EchoSign - Design Review

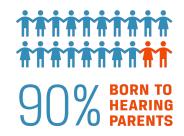
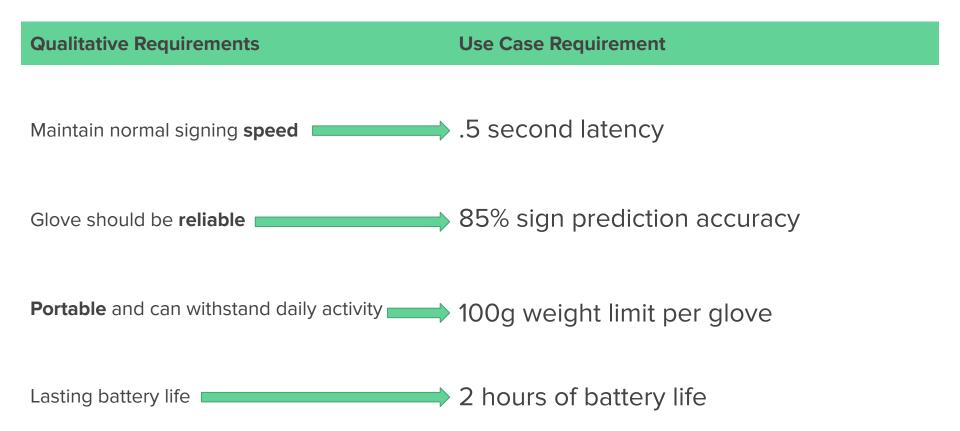
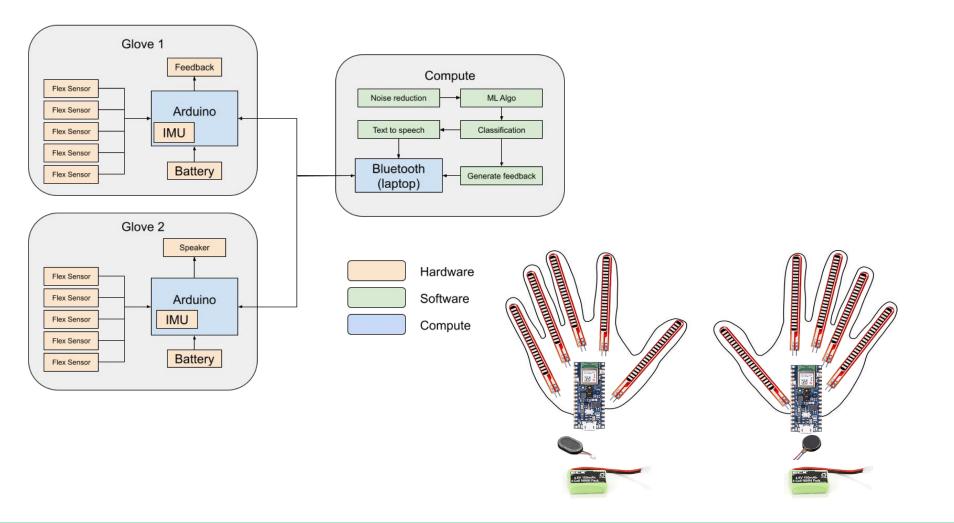
Ria Balli, Somya Pathak, Ricky Gao

EchoSign - Introduction and Use cases

• **Problem:** Deaf people often struggle to communicate with non-deaf speakers

• **Solution:** Pair of gloves that translate sign language to audible English

Deaf/HH Population:**11 Million** About **1 Million** Profoundly Deaf

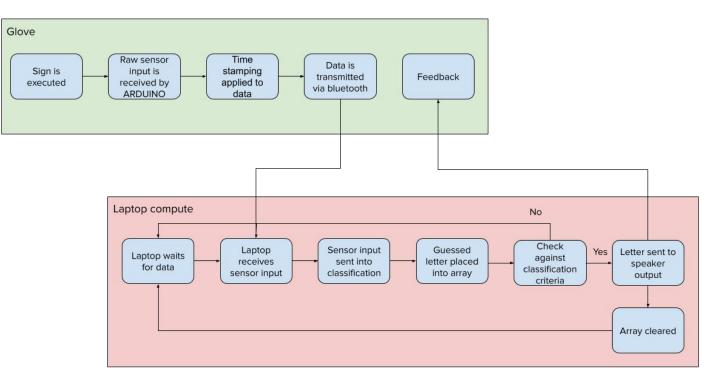


Image from BYU

Sign to speech pipeline

Compute

We want:

- Need at least 5 digital output pins
- Minimum 16 MHz clock frequency
- On board IMU with triaxial accelerator
- Bluetooth capabilities

For MVP: Arduino Nano 33 BLE Sense

- On board 9 axis IMU
- Clock speed: 64 MHz
- Bluetooth capabilities

If bluetooth doesn't satisfy MVP latency requirements... Arduino Nano 33 IoT

- On board 6 axis IMU
- Clock speed: 48 MHz
- WIFI capabilities

Flex Sensors

We want:

- Consistently appx. 2x resistance at 90° for sensitivity requirements
- Long enough to go around knuckle for maximum gesture information conveyed
- Lightweight, low cost, tried and tested

For MVP: SpectraFlex Flex Sensor

- 95 mm

- Improved version of the Original Flex Sensor (minimized drift, more lightweight, higher sensitivity)
- 95 mm length, ideal for going over all three finger joints for varied hand sizes

Power and Feedback

We want:

- 2 hours of battery life
 - Each IO port is 15 mA
 - Total current draw 75mA
 - Need 150 mAh
 - Compute needs max 5V
- Audible speaker
 - Target 8 ohm 1 watt speaker for human audibility
 - Small and lightweight
- Feedback
 - LED for testing (on Arduino!)
 - Small vibrating motor with simple interfacing

For MVP:

- 1. ECX 4.8V 150 mAh battery (.32 oz) with Switch
- 2. Dc Mini Magnet Vibrating Motor
- Mini Oval Speaker on Glove with amplifier

Classification Method

<u>Model</u>	<u>Training Data</u>	<u>Training Time</u>	Performance	Prediction Speed
Neural Net	High	High	High	Slow
SVM	Low	Medium	Medium	Fast
Decision Tree/Forest	Low	Low	Medium	Fast
kNN	Low	Low	Medium	Medium

Testing, Verification, Validation

Requirement	<u>Verification</u>	Metrics	
Accuracy	 Evaluate accuracy on separate test data Evaluate accuracy on real-time performance 	Should accurately predict real-time with > 90% accuracy	
Latency	 Evaluate time from glove sensor to laptop reception Evaluate time for ML prediction 	Cumulative time from signing to speaker output should be < 0.5 seconds	
Vocabulary	 Classification of a variety of hand signs 	RP1: 10 singlehand signs RP2: 26 doublehand alphabet	

Prototype 1

Phase 1:

- Create one glove with battery and all sensing capabilities
- Wired connection to laptop for compute

Phase 2:

- Train the ML model for 10 letters in the ASL alphabet
- Add speaker and haptic feedback

Prototype 2

Phase 1a:

• Duplicate glove

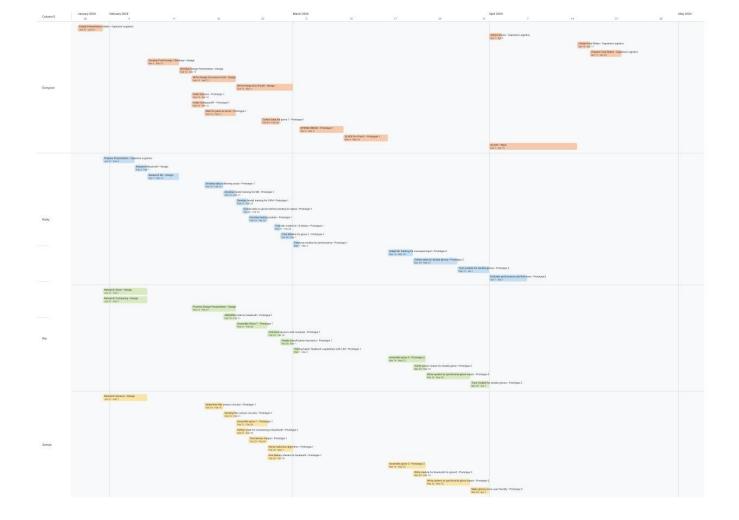
Phase 1b:

• Create a wireless glove that can transmit data through bluetooth

Phase 2:

• Train the ML model for the British double handed alphabet

MVP


Prototype 3

Phase 1a:

- Turn this into a distributed system with wireless communication between them
- No reliance on laptop after model is trained and uploaded onto gloves

Phase 1b:

• Expand the vocabulary to gestures with movement

