EchoSign - Final

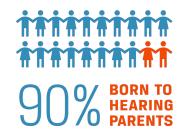
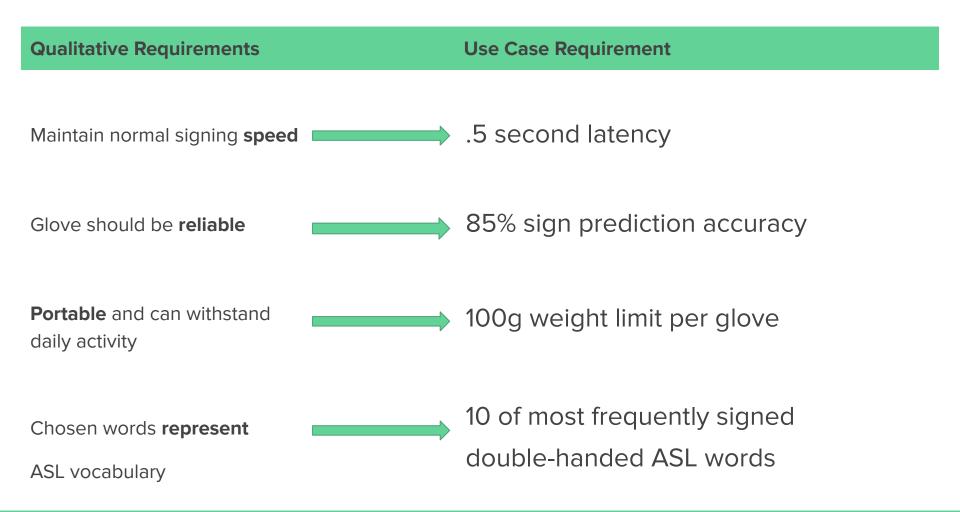
Ria Balli, Somya Pathak, Ricky Gao

EchoSign - Introduction and Use cases

• **Problem:** Deaf people often struggle to communicate with non-deaf speakers

• **Solution:** Pair of gloves that translate sign language to audible English

Deaf/HH Population:**11 Million** About **1 Million** Profoundly Deaf

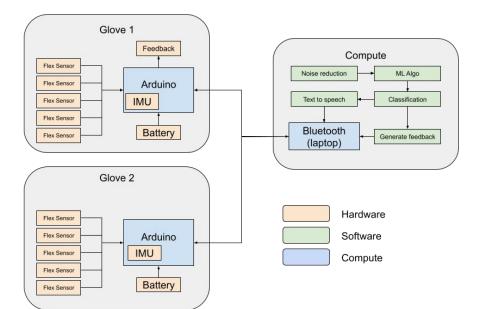
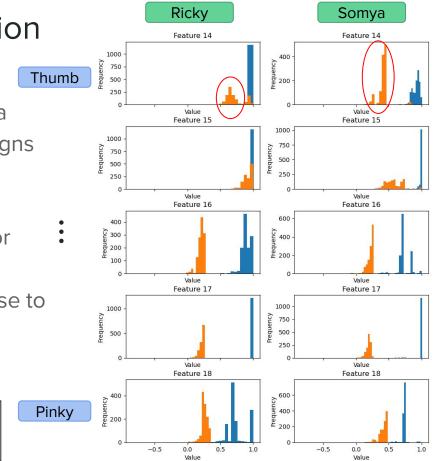


Image from BYU

Solution Approach

- Two battery-powered gloves with sign-to-speech capability over BT
- Design Updates:
 - Got rid of speaker
 - Added PCB
 - Using two ML models (different subsets of the chosen words)
- Bluetooth
 - Python SimplePyBLE
 - Arduino BLE Native libraries
- ML
 - Neural Network
 - Two models, two layers, 128 nodes

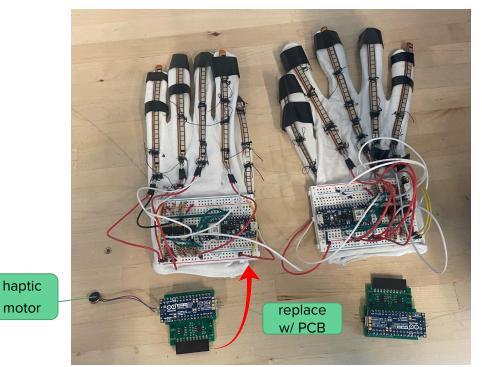

Word: "time"

Solution Approach: Data Collection

- Process details: peripheral setup phase, movement to introduce variation in the data
- 3 people x (1200 data vectors / sign) x (11 signs
 / person) ≈ 39600 data vectors
- Collection via USB vs. Bluetooth
- Manual inspection and verification of sensor data via feature plots (see right figure)
- Noise Reduction Algorithm: calibration phase to normalize flex sensor data

Right hand

.eft hand


Solution Approach: Data Collection

- Process details: peripheral setup phase, movement to introduce variation in the data
- 3 people x (1200 data vectors / sign) x (11 signs / person) ≈ 39600 data vectors
- Collection via USB vs. Bluetooth
- Manual inspection and verification of sensor data via feature plots
- Noise Reduction Algorithm: calibration phase to normalize flex sensor data

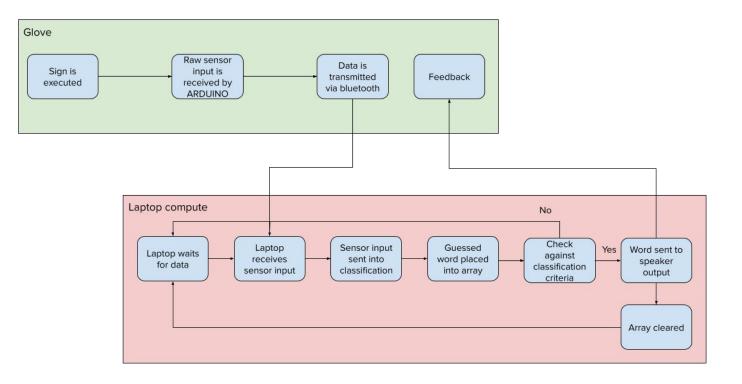
Complete Solution

- 11 signs (10 double-handed, one 'no sign' state)
- Wireless capability

Category	Double-handed ASL Words
pronoun	what
noun	time, car, church, family
verb	meet, live
adjective	big
adverb	more, but

From "*DeepASL*: Enabling ... Sentence-Level Sign Language Translation" by B. Fang, J. Co, M. Zhang, 2017

Category	Double-handed ASL Words
pronoun	what
noun	time, car, church, family
verb	meet, live
adjective	big
adverb	more, but

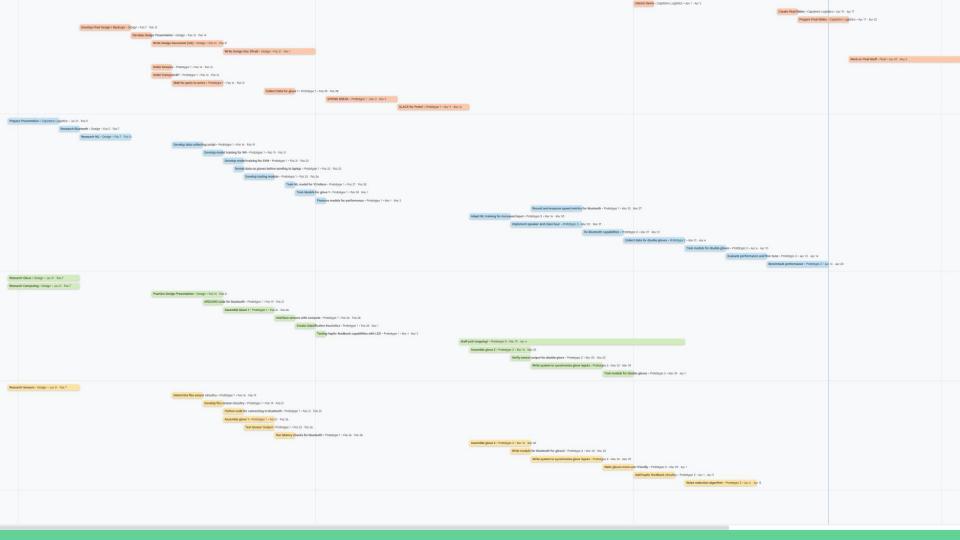

Design Requirements/Testing - ML Model

Requirement	Testing	Metrics
Accuracy	 Data split into train/test split Performance of NN evaluated on test set 	 Two layered architecture achieved test accuracy of 97% Req (> 90%)
Latency	 Python timing module to compute average speed 	 Model takes an infinitesimal amount of time to compute Req (< 50ms)
Accuracy (Real-Time)	 User wears glove and signs a predetermined set of vocabulary Each word ~10 times 	 Testing reveals that the model performs well on 10/11 of vocab Overall accuracy of 89%

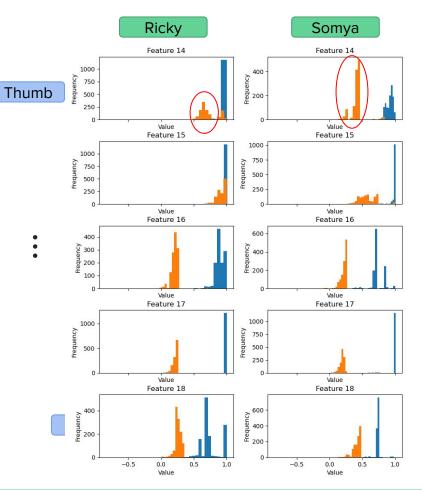
Design Trade-offs - ML

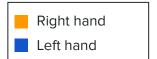
Issue	Trade-offs	Final Choice
Classification heuristic length - Number of consecutive ML output before speaker output	 Length of 8 is more robust to noise, latency 2 sec Length of 2 is more sensitive to noise, latency 0.4 sec 	 Length of 4 balances both accuracy without sacrificing too much in latency
Model Complexity - • Number of nodes/layers • Number of models	 Increased model complexity Potential performance boost Increase in latency More training data required Risk of overfitting 	 Two fully connected layers of 128 nodes Two models for subsets of data Balances performance, latency, and data requirements

Sign to speech pipeline



Design Tradeoffs - General


Issue	Trade-offs	Final Choice
Distinguishment of letters that rely on touch	Classification power vs. usability	Omission of touch sensors
Normalizing data discrepancies between different users	Overhead vs. usability	Added calibration phase
On-glove speaker not possible with modules compatible with chosen compute unit	Portability vs. robustness	Speech outputted through laptop
Powering the Arduino Nano wirelessly	Compact and lightweight design vs. battery lifetime	Use two 3.7V LiPo batteries in series at 500mAh
Design was bulky and not secure	Simplicity and flexibility vs. clean design	Printed custom PCB and 3D printed case with velcro strap


Overall - Testing, Verification, Validation

Requirement	Verification	Metrics
Accuracy	 Evaluate accuracy on separate test data Evaluate accuracy on real-time performance 	 NN has 97% accuracy on test set Real-time accuracy of 89% (> 85%)
Latency	 Evaluate time for ML prediction Timing from first sensor reception → speaker output 	 NN has infinitesimal time for prediction Real-time prediction duration: 0.6-0.7 sec (~0.5 sec)
Vocabulary	 Classification on ten ASL words over multiple POS (noun, verb, adjective, etc.) 	 Classification works well on 10/11 signs

Word: "time"

