Team D6 – Analog SQP Solver

Andrew Chong, Thomas Liao, Alvin Zou

What?

An analog computer that solves a specific class of optimization problems

Why?

Many engineering problems can be formulated as **optimization problems**, which needs to be solved **quickly and power-efficiently**

How?

Implement a state-of-the-art optimization algorithm with an analog circuit, and building a demonstrable system

Carnegie Mellon

Use Case

Customer: A high-performance autonomous vehicle company that requires solving NMPC problems in real time and with low power

NMPC: Nonlinear Model Predictive Control

Need: A proof-of-concept solver that can solve NMPC problems faster and more efficiently than existing digital solutions

Source: https://www.digitaltrends.com/cars/roborace-devbot/

Use Case Requirements (Functional)

FR1: Complexity

 The solver must be able to solve at least one NMPC problem with at least 9 variables and 3 constraints with the SQP algorithm

SQP: Sequential Quadratic Programming

FR2: Demonstrability

• The functionality of the solver should be demonstrated by visualization

Source: https://scipython.com/blog/the-double-pendulum/

> Carnegie Mellon

Use Case Requirements (Non-Functional)

NR1: Performance

• The solver should demonstrate a **10%** increase in performance over at least one modern, digital solver like Casadi

NR2: Efficiency

The solver should demonstrate a **10%** increase in energy efficiency over at least one modern, digital solver like Casadi

NR3: Accuracy

 The the solution produced by the system must be within ±10% of the optimal solution

NR4: Cost

• The total cost of the project should not exceed **\$600**

Carnegie Mellon

Technical Challenges

- Adapt the circuit to solve the problem with the appropriate structure. [FR1, FR2]
- 2. Derive dynamics of system and synthesize a NMPC controller to formulate optimization problem [FR1, FR2]
- 3. Create analog circuit that can solve QP subproblems for SQP with sufficient speed and low enough power consumption [NR1, NR2]

QP: Quadratic Program

Carnegie Mellon

- 4. Ensuring analog circuit is correct and precise [NR3]
- 5. Visualize results through a live demo [FR2]

Solution Approach

Our system is a **physical analog** of the **mathematical problem**

Carnegie Mellon University

Solution Approach

Analog QP Solver

Cost Function:

Equality Constraint:

Inequality Constraint:

The **lowest-energy state** of the analog circuit is equivalent to the **optimal solution** to the QP subproblem

 $\min f(x)$

s.t. g(x)

h(x)

= 0

< 0

x

Carnegie

University

Mellonĭ

Solution Approach

Swinging up an inverted double-pendulum can be **performed** by an NMPC controller

NMPC can be **mathematically solved** by the SQP algorithm

The SQP algorithm is **implemented** by our system, using an **analog circuit** to **solve** its QP subproblems

Source: http://dx.doi.org/10.7763/IJIEE.2012.V2.167

Testing, Verification and Metrics

Prototype	Description	Goals
P1	A circuit simulation of the analog QP solver	Verify that the circuit design solves the desired problem
P2	A visualized digital implementation with a software QP solver in place of the analog QP solver	Verify that the the software components are functional
P3	A manufactured PCB that implements the analog QP solver	Verify that the PCB is functional
P4	A fully-integrated analog SQP solver with all hardware and software	Verify that the entire system is functional after integration

Carnegie Mellon University

Testing, Verification and Metrics

T1: Run circuit simulation 30 times and compare solution against a software solver

- T1.1: Ensure speed is 10% faster [NR1]
- T1.2: Ensure error margin is within 10% [NR3]

T2: Run digital implementation 30 times and verify it solves the problem at least 90% of the time **[FR2]**

T3: Run T1 using PCB [NR1, NR3]

• T3.3: Ensure power consumption is 10% lower [NR2]

T4: Run T1, T2, and T3.3 using the fully integrated solver [FR2, NR1, NR2, NR3]

Carnegie Mellon University

Tasks and Division of Labor

Project Management: Weekly rotation of Project Manager

Andrew Chong: Circuit design, Simulation, PCB fabrication, Hardware + Software Integration

Thomas Liao: SQP algorithm development, QP subproblem formulation, NMPC synthesis for double-pendulum swing-up

Alvin Zou: Dynamics equation derivation, Casadi implementation

Equal contribution, listed in alphabetical order

11

Schedule

MVP:

Swing up an inverted single pendulum

Reach Goal:

Swing up inverted double pendulum, which satisfies all FRs and NRs

> Carnegie Mellon