EchoSign

Ricky Gao, Ria Balli, Somya Pathak

EchoSign - Introduction and Use cases

- **Problem:** Deaf people often struggle to communicate with non-deaf speakers
- Pair of gloves that translate ASL to English
- Machine learning to translate sensor input to words
- Speakers to allow non-deaf people to quickly understand signing
- Additional feedback system in glove
- Areas: Signals and Software (Embed)

Deaf/HH Population:**11 Million** About **1 Million** Profoundly Deaf

Image from BYU

Quantitative Requirements

• Latency - 0.5s from sign to speech

- Inspired from an approximate estimate of average signing speed
- Vocabulary 26 words
 - Need to balance sensor capability and complexity
 - Hope to create basic phrases
- Accuracy 90%
- Glove weight Around 100g
- Cost should be minimized
 - Maintain equality between ASL and non-ASL speakers

How Our Design is Different

- Two gloves instead of one
 - Past approaches primarily focus on singular glove designs (UCLA, GG)
- Flex sensors / IMU
 - Contrasts use of CV
- Wireless connectivity to compute
 - Contrasts wired connections to compute

Technical Challenges

- Synchronizing data coming from both gloves on RaspberryPi (Speed)
- Capturing sufficient data to train ML (Speed/Accuracy)
 - Time constraint on sensor development
- How long does each word need to take to reset in between (Speed)
- Consider whether flex sensors/IMU will provide rich enough features (Speed/Accuracy/Vocab)
- Specific words might incorporate arm/facial movements (Vocab)

Qualitative Solution Approach

- Wireless gloves
 - Flex sensors woven into glove
 - Research attachment methods
 for IMU/Arduino
- Connection to a lightweight computing box/speaker setup

Overall Block Diagram

Glove Design

- Flex and IMU sensors to detect finger location and orientation
- Bluetooth communication to main computing unit
- Feedback coming back from computing unit

Computing Unit

- Noise reduction (DSP)
- Machine learning model
 - Neural network, kNN, more
- Feedback to glove sensors
- Processing words to speech output for speakers

Testing

Testing	Verification	Metrics
Accuracy	Perform signings of vocabulary and compare predictions with ground truth	Should accurately predict with > 90% Accuracy
Latency	Perform signings of vocabulary and evaluate average time for speaker output	ML model should output result within 0.5 seconds
User Experience & Generalizability	Bring in panelists to judge the ease of use and performance with other signers	The glove should be fully functional for everyone

Division of Labor

- Ricky
 - ML model training, model selection, signal processing
- Ria
 - Hardware assembly, evaluation, embedded software
- Somya
 - Sensor integration, bluetooth software, communication between glove
- Everyone
 - Integration / testing

Gantt Chart

