18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

Sonic Score
Saxophonics

Lin Zhan, Junrui Zhao, Jordan Li

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— Sonic Score Saxophonics is a system designed to
enhance the learning experience by providing constructive
feedback. The system collects the user’s fingering and audio
during the saxophone playing, compares the fingering and note
with built-in music, and provides visual feedback. The user can
select from a range of beginner-friendly music scale exercise
sheets in the web application.

Index Terms—Saxophone, Web Application, Sensor, Audio,
Note, Pitch, Signal

1. INTRODUCTION

Leaming the saxophone is a venture that is fun and

rewarding, but it also comes with considerable financial
challenges. While the instruments themselves are cheap, the
availability of rental and rent-to-own programs allow aspiring
musicians to obtain instruments at relatively affordable prices,
but what is not available is affordable instructors. Saxophone
instructors can cost upwards of $100 per hour, which is not
feasible for a lot of families. Self-learning the instrument,
without an instructor, is difficult, due to the development of
bad playing habits, which, once formed, are difficult to fix.
Even for well-off players, it is not practical to always practice
with an instructor, due to both cost and time constraints, such
as travel time for the player to the instructor.

Sonic Score Saxophonics is designed to be an instructor at
home for beginners, aiming to provide an affordable way for
students to avoid bad habits when practicing at home. The
system mainly focuses on tone matching along with fingering
detection, as one common mistake beginners make is
overblowing, which causes overtones, which are pitches that
are above the correct pitch. The project is not aimed to
completely replace instructors, as their subjective inputs on
factors such as tone quality and articulation are difficult for
computers to analyze, but rather to be an assistant to help
students practice at home.

There are no products currently on the market that directly
address this concern. Other workaround solutions all have
their disadvantages. Hiring online practice assistants is not
cost effective, and playing on a MIDI-based electronic wind
controller can help players with fingerings, but doesn’t help
players with their embouchure, which affects tones.

The main goal of the project is to develop a system that
helps aspiring saxophone players develop their skills at home

without also developing bad playing habits.

II. Usg-CASE REQUIREMENTS

A. Accuracy
Fingering Accuracy

For saxophone players, regardless of their skill level, precise
finger placement is essential for producing clear and
melodious tones. Correct fingering is particularly crucial for
saxophone beginners, as any incorrect key press can cause the
note to go out of tune and may foster bad habits. Hence, our
system is designed to distinguish between correct and nearly
correct finger positions, and detect the mistakes with an
accuracy rate of at least 90%. This feature is crucial to those
new to the saxophone, as it allows for precise corrections and
advancements in their playing skills.

Sound Accuracy

In addition to finger positioning, the ability of our system to
accurately identify and evaluate the pitch and rhythm of notes
is essential to our users. With a sound detection accuracy of at
least 90%, our system caters to the users’ need for improving
their sound quality. This level of precision assists users to
control pitch and tone as well as the length of each note,
enabling them to produce sounds that are more in tune and
match their intentions.

Acknowledging that users, especially beginners, cannot
achieve perfection in their play, our system is designed to
tolerate variations within an acceptable range. This approach
ensures that minor deviations in pitch will not be recognized
as mistakes, aligning with the users’ needs.

Feedback Accuracy

The provision of accurate feedback is a fundamental
requirement from the user’s perspective. Our system targets a
feedback accuracy rate of 80%, ensuring that users receive
reliable guidance on their performance. With this accuracy
rate, we minimize the chances of the system marking incorrect
actions as correct and marking correct actions as incorrect.
This is crucial for learning since it helps users pinpoint areas
for improvement and adjust their playing accordingly. By
highlighting both correct actions and areas needing
refinement, our system encourages a balanced approach to
practice. Moreover, by minimizing the chances of erroneous
feedback, our system prevents users from developing incorrect
habits, ultimately leading to more efficient and sustainable
progress in their saxophone learning journey.

B. Latency

For an optimal learning experience with our saxophone
add-on system, the responsiveness of the feedback mechanism
is critical. Our system integrates and compiles users’ data after
the users finish playing, and displays the result when users
click on the replay button. To meet users’ expectations for
immediate feedback, the latency between the user clicking on
the button and the results being displayed should be within 5
seconds. This feedback should include incorrect fingerings,
out-of-tune nodes and practical suggestions for improvement,
allowing the users to reflect on their play.

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

IIL.

Please see the appendix for the system diagram.

Our whole system can be divided into three subsystems: the
fingering collection, audio processor and user interface.

The reason why we chose to combine both fingering and

ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

audio information is that saxophone as a woodwind instrument
requires more than fingering information to determine whether
the player is playing notes correctly. By integrating audio
information with matching fingering data, our system can
achieve a comprehensive understanding of the user’s playing.
Additionally, it allows for the identification of some specific
fingering issues that can be hard to detect just from audio
information.

When a user is playing the saxophone, its original audio will
go into the audio processor, which includes pre-processing,
pitch detection and rhythm detection. For the pre-processing,
we will perform a SNR check to the audio to make sure it’s
above 20dB so that it has enough quality for further
processing. If the audio quality is below this threshold, it will
be rejected and the user will be notified through the web app.
We also filter out input signals that have a frequency below 70
Hz and above 800Hz. This frequency range is obtained from
the playable range of tenor saxophone.

Then the audio will go into the pitch processor, which
analyzes the signal in the frequency domain by performing
Discrete Fourier Transform (DFT). We have set the tempo to
be 60 bpm, which corresponds to one beat per second. The
processor iterates through the signal using a sliding window
with a size of 1/8th of a beat and extracts the dominant
frequency in that window. Then it matches the dominant
frequency of this interval to notes’ frequency to determine
what note is detected.

Aside from the pitch processor, the audio also goes through
the rhythm processor, which determines the length of one note.
We use Scipy’s find_peak() function to find the onset of each
sliding window. The output of the rhythm processor is a binary
array that represents if there’s notes detected in each 1/8th of a
beat interval. Finally, we combined the output from the pitch
processor and rhythm processor to generate an array of the
detected notes and their lengths, which will then be sent into
the web app backend.

Fingering collection happens at the same time as audio
processing. During the saxophone players’ playing, the
fingering data will be collected by sensors installed on the
saxophone’s air doors. All of the sensors are wired to a PCB
containing Sparkfun ESP32 controller. The controller will
process the data and send note packages to the web app
backend.

The web app contains a frontend user interface and a
backend integration system. The user interface will have a
main page including three sections: practice, learn and user
statistics. The practice page allows the user to record their
practice songs and receive feedback. The learning page will

include a list of introduction videos and articles about
saxophone learning, as well as some practice sheet music. The
user statistics page includes history feedback for each practice
song, which helps the user to improve based on past
performance. The backend system takes input from both the
fingering collector and the audio processor and matches the
input with built-in sheet music. It will generate visual
feedback and messages of how to improve, and display them
on the practice page.

In the development of our system, several fundamental
engineering principles were employed to ensure that the final
product was both functional and user-friendly. One key
engineering principle applied was the modular design
approach, which involves breaking down the system into
separate and manageable modules that can be developed and
tested independently by each team member before integration.
Another crucial engineering principle we utilized was the
application of signal processing techniques, specifically the
Discrete Fourier Transform (DFT). The DFT is essential for
converting the time-domain saxophone audio signals into the
frequency domain. It allows for accurate pitch detection,
which is central to the functionality of our system.

The scientific principles in our project primarily include
sound and digital signal processing. Understanding sound
waves and how they propagate through the environment is
fundamental for accurately placing sensors on the saxophone
to capture data effectively. We apply this knowledge to use
hall effect sensors to determine which saxophone keys have
been pressed.

The mathematical principles applied in our system are
centered around the DFT and sliding window technique used
in signal processing and integration. DFT is a mathematical
transform that decomposes a time-domain signal into its
constituent frequencies. And the sliding window technique is
based on principles of convolution and windowing in
mathematics. This technique ensures that our system can track
changes in pitch over time, providing dynamic and responsive
feedback to the user.

IV. DESIGN REQUIREMENTS

A. Accuracy

The accuracy of the system is integral to the user experience
of the system. Our use case states that the fingering collection
system is 90% accurate, and this can be divided into key
accuracy and transmission accuracy.

The key accuracy is the larger source of uncertainty due to
the large number of keys in the system. Each key’s accuracy
can be described as in Equation 1 below:

of sensor output changes
of times key is pressed/released

key accuracy = (D
There are 23 keys in the system, and each of them will have
its own key accuracy. The overall system will have its
accuracy based on the accuracy of each individual key. Some
keys are determined by multiple sensors, since the saxophone
key system involves several keys moving the same valve, or

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

vice versa.

The transmission accuracy is a smaller source of
uncertainty, due to the reliability of serial communication
through USB. The wired connection used in the system allows
for dependable data transmission between the fingering
collection controller and the computer.

The pitch detection system should have an accuracy rate of
90%. This means that the combination of the audio collection
and audio analysis should be 90%. Audio collection via a
microphone should be close to 100% accurate, which leaves
the burden on the algorithm. Thus, the pitch detection
algorithm should have an accuracy of at least 90%.

The feedback accuracy should be at 80%, and this is a
combination of the two above-mentioned accuracies. Since the
subsystems both have at least 90% accuracy, the feedback
system would have an accuracy of 81% approximately, which
is within the use case limit.

B. Latency

The latency between the feedback being displayed and the
user clicking on the replay button is also crucial to the user
experience. For music sheets of all lengths, the latency should
roughly equal, since the audio output and fingering output
have already been generated as text files when the user stops
playing.

There are several components to the latency: determining
the sliding window, matching notes with reference notes
within the sliding window, matching fingering with reference
fingering within the sliding window, and ultimately comparing
and presenting the information required for the UI.

Determining the sliding window should provide minimal
latency, as it only involves simple calculations. We estimate
this process takes mere milliseconds.

The primary sources of latency lie in matching notes and
fingering within the sliding window to their respective
reference data. This involves iterating through each data entry
and accumulating time. Additionally, sorting the results is
necessary to determine the most probable fingering and pitch
if the reference fingering and audio are not within the sliding
window. Particularly for fingering data, with its fast baud rate,
the sliding window may contain numerous entries, lengthening
processing time. This step should be completed within 3
seconds.

Comparing and presenting information for the UI does not
become a bottleneck. However, due to the need to tolerate
slight note pitch deviations and consider similar-sounding data
as matching, this step may take longer than the first step, with
1 being second sufficient.

This allows approximately 0.8 seconds for the web app to
update and generate feedback based on the received
information, including any network latencies. This timeframe
should suffice for most network situations.

Following the initial request, only slight adjustments to the
sliding window are necessary, avoiding the need to recalculate
large amounts of data. Thus, this latency minimally affects the
update for each individual note.

V. DEsIGN TRADE STUDIES

A. Choice of Sensor

The sensor is arguably the most important part of the
fingering collection system. We chose to use hall effect
sensors, since they don’t rely on the detection of finger forces,
and are small enough to be installed in the tight environment
of a saxophone.

We also considered using film pressure sensors, installed on
each individual key on the saxophone to detect finger
movement, but film pressure sensors cannot fit onto some
special-shaped keys of the saxophone, such as the palm keys
on the left hand. It also could produce errors if the player's
fingers rest on certain keys even when they are not pressing
the key. The natural resting position of several keys is
touching the key, which a film pressure sensor can detect as
playing when in reality it is just resting. However, the film
pressure sensor may be necessary on certain keys that do not
allow for reasonable installation of hall effect sensors and
magnets.

B. Audio Processing System

1) Pre-processing

We first plan to only use band-pass filtering to filter out
signals with too high or too low frequencies. But we found out
that it’s not enough to cancel out noises. Therefore, we added
an SNR check to check the input signal’s dB level and reject
any input that has unsatisfying quality. We decided to set the
threshold to 20dB based on a previous ECE capstone project
“Musician’s Scribe”, in which they tested that signals that
have below 20dB are hard to perform a pitch detection
algorithm. We have performed several tests on different audio
inputs with various noise levels, and found that the 20dB
threshold has the best performance in determining the audio
quality.

2) Pitch detection

We chose to use a sliding window approach to iterate
through the input signal. For now, we’re using a window size
of 1/8 of a beat. The reason that we chose 1/8 instead of 1/16
is that it can be less computationally demanding to detect the
notes to the nearest of 1/8 of a beat. What’s more, a window
size of 1/16 of a beat is more oftenly used for songs with
faster rhythms. Since our app focuses mainly on instructing
saxophone beginners, our built-in practice songs have
moderate pace, which makes a window size of 1/8 of a beat
more appropriate.

The window size is dependent on the tempo of the input
audio. We have tried to directly extract the tempo of a given
audio using functions from python library Librosa, but the
result wasn’t accurate at all. Therefore, we switched to a fixed
tempo of 60 bpm. This approach enhances the reliability of
pitch detection, especially for beginners who should benefit
from a consistent tempo during practice sessions.

3) Rhythm detection

Initially, we planned to only focus on the pitch detection and
avoid developing a rhythm detection algorithm. However,
through our progress we decided to deal with music that is
approximately 1 minute long. That means a rhythm processor

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

is needed since we need to determine how long each note
lasts.

We first attempted to find the peaks of the whole audio input
at once. But we realized that we still need to match the output
array with the notes detected in the pitch detector, which is
extra work. Therefore, we decided to apply a sliding window
with the same size of the pitch detector, and thus the outputs
can be aligned easily.

C. Web Server

1) Cloud Servers

Initially, we considered cloud servers like Heroku as our
hosting option, because of their scalability and robust
infrastructure. From previous experience and research, we
know that these servers are capable of effortlessly managing
user traffic, which is particularly advantageous for projects
with significant fluctuations in usage. However, our project
only involves some basic saxophone learning functionalities,
and targets at saxophone beginners, a relatively small group.
Hence, we don’t expect our web application to have
significant traffic that can only be handled by cloud servers.
Therefore, the expansive capabilities offered by the cloud
servers are much more than we require.

The decision against cloud servers was influenced by three
main factors, the potential for ongoing costs that could be
reduced through local hosting, the complexity associated with
cloud infrastructure management, and concerns about latency.
Compared to local hosting, cloud hosting has higher latency.
Our project aims to provide quick feedback after users attempt
to view the results, so that it’s more convenient for them to
look at the results multiple times and adjust their fingering and
pitch based on that. High latency could hinder the user's
experience in using the web app.

Moreover, our project handles some user statistics and audio
data, raising data privacy concerns. Given these
considerations, we steered away from cloud hosting. Local
hosting emerged as the more suitable option, aligning with our
project's modest size and specific needs while ensuring greater
control over user data and minimizing operational costs.

2) Hosting Locally

Hosting locally is ideal for our saxophone learning project,
especially since it effectively meets the demands of a
specialized, beginner-oriented user base without the need for
extensive scalability.

Firstly, it provides a controlled environment for
development and testing, allowing for immediate iterations
and updates without the risk of affecting a live audience. This
is particularly valuable for a project targeting beginner
saxophonists, as we can finely tune the learning experience
based on direct feedback and observations.

Additionally, local hosting minimizes operational costs and
simplifies compliance with data privacy, which is crucial since
our application handles user statistics and audio data. By
running the application on a local port, we also ensure that
data security is tightly managed within our network, avoiding
potential vulnerabilities associated with external hosting.

Finally, the simplicity of setup and maintenance with local
hosting aligns with our project’s scale, making it an
economically and technically feasible choice for our specific
needs.

While local hosting limits accessibility from outside our
immediate network and requires hands-on maintenance, these
limitations are manageable for our project. Given our targeted
user base and the scope of our application, these constraints
are acceptable and do not hinder our ability to deliver a quality
learning experience.

D. Switching from real-time to offline

We transitioned from real-time to offline processing due to
the challenges that come with real-time audio processing.
Though real-time processing allows for easier
synchronization, it leads to noticeable accuracy issues. To
address this, we now save real-time fingering data and later
merge it offline, allowing users to replay their practice
sessions and review any errors and feedback. This method is
also more practical because it's often difficult for users to
focus on immediate feedback while practicing.

VI. SYSTEM IMPLEMENTATION

A. Fingering Collection System

The fingering collection system consists of a series of hall
effect sensors and magnets attached to different air doors on
the saxophone and an ESP32 controller that collects and
processes the data. The hardware design is based on a MIDI
saxophone controller called JazzHands developed by
AndrewChi, with several changes.

Hall effect sensors can detect the presence of magnetic
fields and change its output voltage based on whether there is
a presence of a magnetic field or not. Hall effect sensors are
installed on the body of the saxophone, and magnets are
attached on the valves of the saxophone. When a key is
pressed or unpressed, the corresponding valve will either go
up or down, depending on the key, causing the magnet to
move, which causes a change in the hall effect sensor’s
voltage output. There are a total of 21 hall effect sensors,
corresponding to all keys on a typical saxophone. Some keys
do not need their own valves, as they can rely on a
combination of existing sensors to determine whether the keys
are closed or not. Thus, 21 sensors can account for all 23 keys.

The input from the hall effect sensors are wired to a PCB,
which acts as the central control of the fingering collecting
system. The PCB contains the SparkFun ESP32 Thing
controller, pull-down resistors for the hall effect sensors, and
shift registers. The inputs go to the shift registers, which are
controlled by the ESP32 controller, which, after each read,
will read from its data pin, one signal at a time, until all 21
inputs are read.

The wiring between the sensors and the PCB went through
several iterations. The first design involved directly soldering
cables to the hall effect sensors, which was both difficult to
solder and would regularly fail after the soldering was

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

completed, necessitating repairs. The second iteration was to
use a strip board that would connect the sensor and the cable
that goes to the PCB. One end of the strip board was the
sensor, the other end was the cable that goes to the PCB. This
design also did not work, because the strip board was too large
to fit on a saxophone without modifications that could
potentially cause shorts, since the saxophone is made of metal.
The final design was to use ribbon cables that allowed the
sensor to be directly plugged into the cable and the PCB. This
design worked best due to its simplicity and ease of repair, but
the cost of the system went up due to the ribbon cables being
more expensive.

The plan was to use a film pressure sensor for the octave
key, due to the octave key having two valves that do not open
all the time, and that one of the valves is attached to the neck,
which means if a sensor is attached there, the saxophone
cannot be taken apart for transportation. However, there were
several challenges regarding that: the film pressure sensor was
difficult to get working, as the pressure sensor responded to
very low levels of pressure, even including when a finger was
simply resting on the key. The pressure sensor is also difficult
to install onto the key itself, as permanent adhesive would
have to be used to attach it, which would prevent easy
disassembly of the system and cause permanent damage to the
lacquer of the saxophone. A workaround was developed, in
that a hall effect sensor is installed under the octave key itself.
The design of the octave key allowed a magnet and a hall
effect sensor to fit underneath, thus sensing whether the key is
pressed or not.

Data was to be sent from the system to the web app using
the MIDI standard, as it was an established standard that is
used to communicate music data between different
peripherals. However, MIDI could not account for fingering
data transmission, so the system switched to using USB serial
output to send fingering data to the web app.

B. Audio Processing System

The audio processing system includes three sub-systems:
pre-processing, pitch detection and rhythm detection.

The pre-processing part includes checking the
Signal-to-Noise ratio (SNR) of the input audio signal to make
sure it has enough quality. We will reject input audio with
SNR lower than 20dB to ensure the performance of the pitch
detection algorithm in later parts. The formula we used is:

SNR = 10 * loglO(PowerSignal / PowerNoise)

3

The pitch detector takes the input signal from the
preprocessor and performs pitch to note conversion. The audio
data is divided into segments corresponding to 1/8th of a beat,
based on the specified tempo. This segmentation involves
calculating the duration of a full beat in seconds and
subsequently determining the duration for an eighth note. The
number of samples per 1/8th beat is computed by multiplying
the sample rate by the eighth note duration. Then, each data
segment is multiplied by a Hanning window. The windowed
data is then subjected to the Fast Fourier Transform (FFT) to

convert it from the time domain to the frequency domain. The

formula we used is:
N_

X(m, (D) _ —i2nkn/N

1
x[n]e 4)
n=0

After we gain the frequency of the interval with 1/8 of a
beat, we convert the frequency into Musical Instrument Digital
Interface(MIDI) notes, which is a standardized representation
of musical notes. Once we get the MIDI note number, we can
map it to a musical note. Equation 5 is the equation we used to
calculate the MIDI note value, where fn is the frequency we

detected, and 440Hz represents an A4 note, which is the
internationally recognized standard for musical pitch:
n=12* logz(fn/4-4OHz)

)

Finally, the detected notes are transposed by 14 semitones
to adjust the notes to the correct pitch. This is because the
saxophone is a transposing instrument, which means that the
pitch it produced does not match the concert pitch read on
standard sheet music. Therefore, we want to transpose the
notes to align the detected notes with the standard notation in
sheet music.

For the rhythm processor, we apply a sliding window to
the signal with 1/8 of a beat and extract peaks of it. We use the
find_peaks function from Scipy library, which is a music and
audio analysis library in python. This function takes a 1-D
array and finds all local maxima by simple comparison of
neighboring values (SciPy, n.d). We set the required parameter
to be 1/8 of a beat of distance between the peaks detected.

C. Web App

The primary interface for users is through a web application,
for which we choose Django for our web framework. It
enables us to develop 3 distinct functionalities within our
system, ‘practice’, ‘learn’, ‘user statistics’, as shown in Fig. 1.

practice page
sensors installed select practice songs learn page
and working
. current note & - -
& quiet fracring dia [reference | [intro to playing |
environment ‘gering ciag — -
SNR >=40 dB [fedvack | [major scales and fingering |
T T
T T T 1
required L J
main page
user authentication | practice learn |
| login }
register user statistics user statistics
history error rate
for cach practice song

register page }J

Fig 1: the structure of the web application

The learning page is similar to a wikipedia page, with
information about saxophone, fingering charts, articles and
videos about saxophone, together with some common
problems that the beginners may have. Users will be able to
view some simple scripts and listen to the reference playings
on this page. There are also external links to resources that are
suitable for beginners.

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

The aim of the user statistics page is to provide users with a
comprehensive overview of their progress, featuring historical
error rates for each song practiced. To support this
functionality, we utilize the builtin database SQLite3 in
Django to store user information. This data will then be
fetched and displayed on the user statistics page, ensuring that
users have access to up-to-date insights on their experience
with our web application.

The practicing page serves as the core of our application. It
is designed to replicate the experience of a lesson, providing
feedback after a user plays a practice song. Users must ensure
that the sensors are active and functioning, and that the
environment is relatively quiet with a Signal-to-Noise Ratio
(SNR) of at least 20 dB before they can begin.

The structure of the practice page is organized so that both
diagrams and texts can serve as tools to assist users in
practicing. On the left, The UI displays a visual representation
of the correct saxophone fingering using SVG components,
enabling partially coloring to indicate correctness. To aid
beginners who may not understand the diagram, a textual
explanation for the reference fingering chart is attached below
it. On the right, the current note and next note are displayed
under the five buttons that the user can interact with.

By clicking on the connect button, the user can connect the
web app with the fingering serial port. And then the user can
switch between Entire Range, B flat scale and Mary had a
little lamb and choose a music sheet to practice with. Once the
user is ready to play, she should click on the start button, and
the system will automatically start recording and reading from
the serial port to get fingering data. After finishing the
practice, she clicks on the end button to trigger the web app to
download the recording, run the audio detection system on the
recording to generate audio output, write the stored fingering
data gained from serial port to fingering output file.

In order to integrate the audio output with the fingering
output, we iterate through every reference fingering and note,
record the current time in reference, calculate the sliding
window to be (offset + curr_time - tolerance, offset + interval
+ curr_time + tolerance), and then apply the sliding window
on user fingering and audio data to find whether there is a
match between the reference data and user data, lasting for
long enough time(at least 60% of the original length). If there
is no matching, we will output the user fingering and audio as
the data with longest duration in the sliding window.

After the integration is done, the replay button will enable
the user to replay the fingerings, notes and feedback as many
times as she wants. The Ul provides visual feedback by
highlighting the keys in red for incorrect fingerings, green for
correct ones and gray for missing ones so that the user can
quickly understand how to change the fingering. On the right,
the current note in script and the detected note are shown, in
case the user presses fingers at the correct positions but
produces incorrect sounds, as in Fig 2.

Besides the visual cues, the system also offers detailed
textual feedback to users’ performance to guide users through
the practicing process. If the fingering is unmatched, the
feedback will be instructing the user to change the fingering,

and if the fingering is matched and the detected note is
unmatched with what the user intends to play, the feedback
will provide possible reasons, for example, issues with
embouchure, breath, or the instrument to help the user correct
the playing.

Hello Guest! Leam | Practice | Login

Currently Practicing: Entire Range

n
H

o 0 o} 0 ;w"wtcn
- 8000 @ - A :ooo =
=
@ @ - o ® . S
R IRl —
s ® Fingerg © =
[I O unmatched D O
@ 9 Played Note: G5

Left Hand:
- Index finger on the B key.
- Middle finger on the A key.
- Ring finger on the G key.

Right Hand
- Index finger on the F key.
- Middle finger on the E key.

Your fingering is incorrect. Please adjust fingering
based on the fingering diagram.

Fig 2: Practicing Page

VII. TEST, VERIFICATION AND VALIDATION

A.Results for Fingering System

The fingering system test includes testing both single keys
and a combination of keys for accuracy. Each of the 23 keys
on the saxophone was tested for the single key test, and a
chromatic scale was played for testing the combination keys.
The chromatic scale would cover every key as well as most
reasonable combinations of keys pressed on the saxophone.
Each test was repeated for 10 times, and the average was
taken.

Figure 3 shows the results of the accuracy tests.

Requirement Metric Result
Single key >=90% 100%
presses

Combination | >=90% 100%

key presses

Fig 3: Testing result of the fingering system
The fingering system was 100% accurate on all tests
performed, which was expected, given the robustness of hall
effect sensors and the ESP32 controller. These results meet
both the use case and design requirements, as both dictated
that the fingering collection system should be at least 90%
accurate, and the result was able to exceed that.

B.Results for Audio Processor

To assess the system's accuracy in note detection, we tested
its performance using various inputs. Our tested inputs
include: single notes that cover the entire range of tenor
saxophone(from low B flat to high F), C major scale, B flat
scale, and Mary had a little lamb with fast and low tempo.

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

Below are the results of them:

Tempo Accuracy of Pitch Accuracy of Rhythm Latency
(bpm) detection detection
Single Notes 100% 100% <1s
C major scale 60 93% (14/15) 100% (Error within <=2s
0.2s)
B flat scale 60 93% (14/15) 100% (Error within 1.5s

0.25)

Mary had a Little 150
Lamb v.1

34% 70% 1.5s

Mary had a Little 60
Lamb v.2

75% 90%
Fig 4: Testing result for audio processor
The pitch accuracy is detected by matching the notes from

the output array with the reference notes we know. The

accuracy of single played notes reaches 100% with less than
one second of latency. The accuracy of both C major scale and

B flat scale reaches 93%, which means that there is one note

being detected incorrectly out of 15 notes in total. We tested

Mary had a Little Lamb with two different versions, one with

a tempo of 150 bpm and another with 60 bpm. We noticed that

the result accuracy for the latter version is much higher, which

is due to the way we implement the sliding window.

The rhythm accuracy is detected by matching the note
length detected with reference note length in the sheet. We
will tolerate an error within 0.5s since human players aren’t as
accurate as machines. The accuracy for single notes and music
scales reaches 100%, and 90% for Mary had a Little Lamb
with a tempo of 60 bpm.

Overall, our testing result for the audio processor reaches
our metrics. The ability of our system to detect notes from
music scales is above our expectations, while the accuracy for
detecting more complex songs can still be improved.

C.Results for web app

We tested the web app performance after integration by
playing according to it like a real user, and observing the
replayed results. Our tested inputs include: single notes that
cover the entire range of tenor saxophone(from low B flat to
high F), B flat scale, and Mary had a little lamb. Fig 7 is a
table of the results.

Accuracy Latency
Single Notes 100% 4s
B flat Scale 87% 4s
Mary Had a 69% 4s
Little Lamb

Fig 7: Testing result for feedback accuracy after integration

For single notes, the system demonstrated perfect accuracy at
100%, maintaining a latency of 4 seconds. Performance
slightly declined with the B flat scale, achieving an 87%
accuracy rate with the same latency. Most of the unmatching
in the feedback comes from the detection of audio rhythm,
since a note is not always kept in the same pitch in a
real-world playing. All those tests meet with our 80%
accuracy metrics.

The most challenging task was Mary Had a Little Lamb

where accuracy further dropped to 69%, again with a 4-second
latency. Because Mary Had a Little Lamb is more similar to a
real music piece, and each note’s pitch and rhythm is less
stable than previous ones. The ability to handle complicated
music pieces remains a limitation in our system.

Above results indicate that while the app performs
exceptionally well with simpler inputs, its accuracy decreases
as the complexity of the musical pieces increases. Latency
remains consistent across all tests, ensuring a smooth user
experience.

VIII. ProOJECT MANAGEMENT

A. Schedule

Our schedule was created based on individual team member
responsibilities and their knowledge areas. The web app and
the fingering collection system are separate systems that can
be developed separately in parallel, and then integrated
together. Both systems can also be tested separately before
integration, as the web app can be tested using tools such as
tone generators and dummy inputs, and the fingering
collection system can be tested by observing its outputs
independently. The schedule will also leave time for final
integration of the two components. Due to the more extensive
time spent on our respective components, our final schedule
allocated less time for integration and integration testing
compared to the schedule outlined in the design report. Apart
from this adjustment, we didn't make many other changes to
the schedule.

Please see Appendix B for our Gantt chart.

B.Team Member Responsibilities

Jordan Li is responsible for the fingering collection system.
His main responsibility is to build out the system on a
saxophone, which includes installing the sensors, developing
software for the controller, and testing of the system before
integration.

Junrui Zhao is responsible for the design and construction of
the web app. Her responsibilities include designing the layout
of the website, building both the frontend and backend of the
web app and displaying related diagrams and texts.

Lin Zhan is responsible for the audio processing algorithms.
Her main responsibilities include implementing code for the
audio processor to convert the audio signal input to notes with
rhythms.

Integration is the responsibility of all three members. Each
person will make changes to their subsystem according to
integration requirements. Junrui is responsible for initiating
integration in the web app backend and designing the
integration logic to handle the received data, ultimately
presenting it on the web app user interface.

C.Bill of Materials and Budget
Please see Appendix C for BOM.

D.Risk Management

In our saxophone learning project, we tackled several

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

critical risks to ensure the system performs effectively and is
user-friendly. The primary concern was the overall response
time of the system, encompassing both the sensors and the
web application.

For the hardware section, we bought one set of redundancy
parts for everything, from the sensors to the PCB itself. This
came in handy two days before the final presentation, when
the ESP32 controller’s USB port fell off in an accident, and
could not be soldered back on. The extra set of parts allowed
rapid fabrication of another PCB without the need to overnight
the parts, which could risk budget overuse and unfinished
product.

For the web application, we utilized predetermined test
inputs to evaluate its functionality before full integration. This
testing allowed us to identify issues promptly. Encountering
performance delays, we enhanced the application’s speed
through refined algorithms and more efficient data processing
methods. We also stored results in local files, a strategy that
accelerates the web app when users access replay features.

Initially, we aimed to process audio inputs in real-time, but
test results indicated insufficient accuracy. Consequently, we
shifted to post-session audio processing as a fallback design.
We had anticipated this adjustment, so the transition didn’t
take much time.

By implementing these strategies, we effectively managed
project risks, ensuring smooth and rapid functionality.

IX.

One edge case of operation is the aspiring saxophone player
using this system exclusively, without the guidance of a more
experienced instructor. While self-learning the saxophone is
possible, especially if the player already has a music
background, not practicing with an instructor can lead to bad
habits developing and potentially misguided efforts on
unnecessary practices. This would hurt both the player and
saxophone instructors, since the player would not get the
musical experience he or she desires, hampered by bad habits
and wasted time, while the instructor would lose potential
income from having one less student. If this happens on a
scale, the market for saxophone instructors would shrink,
causing lower availability of instructors, especially in
lower-income areas.

This can be mitigated by explicitly asking the players to
visit an instructor on a regular basis to check in, or to limit the
sale of such systems to a network of music shops or
saxophone instructors.

Another edge case is related to health. Given that both the
hand and mouth touch the saxophone, the materials used in the
system must be safe for human usage. Saxophones are also
expensive and fragile instruments, and sticking a network of
sensors onto it can cause damage if not done properly. If the
manufacturer of such a system uses toxic materials that can
harm human health, diseases can happen to the saxophone
player. For example, if the system includes the use of toxic
glue as the sticking agent of the hall effect sensor, the player
could accidentally ingest it and cause physical harm. If the

ETHicAL ISSUES

glue used is difficult to remove, removing the system from the
saxophone when selling it or if the player no longer needs it
can lead to permanent damage to the saxophone.

This can be mitigated by stringent quality control by the
manufacturer to ensure that materials used would not cause
such harm.

X. RELATED WORK

There are currently no online saxophone instructing apps.
There are some previous projects that work as music
transcriber, which takes audio as input and generates sheet
music as output. The idea behind these transcribers is similar
to what we want to achieve in the audio processor part. Also,
there is a past ECE capstone project “WoodwindMania” that
works on a simulated learning tool that allows users to learn
note fingerings for woodwind instruments. The project’s idea
is similar to what we want to achieve in the fingering
collection part.

XI

To summarize, our system is quite successful since our
system is able to provide accurate feedback for single notes
input and scale inputs. The fingering detection and audio
processor, which are two core functions of our app, are
synchronized seamlessly. This ensures that saxophone
beginners can receive immediate and precise feedback for
fundamental exercises. However, for more complex songs
such as Mary had a little lamb, the accuracy drops to 70%,
which needs further improvement.

SUMMARY

A. Future work

Our system currently still has many restrictions that need
optimization. We plan to first add a function that allows the
users to switch between different tempo ranges, instead of a
fixed tempo. This will provide them with more flexibility in
choosing which song to practice. We also want to improve the
accuracy. This can be done by refining our current algorithm
to better handle variations in rhythm complexity, perhaps
through advanced machine learning models or more
sophisticated signal processing techniques.

B. Lessons Learned

The most important lesson we learned through the course of
the project is that early and frequent testing across a wide
range of music inputs is crucial. Through testing, we noticed
that the quality of the input audio file will directly affect the
accuracy of pitch detection, sometimes making the error rate
increase by 50%. We also learned that incorporating feedback
from real musicians can help provide insights that are not
immediately obvious from a technical standpoint.

GLOSSARY OF ACRONYMS

bpm - beats per minute

MIDI - Musical Instrument Digital Interface
MQTT - Message Queuing Telemetry Transport
OBD - On-Board Diagnostics

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

RPi - Raspberry Pi

SNR - Signal-to-Noise Ratio
Short-time Fourier Transform - STFT
UI - User Interface

REFERENCES

[1] AndrewChi, Instructables, Accessed on February 29, 2024,
[Online]. Available:
https://www.instructables.com/Jazz-Hands-Hybrid-Saxophone/

2] Scipy User Guide v1.12.0,
https://docs.scipy.org/doc/scipy/tutorial/index.html

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

Saxophone Player

Send a start signal

Sensoring

I Audio
Detection

21 Hall Efiect
Sensors + Magnets

v

Criginal Audio

v

ESP3? Mormalization & dB

check i
Mote packet Pitch Detection Rhythm Detection i
Integrated Notes
[Fitch, Length]) !
e 4 i
- Synchronize the R e '
result from sensors
and audio
. i : - " - -_h..
Match the fingering Match the input
with built-in sheet notes with built-in
music sheet music
Webapp

Generate Feedback

Current note and
fingering displayed

Reference note and
fingering displayed

Appendix A: System Diagram

11

ics 5/3/2024

Sonic Score Saxophon

18-500 Final Project Report

Appendix B: Gantt Chart

wexa Jofe|y

ueyz un
7 ueplop

oeyz inuunp

oweq w3

uopejuasald ubisag

jonpold [euld
Bunsal
olpnexgsiosuss Yyim dde sjeibaju|
uopeibsju|

wa)sAs ajoym auyy 1oy bunsal

Jossaoold WAy Joy Bunsal
Jossaooud yolid Joy bunss|
Bujsseoolid-aid 1o} bunsa]l

uonejusws|dw Josseooid WYIAYY
uonejusws|dwi Jossadoid yoyd
OIpNE 1o} 81Njonu)s ejeq
Bujssasoid olpny

Bunss] Aoeindoy
wivsAg uonoa|oD buusbul4 ping
slosuas 1sal
sped Japip/jubisaq
alempieH

bupyse) Jasn
sobed Jayjo yuswa|dwi
ajou g Weyo Buusbuy Aejdsip
ndui s8] Awwnp yium sbed eonoeid
uoneonuayne Issn g uonebineu

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

Appendix C: Bill of Materials

Description

Hall Effect
Sensor

Magnet for
Hall Effect
Sensor

Female
MIDI DIN
Connector

100K Ohm
Resistor
Array

10K Ohm
Resistor
8-bit Shift
Register

IC DIP
Socket

SparkFun
ESP32 Thing
Microcontroll

er

Sugru

40 Pin Male
Pin Header
Connector

Velcro
Strips

Adhesive
Dots

MIDI Cable
PCB

Tenor
Saxophone

Clip on
microphone

Model
Number

DRV502
3AJQLPG
M

8015

KCDX-5
S-N

4116R-1-
104

CFR-12]
R-52-10K

SN74HC
165N

1-219929
8-4

DEV-139
07

1000953

N/A

PGP55
108533
N/A

N/A
XLR

Mfr.

Texas

Instrument

Radial
Magnets, Inc

Kycon, Inc

Bourns, Inc
Yageo

Texas
Instrument

TE
Connectivity

SparkFun

Tesa

Hotop

Aniced

Pritt
Monoprice

JLCPCB

Bundy

Todlinkoc

Unit

Qty. Price ($)

60

40

10

0.708

0.299

1.63

2.5

0.1

1.35

0.199

23.46

19.99

7.95

4.51

6.1
6.73
37

1,000.00

12.99

Total Price
®

42.48

11.96

4.89

15

0.5

8.1

1.99

46.92

39.98

7.95

4.51

6.1
6.73
37

Borrowed

12.99

Notes

30 more purchased to account for
solder damage and change in cable

10 more purchased to account for
magnets that fell

Not used

Used 3 in final project

Not used

Used 3 in final project

Used 6 in final project

One was a backup, USB port broke
during testing

One more purchased due to higher than
expected usage

Not used

Not used, bought after design report

12

18-500 Final Project Report: Sonic Score Saxophonics 5/3/2024

2000

Ribbon PRT-103

Cable 63 SparkFun 20 1.06 21.2 Bought after design report

Ribbon PRT-103

Cable 73 SparkFun 11 2.1 23.1 Bought after design report
ED-DP_

Ribbon L100 F-F

Cable 120pcs EDGELEC 1 19.99 19.99 Bought after design report

Total 311.39

