
18-500 Design Review Report - 2 March 2024 Page 1 of 10

EchoSign
Authors: Ria Balli, Ricky Gao, Somya Pathak

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A pair of sensor-based gloves capable of
identifying double handed BSL letters in real time and
translating them to speech. This product is designed
portable, accurate, and easy to use.

Index Terms—Flex sensor, Gesture Detection,
IMU, Machine Learning

1 INTRODUCTION

The goal of our product is to devise a pair of gloves that
have the ability to translate double-handed BSL letters to
speech output. Its purpose is to help facilitate commu-
nication between the deaf and non-deaf population. The
deaf/hard of hearing community primarily communicates
through sign language, and our device will rely on train-
ing an machine learning model with sensor information of
the gestures that make up sign language. Our hope is that
our product is lightweight, easy to use, and has a sign-to-
identification accuracy and speed of classification that is as
high as possible.

2 USE-CASE REQUIREMENTS

Based on our goal of providing seamless communica-
tion from a deaf speaker to a non-deaf speaker, we focused
our use-case requirements on both the performance of the
system itself as well as its usability.

EchoSign should have an accuracy of 85% on the
targeted vocabulary. This means that for every time a
specific sign is performed, the predicted letter/word should
match the sign at least 85% of the time. This aligns with
our original goal to provide an avenue of communication
between deaf to non-deaf speakers and accuracy is a cor-
nerstone of that conversation. We settled on 85% because
it was a nice middle-ground between professional research
group performance (98.63% by UCLA [3]) and past cap-
stone groups (75.86% by Gesture Glove [2]). This value is
motivated by specific considerations into public health and
safety. If this system becomes widely used, it needs to be
as accurate as possible so accurate information can be con-
veyed which is especially important in emergency settings.

EchoSign should be able to output a prediction
500ms after the user signed. This means that after the
user has signed, the non-deaf speaker should expect to hear
the corresponding letter at latest 500ms from the signing.
If nothing is announced after the 500ms, the recipient is
expected to interpret that as a no signing gesture. The
major concern that motivated this requirement is a social

one. We wish to create a product that allows for a seam-
less conversation between deaf and non-deaf speakers. The
rate at which conversation can occur is important for this
and it will inherently be limited by our product. With this
in mind, we seek to have only 500ms of delay because this
reflects past research that identified that the average speed
of signing is 2 signs per second [1]. With this goal, we can
try to match the seamlessness of a signed conversation.

EchoSign should be able to classify all 26 let-
ters from the British Sign Language alphabet. The
British Sign Language alphabet follows the same charac-
ters presented in the American Sign Language alphabet,
but uses different gestures to symbolize them all. Notably,
the BSL alphabet uses both hands to sign each letter. Our
use-case requirements establish that we should be able to
reach our accuracy goals on a test set that involves all these
letters. We believe that the alphabet provides a standard
baseline in terms of vocabulary because it allows for all
words to be potentially spelled out. Then, we chose the
BSL alphabet because of its use of double handed signs,
which will be the main focus and innovation point of our
project. Figure 1 has a visual depiction of the BSL alpha-
bet.

EchoSign should be a durable product that can
last multiple hours on a single battery and with-
stand repeated signings without need for repairs or
replacements. Again, our reasoning surround social and
safety factors. We want to create a product that people
can depend on with confidence for a significant period of
time. With this in mind we want to ensure that the gloves
can be powered by the battery we select for 2 hours at a
time. We also want to ensure that our physical design of
the glove allows it to be used for multiple charged sessions.
The product shouldn’t need to be fixed more often than it
needs to be recharged / replaced battery.

EchoSign should be a comfortable product to use
and light (100g). This is primarily motivated from a
health perspective. As this is a product that is mean to
be worn, we want to ensure that it is minimally impactful
and easy to use. Comfort will be evaluated by user testing
as we have people rate how easy it is to use. Weight will
be measured by the different components that are added
to the glove so we can evaluate their cumulative impact.

18-500 Design Review Report - 2 March 2024 Page 2 of 10

Figure 1: The BSL Alphabet

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

EchoSign’s design can be partitioned into its software
and hardware components. There are three main compo-
nents in EchoSign’s MVP structure: Glove 1, Glove 2, and
the Main Compute Unit. The figure below outlines the
various components that make up EchoSign’s glove archi-
tecture.

Glove 1 comprises the 5 flex sensors from which we
will read voltage output from using our on-hand compute
board. This computer on the glove is labeled “Arduino”
in the diagram- trade studies on our board specifications
can be seen in section 5. For the MVP, we are using the
Arduino Nano 33 BLE Sense Rev2 for its compact design,
on board IMU, and BLE capabilities. Feedback is also con-
trolled with this compute unit to the haptic vibration mo-
tor mounted on the hand. Our battery, a 4.8V 150 mAh
battery, will power this system.

Glove 2 differs from Glove 1 solely by the fact that a
speaker will be attached to it in place of the haptic feed-
back component. We wanted to split these two components
across the two gloves to distribute weight evenly especially
since both items have a negligible difference in weight.

The last component of our system contains primarily
software implementation. Once data is sent to the Main
Compute Unit, it will be screened for noisy data and out-
liers, sent to our trained machine learning model, classified
as a specific gesture based on classification heuristics we
have defined, and then converted into speaker and haptic
feedback. More information about our classification heuris-
tics can be found in section 7.

(a)

(b)

(c)

Figure 2: System block diagram.

18-500 Design Review Report - 2 March 2024 Page 3 of 10

Figure 3: Full block diagram.

4 DESIGN REQUIREMENTS

We initially thought about what kind of sensor readings
would help us classify gloves and an IMU was included in
this list due to its ability to provide positional measure-
ments. Most 6 axis and 9 axis IMUs include a triaxial
accelerometer which will be integral to our data collection.
Since our design requires positional and gyroscopic
data regarding hand placement, we found it optimal
for space and weight considerations to use a board
with an on board IMU. There is a constant gravitational
force pointed downward, and the x, y, and z components
of acceleration of the glove at rest should add up to this
download gravitational force. Given each component, we
are presented with a unique orientation of the hand at some
angle.

Further expanding on our sensor reading requirements,
we need at least 5 analog input pins on our board to
connect five flex sensors to. Typical flex sensors (and
all of the ones we looked at) need a power source, a con-
nection to ground, and a connection to an analog input pin
on the board. This means that the board we choose must
have at least 5 analog input pins. We also need at least
one digital out pin for our haptic motor. In addition,
we would like the range of voltage values outputted by the
flex sensors to be as wide as possible. This is to ensure
that the feature vector corresponding to one gesture is as
distinct as possible from another. To accomplish this, we
need to appropriately choose the pull-down resistor value
that each flex sensor will be connected in series with.

The next feature we wanted to be built into
our board was Bluetooth capabilities, preferable at
least 4.x LE for its improved latency compared to
older models. If we were to use a board without a built
in Bluetooth controller, we would have to attach one to it
and they are typically the length and width of an Arduino

Nano but much thicker than them. This would likely cause
us to exceed our weight requirements and size use case re-
quirements so we prioritized having bluetooth built into the
board.

Finally, we preferred to purchase a board with a
sufficient processor that would be capable of trans-
mitting data as fast as possible to our remote MCU
and, in a later prototyping stage, running our ML
model on board. We determined that it is approximately
32MHz. With 25 readings per second, this would leave us
with approximately 5 million clock ticks in between read-
ings. This leaves a lot of room for other computation that
we may want to move onto the board later on. The board
we decided on is the Arduino Nano 33 BLE Sense Rev2.
The range of its IMU is ±16g. We decided to base our
IMU selection on the board we choose (instead of first de-
ciding which IMU meets our needs) because this project
does not require a state of the art accelerometer and we
felt that the one mounted on the Arduino Nano 33 BLE
Sense Rev2 satisfied our sensitivity needs.

We then needed to determine latency targets for our
data flow and transmission to get a better idea of how we
will reach our target use case requirement of .5 seconds
from sign to speech. For general device communication
like sensor readings and based on BLE specifications, we
can expect latencies of about 10 ms to 100 ms. Based on
this data, we will strive to achieve a sign to ML in-
put latency of 100 ms. We will achieve this by making
the data we send as compact as possible when formatting
sensor readings. We also determined that we will al-
low 25 ms for our ML model to output a prediction
based on a past capstone project’s results, and we will wait
for 8 consecutive gestures that are the same to classify the
predictions as a gesture with confidence. This gives us a
total of 200 ms to classify a sign. Then we will then
strive for 200 ms for data to go back to the gloves
for haptic feedback and speaker output. Bluetooth
latency for fully wireless headphones can range from 100 to
300 ms so we will set our requirement to 200 ms since we are
not transmitting high quality audio data but want a conser-
vative estimate. Adding these values together gives us 500
ms, our use case latency requirement. We will attempt to
minimize latency in all cases and identify bottlenecks that
can help us go below this number if possible. If we find
that Bluetooth is a bottleneck, we will consider moving to
a WiFi communication protocol with the Arduino Nano 33
IoT. See 5 for more information.

The ML model should be able to perform in-
ference at a rate of less than 25ms per prediction.
This metric is directly tied to the speed use-case require-
ment. We predicted that the bulk of the time delay will
stem from the latency caused by the wireless transmission.
With this in mind, we hoped that the classification section
will only take up less than half of the allotted 500ms re-
quirement from sign to prediction. Then, since our final
classification module might require repeat ML model pre-
dictions, we divided that time by 8 to arrive at our design

18-500 Design Review Report - 2 March 2024 Page 4 of 10

goal of 25ms.

The ML should be able to achieve a testing ac-
curacy of 90% on excluded test data. This is directly
tied with the accuracy use-case requirement. We plan on
adding additional checks on the output of the ML model to
make the entire system more robust to noise and interfer-
ence. With that in mind, we at least wanted to start out
with a solid baseline with a model that performs relatively
well as a standalone. We arrived at 90% because we be-
lieve that we can correctly fix the small case of errors with
our additional final classification paradigms we will present
later.

Our software should be ready to collect around
2000 datapoints per letter with a variety of different
signers. This design requirement is directly tied to our
accuracy requirements and indirectly tied to our desired
vocabulary size. The main hope with this requirement is
to establish enough data to train all our ML models suf-
ficiently while leaving enough wiggle room for additional
testing or cross-validation. By seeking a variety of signers
to collect our data, we hope to make the model more robust
to achieve our use-case requirement in accuracy.

5 DESIGN TRADE STUDIES

Glove Sensors vs Computer Vision

When we came up with our initial goals to enable com-
munication from deaf to non-deaf speakers, we were im-
mediately faced with a decision to make: whether to use
a glove-based sensor design or a camera with a computer
vision backend.

A computer vision based approach would’ve involved
having a camera take images of someone else while they
are signing. The resulting images would be passed into a
CV/ML backend for classification. The pros of this method
is that the high dimensionality of the input data allows for
more minute movements to be detected. Even slight flex-
ions in a particular finger might be detected due to the
nuances of CV techniques. Additionally, we would most
likely be able to make a less user-impactful product, mean-
ing that a camera alone would most likely be easier to carry.
However, the cons are that the CV setup requires a lot of
training and a consistent background environment. Due
to the high dimensionality of images, CV methods often
require collecting a huge dataset to train the proper CNN
architectures for performance. Collecting data can be very
labor-intensive due to the time collecting the data as well
as the additional effort to label each image. Additionally,
there is a requirement to match the background and fram-
ing of the training data. If this requirement isn’t match,
performance is very likely to suffer. This makes this prod-
uct extremely hard to use in the wild.

A glove-based approach involves using flex sensors and
IMUs to detect the positioning of the fingers and hand to
predict the corresponding signed letter. The pros involve
a quicker training process and a system that is more ro-

bust to varying environmental factors. The quicker train-
ing process stems from the smaller dimensionality of the
data, namely only the flex sensors and the IMU. And since
the readings will be relatively consistent regardless of vary-
ing conditions, we can expect a similar performance at all
times. The cons are the sensitivity of the sensors. Being
less information dense than an image, we are at the mercy
of the sesnors being able to convey enough information to
make accurate predictions.

At the end of the day, based on previous groups’ suc-
cess, and the more robust design, we decided to choose our
glove sensor to tackle the problem of deaf communication
to non-deaf speakers.

New User Calibration / Adaptability

One of the initial considerations for the project was to
develop an additional calibration mode for new users to
adjust the ML model backend to fit the current user more
closely. This was inspired by similar designs like Apple’s
face recognition or fingerprint identification. The premise
is that the way that people vary from person to person and
the classification might suffer if the variations differ from
the training set too much.

Ultimately, we decided to put adaptability as a stretch
goal of ours. This was due to our belief that the variabil-
ity will be minimal enough to still maintain a relatively
high performance even with outside testing input. If we
have enough slack time, this would be a feature we would
definitely implement to maximize accuracy across different
users.

Choice of Sensors

We have decided to use Spectra Symbol’s ’Original Flex
Sensors’ for a variety of reasons, the first being precedent—
this type of sensor was most commonly used by similar
projects. The second primary reason was cost. Since our
design has two gloves, we need 12 sensors (ten for each fin-
ger, two for slack), so cost was important to keep in mind,
especially if the goal of this project in the distant future is
to be as accessible as possible. Spectra Symbol has since
come out with the more lightweight and sensitive ’Spec-
traFlex Flex Sensors’, but these were $12.5 more expensive
than the sensors we went with. We were also looking into
Bend Lab’s flexible soft sensors, which were appealing due
to their silicone-based material that seemed to offer higher
sensitivity, but at $49.00 a sensor this was unfeasible in
terms of cost. In addition, we considered other sensor op-
tions, like Hall effect sensors and conductive thread based
sensors but opted against these they were not as common
and used by research groups with significantly more re-
sources.

BLE Sense Rev2 Board vs IoT Board

As described in the 4, we are using the Arduino Nano 33
BLE Sense Rev2 board. This board has a 64MHz clock fre-

18-500 Design Review Report - 2 March 2024 Page 5 of 10

quency, BMI270 and BMM150 IMU’s on board (totalling
to 9 degrees of freedom) giving us accelerometer, gyroscope,
and magnetometer readings. It was stated that we are con-
sidering using the Arduino Nano 33 IoT in the near future
due to its WiFi communication capability. WiFi is faster
than BLE, which is why we will utilize it if we fail to meet
latency use case requirements with Bluetooth. The reason
we are not using WiFi right off the bat is because Bluetooth
is simpler to use and the BLE Sense board has more com-
puting power. Since we plan to move some computation to
the board in our final prototype as described in 7, it was
clear that our priorities meant that the BLE Sense board
was more appropriate. However, the 48MHz clock speed
on the IoT board is not trivial and we may be able to take
some advantage of its compute power if we BLE does not
allow us to meet latency requirements.

One other factor we considered is that the IoT board’s
IMU is the LSM6DS3 which gives us 6 degrees of freedom
whereas the BMI270 and BMM150 on the Sense Rev2 gives
us 9 (additional magnetometer). While we do not foresee
using a magnetometer currently, it may be a datapoint of
interest if we decide to change the kind of data we gather at
any point. This may become useful if IMU and flex readings
for two gloves do not give us the accuracy we are looking
for causing us to want data about how far the hands are
from each other using a magnet. This additional benefit of
the BLE Sense further confirmed that we should start with
that board.

Presence of a Remote MCU

Part of our MVP design is that we have a laptop running
the classification model as well as noise reduction. Past
projects have used a smartphone or laptop to show proof
of concept speech output, however we believe the product
will be more versatile and useful if there is no dependency
on these devices. However, we are aware of the complexity
that such a change could bring to our system. Therefore,
our system implementation discusses how we will achieve
wireless, independent functionality only after our MVP re-
quirements have been met.

6 RAPID PROTOTYPES

We have adapted a rapid prototype approach to com-
pleting our product within the given class time.

Prototype 1

Our first prototype will be a one glove design with flex
sensors, battery, and Arduino mounted on the glove. One
the team members’ laptops will be used to do computation
and speaker output will be from the laptop. The ”hap-
tic feedback” will initially be an LED lighting up on the
Arduino to visually inform the user that a sign was suc-
cessfully converted to speech. Communication will be done

via USB for this prototype. Our design will be able to in-
terpret 10 ASL letters. We chose this number because it
is small and does not require an ample amount of data to
be collected but it is large enough to give us some idea of
our system accuracy. We chose ASL for this prototype due
to its single handed alphabet as opposed to BSL’s double
handed.

Prototype 2

Our second prototype will have wireless communication
(initially Bluetooth but optionally WiFi if we do not meet
latency requirements). We will duplicate our working glove
with one having a haptic vibration motor attached and the
other with a speaker. This design will be trained against
data representing the 26 letter double-handed British Al-
phabet as described in section 2.

Prototype 3

This final prototype will eliminate the need for a remote
MCU and all computation will be moved to the glove af-
ter the model is trained. A laptop will be needed to train
the model but glove functionality beyond this will be com-
pletely independent and wireless. We will have each user
calibrate the glove with their own style of signing with a
laptop to achieve maximum accuracy for each person given
that everyone signs slightly differently.

7 SYSTEM IMPLEMENTATION

Physical Design

A significant step in our architecture design was decid-
ing how to mount everything on the user’s hands. Below
is a sketch of where each component would be placed. The
Main Compute Unit is not pictured.

As described, the speaker and vibration motor are split
between the two hands. Each glove will have the battery
attached to the wrist, the board will be vertically attached
such that the USB cable can be easily accessible for code
upload, and the flex sensors reach beyond the knuckles. Not
pictured are the solder boards on each hand, resistors that
will be connected to the flex sensors to modulate voltage
readings, wires to connect components together, and the
gloves that all of these pieces will be mounted on.

18-500 Design Review Report - 2 March 2024 Page 6 of 10

Figure 4: Component mounting design.

Flex Sensor Integration

Flex sensors are typically used in conjunction with a
pull-down resistor to form a voltage divider circuit. This
is because a flex sensor is a variable resistor that changes
its resistance based on the degree of bending. As such, a
voltage divider configuration allows for the conversion of
the resistance variations into a voltage signal that can be
easily read by the Arduino’s analog-to-digital converter. In
addition, the pull-down resistor ensures that there is a de-
fined voltage range across the flex sensor—we want as large
of a range as possible as this implies distinctiveness across
the data readings for each sign. In terms of unit testing, we
will test a series of resistors within a predetermined range
with a few of the letters in our MVP letter set to see which
produces the largest range of Vout. The flex sensors we
chose have a resistance range from ≈ 10,000 Ohms (flat
resistance value) to 20,000 Ohms (2x the flat resistance),
and our power supply is 4.8V.

Below is how we determined what this range will be,
given that we ideally want a voltage output range of 1V to
4V:

1 ≤ 4.8V · Rpull

10, 000 +Rpull
≤ 4 (1)

Solving for Rpull:

10, 000 +Rpull ≤
4.8Rpull

1
≤ 4(10, 000 +Rpull) (2)

Lower Bound: 10, 000 +Rpull ≤ 4.8Rpull

Subtract Rpull from both sides:

10, 000 ≤ 3.8Rpull (3)

Divide by 3.8:

Rpull ≥
10, 000

3.8
(4)

Upper Bound: 4.8Rpull ≤ 4(10, 000 +Rpull)
Distribute 4 on the right side:

4.8Rpull ≤ 40, 000 + 4Rpull (5)

Subtract 4Rpull from both sides:

0.8Rpullle40, 000 (6)

Divide by 0.8:

Rpull ≤
40, 000

0.8
(7)

Thus, by simplifying the inequality, the pull-down resis-
tor range becomes 2631.51Ω ≤ Rpull ≤ 50000Ω. The
most readily available resistors within this range are
2.7kΩ, 3.3kΩ, 4.7kΩ, 10kΩ and 47kΩ, so we will test all of
these. Below is a circuit schematic of our flex sensors’
wiring.

Figure 5: Flex sensor circuit diagram.

IMU Sensor Integration

When deciding how to format IMU sensor data, we con-
sidered a few factors related to our ML model’s perfor-
mance. Firstly, this step is beneficial because, of course,
it minimizes noise, regularizes our data preventing poten-
tial model overfitting, gets rid of outliers, and reduces the
size of the message we send to the MCU. However, we lose
some details about our data and may require a more com-
plex model to recognize the trends and patterns in the data.

18-500 Design Review Report - 2 March 2024 Page 7 of 10

We felt that using .5 increments for our digitization would
provide enough precision to prevent the drawbacks from
occurring as much as possible while also benefiting from
the positive aspects of this noise reduction step. Further-
more, we felt that removing outliers in data was a step that
would not negatively impact us too much.

Data Communication

Our primary mode of communication between gloves
will be initially wired USB for our prototyping phase and
eventually wireless for our MVP. We will perform extensive
experiments to meet latency requirements with Bluetooth
communication and compare its performance against WiFi.
More information on this can be found in 5. In Prototype
2, we will still have the presence of a remote MCU doing
computation. However, in Prototype 3, one of the gloves
will be assigned this responsibility and data from Glove 1
will be sent via Bluetooth to Glove 2. In both cases, data
will be timestamped rounded to the nearest 1/25th of a sec-
ond (25 readings are sent per second) and only data that is
matched by timestamp will be processed and sent through
the ML model.

Data Collection

We will implement a rigorous number of scripts in
Python to handle data collection from all possible avenues.
Recall, though our system will be primarily implemented
for bluetooth (wireless) performance, we will have access to
a USB connection to the microcontroller as well. Therefore,
we plan on designing a suite of scripts that can handle data
input from both a wired connection and a wireless connec-
tion. Within the system, the data from the flex sensors and
IMU will be formatted in a pre-definied, consistent way to
make sure there are minimal issues with data compatibil-
ity and reformatting. We will develop multiple scripts to
handle collecting data one class at a time or a consecutive
script that iterates through all classes for a full dataset
collection in one shot.

As of right now, we will be planning on using the raw
data as the features to be passed to the various forms of
training. We will evaluate issues with numerical stability
and look into normalizing the data if we run into significant
issues.

For Prototype 1, the data that we collect will be from
a single glove, so there will be less features to collect. For
Prototype 2, we will be collecting more features from two
gloves so additional time synchronization will need to be
considered during data collection.

Noise Reduction

We will implement a software module in Python that
will be responsible for handling the initial input from the
microcontroller to the laptop / main computing unit. As
of right now, this module will primarily implement a sim-

ple filter for outliers. The bounds for the outliers will be
determined by an EDA of the training dataset.

Additionally, we will perform a precursor step on the
glove Arduinos to minimize noise. The IMU data and flex
sensor readings will be analog floating point numbers. We
will convert this data to digital data by rounding down to
the nearest half integer value.

The last step we will take to reduce noise is eliminate in-
complete input data when there are inconsistencies between
the two gloves and what data they send. For example, if
glove A is down for three seconds, glove B’s input will be
disregarded for those three seconds. Additionally, we will
check all input data against a validator to ensure that its
information was not garbled in transmission. This can be
done with a simple conditional chunk of code before data is
extracted from the input strings and sent to our ML model.

Machine Learning Classification

The primary backbone of the software component will
be focused on the classification algorithm. Since this is one
of the most important components of the system, we will
be experimenting with four models and then select the one
with the highest performance. The four models we will
be evaluating include: neural networks, SVM, kNN, and
decision trees/forests.

The training of models will be handled directly from the
laptop’s computing unit. We envisioned that our dataset
will not be big enough to warrant the use of a GPU or
learning accelerator. If it turns out the training / inference
is taking too long, we will explore options including cloud
computing platforms like AWS or Google Colab. Other-
wise, the plan is to train four models with the same data
that was collected from the collecting data routine. The
trained models will be saved in a separate directory, and
can be loaded for additional training or test-time inference.
Saving of models will take leverage of the joblib and pytorch
packages.

Within the training of models, there will be a heavy em-
phasis placed on cross-validation training. In each model,
there are specific hyperparameters that need to be tuned.
For NN, this includes the model’s activation function and
learning rate. For SVM, we can look at the kernel and
the tradeoff coefficient. For kNN, we will look at the k
value, or the number of neighbors to consider. For decision
trees/forests, we will look at branch and leaf numbers.

For inference, we will have a final script that will load in
a pre-selected model that we have fully trained. This model
will continuously receive inputs from the microcontroller
and make predictions on the letter that is being signed.
Then, it will pass the predictions to another module re-
sponsible for final classification.

Final Classification Module

To prevent potential issues from noise or transition
states between different signings, we plan on implement-
ing an additional module that will take in the output from

18-500 Design Review Report - 2 March 2024 Page 8 of 10

the ML model and make a final prediction on the signing
of a letter. This module will collect and store a number of
the past ML model outputs and identify patterns to pre-
dict if a sign is actually being signed. We will primarily
implement this as a repetition check. This means that we
will like to see a specific number of repeats of the same
classification prediction before we are confident in the ML
model. The exact nuances of the strategy will be adapted
based on their performance. This idea was inspired by past
implementations from Gesture Glove [2] .

Feedback System

Once a classification is generated by our classification
module, we will send a signal to each glove indicating the
event that has occurred.

Haptic Feedback

When a sign is successfully classified, we will send a
signal that indicates a success to the glove with the haptic
vibration motor. This success signal will translate into two
quick pulses with the vibration motor. In any other case,
no signals or pulses will be sent. This design minimizes
confusion because there is only one type of indication to
the user of an event occurring. Our .5 second latency re-
quirement ensures that the user will not be waiting for a
long time just to ”feel” back some indication of a successful
signing.

Audio Output and Text to Speech

We will be using the pyttsx3 library to create audio sig-
nal data. For Prototype 1, the output will be coming from
the laptop. For Prototypes 2 and 3, it will come through
the speaker mounted on the hand.

8 TEST & VALIDATION

Again please use the guidance on Canvas and the Word
template for what to include in this section.

Unit Tests

Unit Tests for Sensors

We want our sensors to have as high sensitivity as pos-
sible, as low sensor sensitivity is commonly listed as being
a challenge past projects faced. As such, we will test a
spectrum of pull-down resistors to be used in conjunction
with the flex sensors that exist within a specific range (see
System Implementation for the mathematical derivation of
this range). We will test each resistor value on a few signs
that are distinct in shape, and whichever resistor yields the
widest range in voltage output we will select for our final
glove circuitry. In addition, if we still encounter low sensi-
tivity issues, it has been show that the use of op-amps can

mitigate this, as they can amplify the small voltage vari-
ations produced by the flex sensor to a more measurable
and usable level.

Tests for ML Model Speed

It is extremely important for us to evaluate how fast
the ML model can make predictions at test time. Because
we are planning on passing input into the model sequen-
tially, we plan on testing by having one input passed into
the model. Then, we will leverage the time package in
python to calculate the time it took for the ML model to
output a prediction. We will perform this for all the letters
around 50 times each. Then, we will calculate the average
time elapsed as our final metric to see if the ML timing
requirement was met.

Tests for ML Model Accuracy

To test accuracy, we will depend on a held out set of
the original dataset that we collected that was not used for
training. This held out set will hold an equivalent amount
of each letter and we hope to make it about 20% of the orig-
inal dataset. We will proceed to run classification on this
held out test set, and report the accuracy on those data-
points. This metric will then be used to verify the accuracy
metric of the ML model.

Integration Tests

Double Glove Integration Tests

A major step in our project will be duplicating our ini-
tially working glove to create the double glove design. This
will introduce error and synchronization issues that may
affect overall system latency. Since we are dropping glove
sensor information that does not have corresponding sensor
information from the other glove (matched by timestamp),
we may see longer times for sign to speech latency. We
will perform rigorous timing analysis once we integrate two
gloves and optimize specific parts of our program if we run
into major issues. Timestamps and latency will be mea-
sured in the same way that they were for our single glove
design. Important things to consider are minimizing data
loss or data sending failures which would cause us to drop
information as well as being able to establish two reliable
wireless and almost identical connections to both gloves in
terms of transmission latency and bandwidth.

Our ML model and amount of data flowing through
our system will also be more complex and bulky with this
change. We will consider this when measuring latency dur-
ing this integration step.

Use Case Tests

Battery Life

Our product is designed to run for two hours. We will
test over a long duration of time in one shot to measure that

18-500 Design Review Report - 2 March 2024 Page 9 of 10

the time passed is two hours or very close to it. We will
also measure time during work sessions until a fresh bat-
tery runs out and ensure that the time we worked before
the battery ran out adds up to very close to two hours.

Weight

We also want to ensure that the weight of each glove
is less than 100 g. Each component in our design added
together is approximately 50 grams with some give or take.
Adding wires and more slack gives us a 100g total that we
will stay under at every prototype completion checkpoint.

Testing Overall System Accuracy

This will be the main test for our use-case requirement.
There will be two tests performed. One test will involve
performing an equal amount of each letter and recording
the glove’s response to each signing. This data will be
used to create a confusion matrix and be used to determine
the average accuracy by calculating the one’s correctly pre-
dicted divided by the total amount of signing. The second
test will involve taking a brief passage from a randomly
selected text and signing each letter as appears until we
hit 200 letters. Then, we will perform the same accuracy
calculation. This method will allow us to both evaluate the
performance of the glove where all the letters are weighted
equally, and a situation that is more common to the aver-
age speaker in terms of letter frequency. Both these metrics
will be compared to our use-case requirement.

Testing Overall System Speed

This will be the main test for our use-case requirement
of speed of prediction. To do so, we will plan on having one
of use sign each letter in the BSL alphabet 5 times. For
each signing, we will only focus on the times where there
was a speaker output, when the system has made a firm
prediction. In these cases, we will look at the time-stamps
for when the computing unit received the initial sensor in-
put that led to the prediction. Since this is all done in
the software, we will use python’s time tracking packages
to determine the difference in time from the input to the
classification output. Then, we will average all the different
time ranges measured to calculate our final value that we
will compare to our use-case requirement.

9 PROJECT MANAGEMENT

This section describes your project schedule, team
member responsibilities, bill of materials with budget and
risk mitigation plans.

Schedule

The bill of materials is shown in Fig. 7.

Team Member Responsibilities

Ricky will primarily be working on the ML integration.
Ria will be working on data communication and overall
software design. Somya will be working on sensor inter-
facing. We will collect data, test, and perform integration
altogether.

Bill of Materials and Budget

The schedule is shown in Table 1.

Risk Mitigation Plans

If the speaker output is not clear enough or loud enough
for our MVP, we will move that to our Prototype 3 design
and iron out those details in that phase. We also have a
plan to use WiFi as opposed to Bluetooth if Bluetooth is
too slow. While the IoT board’s processor is strong, if it is
far from satisfying our latency requirements, we will stick
with our MVP design with the remote MCU (laptop).

10 RELATED WORK

Sign-to-speech translation using machine-
learning-assisted stretchable sensor arrays [3] This
project was a collaboration between UCLA and Chongqing
Normal University to develop a new wearable system that
can detect a variety of signings. Their system consisted
of a singular glove paired with additional sensors on the
face to detect facial expressions. Their system primarily
innovated on the development of their own yarn-based flex
sensors to track the finger flexion. It also innovates on the
use of additional facial sensors to convey more meaning
than can be conveyed with solely the hands.

Although their research was a significant undertaking
with many collaborators, we hope to innovate on their work
by incorporating the use of the second glove. We believe
that if we can demonstrate a system with two gloves, we
can greatly improve the possibilities for communication be-
tween deaf and non-deaf speakers.

Gesture Glove [2] This was a past capstone group
who also sought to develop a glove that could read in ASL
sign language and convert it to speech. Their design uses
flex sensors, IMU, and tactile sensors as input. These are
processed using ML to predict letters at output. Notably,
their design requires a wired connection to their laptop for
performance.

We hope to use their insights and experience as a spring-
board for us to achieve higher accuracy and speed metrics.
We also hope to innovate from their past design by imple-
menting the bluetooth (wireless) component so users can
sign more freely.

18-500 Design Review Report - 2 March 2024 Page 10 of 10

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Flex Sensors 182 Adafruit 12 $12.95 $160.55
Arduino Nano 33 IoT ABX00032 Arduino 1 $27.00 $187.55
Arduino Nano 33 BLE Sense Rev2 ABX00069 Arduino 1 $39.24 $226.79
Pair of Cotton Gloves N/A COYAHO 3 $6.99 $233.78
USB to USB-C Adapter N/A JSAUX 1 $8.09 $241.87

$14.00

11 SUMMARY

To summarize, we have provided in this report a com-
prehensive overview of how our gloves will be designed
from a hardware, signal processing, and software perspec-
tive. We have provided justification for each critical design
choice, namely our selection of sensors/computing units, as
well as the machine learning training scheme we plan on us-
ing to enable accurate gesture identification. We have made
these decisions keeping the user’s experience in mind, and
look forward to creating a novel product that represents
an improvement and is well-substantiated by the work of
similar groups.

Glossary of Acronyms

• ASL – American Serial Bus

• AWS – Amazon Web Services

• BLE – Bluetooth Low Energy

• BSL – British Sign Language

• CNN – Convolutional Neural Network

• CV – Computer Vision

• EDA – Exploratory Data Analysis

• GPU – Graphics Processing Unit

• IMU – Intertial Measurement Unit

• IoT – Internet of Things

• kNN – k Nearest Neighbors

• MCU – Main Computing Unit

• ML – Machine Learning

• MVP – Minimum Viable Product

• NN – Neural Network

• SVM – Support Vector Machine

• USB – Universal Serial Bus

References

[1] Ursula Bellugi and Susan Fischer. “A comparison of
sign language and spoken language”. In: Cognition 1
(1972), pp. 173–200. doi: 10.1016/0010-0277(72)
90018-2.

[2] Sophia Lau, Rachel Tang, and Stephanie Zhang. 18-
500 Design Review Report - Oct 11, 2021. Gesture
Glove. 2021.

[3] Zhihao Zhou et al. “Sign-to-speech translation using
machine-learning-assisted stretchable sensor arrays”.
In: Nature Electronics 3.9 (2020), pp. 571–578. url:
https://www.nature.com/natureelectronics.

18-500 Design Review Report - 2 March 2024 Page 11 of 10

F
ig
u
re

7
:
G
a
n
tt

C
h
a
rt

