Word and
Sentence-Level Sign Language Translation”. In: Pro-
ceedings of the 15th ACM Conference on Embedded
Network Sensor Systems. SenSys ’17. ACM, Nov. 2017.
doi: 10.1145/3131672.3131693. url: http://dx.
doi.org/10.1145/3131672.3131693.

[3] Sophia Lau, Rachel Tang, and Stephanie Zhang. 18-
500 Design Review Report - Oct 11, 2021. Gesture
Glove. 2021.

[4] Zhihao Zhou et al. “Sign-to-speech translation using
machine-learning-assisted stretchable sensor arrays”.
In: Nature Electronics 3.9 (2020), pp. 571–578. url:
https://www.nature.com/natureelectronics.

18-500 Design Review Report - 2 March 2024 Page 14 of 13

F
ig
u
re

1
3
:
G
a
n
tt

C
h
a
rt

