
18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 1

UNOmatic
Authors: Thomas Kang, David Peng, Jason Stentz

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—UNOmatic is a system capable of track-
ing the entire UNO game state to automatically deal
cards, track illegal moves, and perform scoring each
round. It aims to eliminate as much pressure as possi-
ble for players, providing them with an experience to
focus on the social aspects of playing card games. It is
also able to assist dealers during tournaments to create
smoother and faster game play.

Index Terms—automatic card dealer, CNN archi-
tecture, machine learning, UNO cards classification,
web sockets

1 INTRODUCTION

Ever since its inception in 1971, UNO has remained
one of the most popular playing card games in the world
as it surpasses 151 million copies sold worldwide[1]. Re-
cently, to celebrate its 50th anniversary, there was a profes-
sional tournament held, demonstrating its popularity from
a household environment all the way to full-scale compe-
tition. Due to the game’s vast popularity, there are many
conflicting rule sets. One such discrepancy is the ability, or
inability, to stack +2 and +4 cards. In a casual setting, rule
disputes can lead to arguments and negatively impact the
user experience. In a tournament setting, it is absolutely
imperative to enforce a standard set of rules followed by all
participants.

Alongside the problem of vastly different interpretations
of the rules, there is also a lengthy scoring process at the
end of each UNO round. Once someone runs out of cards,
therefore winning the game, the remaining cards of the los-
ing players must be meticulously tallied. This task can be
very tedious, especially given a player’s card count is po-
tentially unbounded. Alongside being time-consuming, the
process is a pressure point for scoring mistakes, if not done
carefully.

UNO serves as a popular means of fostering social in-
teraction, making it imperative that all participants feel
included and comfortable playing. One of the primary bar-
riers to entry for newcomers is the uncertainty surrounding
the game’s rules. Teaching someone the game can con-
sume valuable playing time, particularly if additional play-
ers wish to join later on.

To address these problems, we propose UNOmatic, a
fully automatic UNO game controller, equipped with card
dealing, full state tracking & validation, round scoring, and
a website. Using two cameras connected to a Raspberry
Pi and an onboard card classification model, the device
is able to track all players’ hands, the discard pile, and

the remaining cards in the draw pile without any trouble
for the user. Maintaining this state information allows for
automatic control flow, rule enforcement, scoring, and a
website-based game display. The system as a whole takes
the burden of managing the game flow off of the user in an
elegant way that further enhances the player experience.

2 USE-CASE REQUIREMENTS

We have identified the following use case requirements:

1. Size: The machine should be usable on most surfaces
on which people would play UNO. This includes a
reasonably sized table as well as on the floor. Thus,
we require that the machine be usable on at least a 3
ft by 3 ft table.

2. Longevity: The machine should be able to be used
for the duration of a competitive UNO tournament,
which according to past UNO championships, is
around 7 games[2].

3. Automatic gameplay: The machine should move to
each player and deal cards seamlessly with minimal
hiccups. Thus we require less than 10 errors in any
of the subsystems when going through the deck once.

4. Real-time website updates: Spectators and players
want real-time updates on the state of the game. If
an error occurs, users should be able to correct it from
the website quickly.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Fig. 1 is a high level block diagram of our system.
The Raspberry Pi acts as the main controller of the whole
system, issuing commands to the various attached devices.
Players press buttons to signal they have placed cards or
ended their turn, which triggers the Pi to take pictures
from the cameras, classify them using the CNN Card Clas-
sifier, and issue motor commands to the Arduino. The Pi
also handles website communication, sending out updates,
and receiving corrections from users in the case of errors.
This website can be hosted either on the Pi or an external
device.

The software inside the Pi has been broken into three
main subsystems: the controller, the UNO state, and the
displayer(s). These subsystems act asynchronously from
one another and communicate through message passing like
nodes in a distributed system. Each of them waits on a

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 2

Figure 1: Top Level Diagram

thread-safe queue of requests, able to respond and act on
any request at any time. The controller is responsible for
handling IO. The UNO state is responsible for responding
to the actions of users within the rules of UNO gameplay.
The displayer(s) are responsible for making updates to the
game state viewable to any players or spectators. These
independent, asynchronous nodes allow for easy handling
of interruptions, such as calling UNO or making corrections
to the state.

The Arduino Uno handles all motor control and com-
municates with the Raspberry Pi over a UART interface,
receiving text commands and communicating back when it
is done. The motors are controlled using the Adafruit Mo-
tor Shield V2 which handles power and low-level signals.
Also, we have added an IR sensor to confirm a card has
been successfully dealt. This takes the burden off the user
to confirm they have received a card.

On the software side, one of the main engineering prin-
ciples we enforced was separation of concerns. It was a
major emphasis in our design that all of the logic handling
UNO control flow would remain within the state subsys-
tem. The implementer of the controller interface does not
need to understand the full details of UNO. Similarly, the
displayer implementer is not required to understand the
full mechanics of UNO. This separation allowed us to eas-
ily track and fix bugs, since none of the logic from any one
subsystem bled into another subsystem.

One of the core technologies we relied upon was thread-
safe asynchronous queues to pass messages between the
software components of our system. These queues proved
invaluable to us as a method of allowing our code to respond
to asynchronous events at any time while still communicat-
ing between the various threads safely. They also became
a point of serialization for all of the events that happened
and made logging and debugging the system trivial, as we

could observe the events entering and exiting the queues.
In order to get the best final design for the card dealer,

we went through multiple iterations. Each time we had a
failure, we devised a hypothesis for the failure and changed
one variable at a time to confirm it. After multiple iter-
ations of this scientific experimentation, we arrived at a
solution that satisfied our requirements.

Before we purchased the motors for the chassis rotation,
we wanted to guarantee that the stepper motor would meet
our design requirements. In this process, we calculated the
minimum torque required to rotate the chassis. This in-
corporated gear slip, force transfer, and friction, all using
mathematical equations. We made sure to add a margin of
error to be conservative in our calculations.

4 DESIGN REQUIREMENTS

1. Size: Dimensions should be less than 1 ft by 1 ft.
This stems from our size requirement which requires
the machine to fit comfortably in the center of a small
square table, approximately 3 ft in width. This will
give ample space for players to rest their cards and
interact with the machine comfortably, even when sit-
ting on the ground close to each other.

2. Battery Life: Our batteries should last more than 1
hour. This stems from our longevity requirement of
being able to play 7 games. On average, games last
5-10 minutes so this meets this requirement.

3. Motor Power Draw: Due to the current limitations
of the Adafruit Motor Shield V2, we are limited to
drawing 1.2 Amps at 12V to each motor.

4. Rotation weight: We estimate the weight of our ma-
chine to be around 7-8 pounds. Thus, the motor

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 3

should be able to rotate all of this weight.

5. Rotation speed: In order to meet our longevity re-
quirement, the machine should rotate quickly from
player to player in order to allow moves to be played
at a normal pace. Thus, we require rotation to the
next player to take < 3 seconds.

6. Rotation accuracy: To meet our automatic gameplay
requirement, the rotation to each player should point
at them within ±10◦. This will ensure that gameplay
does not have to pause to reorient the machine or pick
up cards that have been dealt in the wrong place.

7. Classification: To meet our automatic gameplay re-
quirement, the card classifier should have an accuracy
> 95% and have a latency of < 1 second. With 108
cards in a deck, this will allow for minimal disrup-
tions of the game as well as not slowing down the
game waiting for classification as this can be inter-
leaved with the physical motor movements.

8. Card dealing: To meet our automatic gameplay re-
quirement, dealing one card should take < 1 second.
It should also deal only one card at a time at least
95% of the time. This will allow card dealing to be
a quick and seamless process with minimal interrup-
tions.

9. Website: To fulfill the real-time website updates re-
quirement, we require the end-to-end latency of up-
dating the website be < 2 seconds.

5 DESIGN TRADE STUDIES

5.1 Hardware Design

5.1.1 Central Rotation

We chose an internal gear and a spur gear system to
rotate the system and small caster wheels to support the
system. This system provides very accurate rotation based
on our gear ratio. It is a lot more stable and uses less force
than using the stepper motor’s axle acting as the central
axle and moving the top platform. The caster wheels with
low rotational friction prevent the rotating spur gear from
touching the bottom platform and creating more friction.
We have explored using a lazy-susan bearing which pro-
vides low-friction rotation of a platform without us having
to manually align the wheels. We needed it to be at least
an inch in height due to the shaft length, 20 centimeter in-
ternal diameter to accommodate the internal gear system,
and 25 centimeter external diameter for the top chassis to
stay compact. Since most consumer-level lazy-susan bear-
ings are used for low-profile tables, we were unable to find
a product that fits our specific dimensions but also costs
less than the caster wheels.

5.1.2 Dealer

The cards in our system will be dealt from the bottom of
the deck. While it is mechanically a lot easier to deal from
the top, having to take a picture of each card makes dealing
from the bottom a better option. In case we want to deal
from the top, we could have built an IR sensor circuit to
detect card movement and take a picture as it leaves. How-
ever, the card has to leave at a reasonable speed, leaving
us with a very small amount of time to capture the card’s
symbol and color, and low resolution could lead to poor
classification accuracy. With the card being dealt from the
bottom, the camera has a lot larger window to take a pic-
ture of the card before being dealt to players, and it will
always be the same cutout. However, we do have to make
sure we have enough friction on the roller and pressure on
top of the cards to make sure we only deal one card at a
time.

5.1.3 Motors

Our system requires motors at 2 places: chassis rotation
and card dealing. As mentioned in 5.1.1, chassis rotation
uses an internal gear-spur gear system where the spur gear
is connected to a motor and rotates. Card dealing also takes
2 motions: extruding the card forward toward the exit of
the dealer and ejecting the card at a higher speed toward
the players. For these 3 motions, we chose a stepper motor,
a continuous servo, and a DC motor respectively. To con-
trol these 3 motors, we have purchased an Adafruit motor
shield. It provides libraries for all 3 types of motors, and
we don’t need to build additional circuitry to control them
or distribute power. This, however, puts a 12V, 1.2A limit
per motor.

For card extrusion, we needed fine control or we would
push out multiple cards. For this, we have selected a contin-
uous servo motor that gives us precise control, is compact
and light, and also turns continuously so that it can keep
extruding continuously without having to return back to
its position before making another extrusion.

For card ejection, we chose a DC motor with high RPM
to rotate the rollers quickly. Neither a stepper nor a servo
would have been able to give 200 ∼ 300 RPM.

For the chassis rotation, we need a precise and powerful
motor to move the entire chassis which will weigh about
4 kilograms. A stepper motor or servo motor would have
been appropriate, but steppers have high torque and pre-
cise control over rotation. Since the upper body of the
design sits on wheels and rotates horizontally via gears, we
have calculated the force needed to rotate our system with
the following design specifications:

• The gears we use have a 20◦ pressure angle, which is
a widely used metric for standard gear systems.

• The contact point of the gears from the center of the
spur gear is approximately 2.2cm.

• Based on [3], we will be using 0.04 as our friction
coefficient(µr). This is equivalent to Nylon wheels on

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 4

concrete, which is most likely a lot higher than our
actual value, but to simplify calculations and be con-
servative with our values, we have chosen 0.04 specif-
ically.

• Based on [4], the amount of force needed to start a
motion is about 2.5x of sustaining the motion.

• Approximately 70% efficiency in gear force transmis-
sion.

With this and the calculations below, we chose a 26Ncm
Nema17 stepper motor. It not only provides us with a gen-
erous amount of torque in case we add more parts than
our expectation but also only draws 0.8A at 12V, which
fits our criteria.

Calculations:

Rotation force:

Fr = W × µr

= (4kg × 9.81m/s2)× 0.04

= 1.570N

(1)

Static rotational force:

Fstatic r = Fr × 2.5

= 1.57N × 2.5

= 3.924N

(2)

Gear’s force:

Fgear = cos(20◦)× τmotor/2.2cm× 70%

= 0.29897cm× τmotor

(3)

Minimum motor torque:

τmotor = Fstatic r/0.29897cm

= 3.924N/0.29897cm

= 13.125Ncm

(4)

5.1.4 Power Source

Our entire design runs off of 2x 12V 3000 mAh batteries
and a 9V 600 mAh battery. Using this, we would like to
achieve 1+ hour battery life. The 12V batteries will power
the stepper motor, DC motor, and the RPI 5, while the 9V
battery powers the Arduino Uno board itself and the servo.
We have chosen these specific 12V batteries because of their
ability to supply 12V 3A, which is 36 watts. The RPI 5
can be powered by a regular 15W battery bank, but it will
go on low-power mode that limits the amount of current
going to the peripherals to 600mA instead of 1.6A with the
correct power supply. This poses a problem as we use 2
Pi cameras as well as many GPIO pins for communication.
Thus, to supply the RPI 5 with the correct input voltage
and amperage, we have bought a 36Wh battery with a vari-
able buck converter that steps it down to 5V with up to
5A output. With our battery capacity, even in the worst
case of the RPI 5 running full throttle at all times, we are

still able to get 1+ hour of battery life. For the motors,
the stepper and the DC combined used about 1.1 A at 12V
while moving. Considering the battery capacity, we should
be able to get well over 2 hours of battery on the motors.
Finally, the Arduino usually draws about 50 mA from the
board itself and 160 mA from the servo. Thus, with our
9V 600mAh capacity, we get about 3 hours of battery life,
which is sufficient.

5.2 Microcontrollers

5.2.1 Raspberry Pi 5

For our main controller, we are using a Raspberry Pi
5. We need to be able to handle two camera streams, and
only the Raspberry Pi 5 supports two simultaneous cam-
era streams. Also, the Raspberry Pi 5 has around 2x the
performance of the Raspberry Pi 4 which will greatly speed
up machine learning inference and overall system respon-
siveness. We also considered using an Nvidia Jetson Nano,
however, it has a much larger volume and weight due to its
large heatsink.

5.2.2 Arduino Uno

While the Raspberry Pi is a very good platform, it was
not meant to handle real-time IO. For this purpose, the Ar-
duino Uno is a much better option. It has native 5V GPIO,
real-time environment, and access to the powerful Adafruit
Motor Shield V2. As mentioned earlier, this motor shield
allows us to control up to 1 stepper, 2 DC motors, and 2
servos all at the same time. To communicate between the
two microcontrollers, we are using a UART interface over
USB. We chose this over other serial interfaces such as I2C
because UART allows for multi-master functionality and
can use the USB port which is convenient. Multi-master
allows the Arduino to signal to the Pi when the Arduino is
done moving the motors.

5.3 Software

5.3.1 Card Classification Model

For the model architecture, we have considered three
main options. The first is a standard convolutional net-
work. If this model is able to achieve a high accuracy, it
would be ideal given our computationally limited environ-
ment, but it may not be complicated enough for classifying
with 15 labels.

We also considered using a vision transformer architec-
ture, trained on our dataset from scratch. This will require
more compute time, but it should theoretically be better
at generalizing to unseen examples and learning long-term
dependencies across the image.

Finally, we considered using a pre-trained transformer,
such as BERT, which is good at turning images into a lower-
dimensional representation. We would then fine-tune the
model to fit our specific use case. This will make our model
more complex but may increase accuracy.

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 5

We have decided to stick with a convolutional neu-
ral network since it is the most lightweight approach that
maintains the ability to learn spatial relationships.

5.3.2 Color Classification

After classifying the type of card, the system must then
determine the color of the card. There are two main ways
of solving this problem – naive computer vision techniques
and more machine learning techniques. The naive com-
puter vision approach would be to independently apply
red, yellow, blue, and green color filters to the image and
compute average intensities. The filter that produces the
highest average intensity reveals the color of the card. This
method would result in very speedy color classification, but
it would require specific tuning for the top and bottom cam-
eras to be resilient to lighting changes. Alternatively, the
color can be classified by another convolutional network.
This method is slower, but it is capable of learning to be
resilient to lighting conditions if given enough data. For
our purposes, we decided on using more machine learning
to classify the card colors.

5.3.3 Software Control Model

Throughout the design and implementation of our soft-
ware systems, we wrestled with two main philosophies for
handling the software control flow – synchronous and asyn-
chronous. In the synchronous model, the UNO state re-
quests information from the controller through function
calls, blocking until the controller responds. These func-
tion calls allow for a streamlined, linear control flow that
is very simple to debug. The issue is, that these function
calls are blocking, waiting for user input. So, while waiting
for a player to play a card, the system is unable to listen
to state correction requests or other asynchronous actions
from different sources. On the other hand, an asynchronous
model has a more complicated control flow, as each node
acts independently and concurrently. Asynchronous code
is prone to complicated bugs and produces a control flow
that is difficult to reason about. Despite these challenges,
we chose an asynchronous model for our system, to be able
to handle any action at any time.

5.3.4 Website

The main discussion for the website surrounded which
web architecture to use. We considered Django and Flask
since they are both common Python backend frameworks.
We decided on Flask since it is lighter-weight.

For communicating the state between devices, we con-
sidered using websockets and Asynchronous Javascript and
XML (AJAX). We ended up using websockets due to its
low latency and overhead.

Figure 2: Entire chassis design in CAD
Label 1: Card discard pile

Label 2: Keypad for user input
Label 3: Card dealer

Label 4: Chassis rotation system

6 SYSTEM IMPLEMENTATION

6.1 Hardware

6.1.1 Full body Integration

The outer chassis was built using laser-cut 1/8-inch
pressed boards purchased from Techspark with gears and
the card dealer being 3D printed. The bottom plate’s di-
mension is 26cm x 26cm while the upper rotating chassis
is 25cm x 25cm x 10cm, length x width x height, with ad-
ditional height on the discard pile, label 1 in Fig.2. The
discard pile has a camera on the top to take a picture of
the card that was just played, and the extra height makes
sure there is enough distance between a full stack and the
camera for it to focus. The small cutout on the front makes
it easier to pull the cards out. Also, the left transparent
wall is acrylic so that the person on the left of the current
player can see the card in play easily. Label 2 is a number
pad where the users will input different information: re-
set the game, the color of the card after a wild card, draw
card, call bluff, and others. Hidden behind the keypad, we
have a small red LED that lights up whenever an illegal
move is detected. This is directly connected to the GPIO
pin of the RPi. Label 3 is our card dealer that ejects cards
towards the player automatically. Finally, label 4 is part
of our chassis rotation system using an internal gear and
a spur gear connected to a stepper motor. Labels 3 and 4
are explained in more detail in the next sections.

6.1.2 Chassis Rotation System

As mentioned in section 5.1.1, we are using 4 caster
wheels to support the weight of the chassis, and a spur
gear rotating within an internal gear to rotate the chassis.

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 6

The shapes in Fig. 3 labeled as 1 are the wheels, while
label 2 shows the spur gear connected to the stepper motor
and the internal gear.

6.1.3 Card Dealer

To make it easy to keep track of the cards being dealt,
we designed the card dealer so that it deals from the bot-
tom of the deck. Fig. 4’s label 1 is the cutout for the corner
of the card. A camera from the bottom takes a picture of
each card before it gets dealt to the player. Label 2 is the
roller with rubber bands that extrudes the card towards
the exit of the dealer so that the rollers in label 3 can catch
the card and move the card out at a faster speed. Label 2
rollers are geared with a continuous servo for more precision
and force. Label 3 rollers are geared with a DC motor for
higher speed. The approximate connections between the
gears are shown in section 6.1.1’s label 3, which shows the
other side of the dealer design. Throughout many trials,
we have changed the shape and size of the card hole. We
settled with a card hole that is slightly smaller than the
thickness of two cards and has a slight curve/slope as you
can see near label 3’s left side. Also, the front portion of
the dealer can now be removed from the rest of the body.
This helped us go through iterations faster and more ef-
ficiently with less filament and time used for 3D printing
each card hole design. Finally, we have added an IR sensor
that attaches right above the label 3 rollers and is housed in
label 4. It provides feedback on whether the card has been
successfully dealt or not, eliminating the need for human
confirmation.

6.2 Motor Control

All three motors will be controlled using the Arduino
Uno. We are using the Adafruit Motor Shield V2 to han-
dle all of the extra circuitry and low-level control needed
for the motors. The Motor Shield attached on top of the
Arduino and is powered off of the 12V 3000mAh battery.
Adafruit also provides a library for controlling the motors
which are attached to the shield. The Arduino receives
commands from the Raspberry Pi over UART. Latency
and bandwidth are not huge considerations as the com-
mands are only a couple of bytes. Then, depending on if
the command is to deal a card or rotate the chassis, the
Uno will enable the appropriate motors and send a done
command back to the Pi. We offload motor control over to
the Arduino because it is much better at supporting real-
time IO control than the Raspberry Pi. The Arduino itself
also draws very little power, around 50 mA.

6.3 Card Classification System

One of the key functions of the device is the ability to
seamlessly classify cards from an image for rule enforcing,
game state validation, and execute the correct control flow
for the played card.

Figure 3: Chassis rotation system in CAD
Label 1: Caster wheels to support the weight and rotation

Label 2: Spur gear that rotates

Figure 4: Card Dealer Design in CAD
Label 1: Hole for the camera to capture the card’s corner

Label 2: Roller that extrudes the card forward
Label 3: Rollers that deal the cards to players

Label 4: IR sensor housing

Pictured in Fig. 5 is the ResNet model architecture for
image classification. Our device employs a fine-tuned ver-
sion of the ResNet18 model. The ResNet18 model has been
pretrained to output a 1024-length vector representative of
the semantic meaning of its input image. For our task,
there are 15 output classes (0, 1, 2, ..., skip, reverse, ...),
instead of 1024. So, we added two linear layers onto the
head of ResNet18, reducing the model output to 15-length
one-hot encoded vector. This new architecture was then
fine-tuned on our own generated data.

We created two separate datasets. One of the datasets
was for the camera facing the discard pile, and the other
dataset was for the camera facing the bottom of the draw
pile. Since these cameras see different lighting and an-
gle conditions, it proved most beneficial to sample images
for these cameras separately. For each camera, we took

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 7

Figure 5: ResNet Architecture for Image Classification

around 200 photos, hand labeling both the color and type
of the pictured card. After hand-classifying these images,
we synthetically created 10 images per card by repeatedly
sampling noise to vary angle, zoom, saturation, brightness,
contrast, and more. When first training the model, we
initially split into test, train, and validation sets after cre-
ating more synthetic data. Since these derived images were
closely related to their real images, it resulted in the test
and validation accuracy being misleadingly high. It was
significantly more meaningful and effective to split the real
images into test, train, and validation sets before synthe-
sizing new data.

Our final design ended with two card classification mod-
els – one fine-tuned on real and synthetic data from the top
camera and one fine-tuned on real and synthetic data from
the bottom camera. Initially, we trained a single model on
the datasets for the top and bottom cameras. Although
this model performed very well on test and validation sets,
it performed slightly worse in the field than the separated
models.

After the card type is identified, the color may also need
to be extracted, specifically for every card other than the
Wild and +4 card. Initially, we used color filters hand-
tuned to finding yellow, blue, green, and red in images. Al-
though applying these filters led to incredibly quick color
classification, it was very difficult to find the correct thresh-
old values for blue and green. This basic algorithm had
difficulty differentiating between blue and green, especially
when lighting conditions changed.

To fix this, we went with a machine learning approach.
Although this approach makes color classification much
slower, it allows color classification to be better tuned to
the varying lighting conditions that our system must with-
stand. This color classification model was trained on both
the top and bottom camera datasets, again using a pre-
trained ResNet18 as its base.

6.4 Software Model

In our design report, we laid out a mainly sequential
execution with blocking IO. However, this did not scale to

the full feature set we wanted to implement. We wanted to
be able to wait on multiple IO sources at once and also at
arbitrary times. Thus, it made sense to rework the archi-
tecture of our software to an asynchronous execution model
pinned around async queues which sent messages between
the three main software subsystems; the State, Controller,
and Displayer.

6.4.1 State

The State handles all of the UNO game logic. It re-
ceives actions and updates from both the Controller and
Displayer and applies the appropriate transformations on
the players’ hands. It will then emit new actions for the
Controller and Displayer to do. For example, if the card
played was illegal, the State would emit a new event to
retry the turn as well as signal that the card was illegal.
In another case, if a skip card was played, the State would
emit two events to advance the machine to the next player
instead of the usual one.

6.4.2 Controller

The Controller handles all of the interfacing with IO.
It receives actions from the State such as GetUserInput or
DealCard which it translates into the appropriate hardware
actions, whether it be polling certain buttons on the keypad
or sending motor commands over UART to the Arduino.
It then responds with the user input or card classification
back to the State.

6.4.3 Displayer

The Displayers acts as the interface between the UNO
process and the web server. It sends state updates over web
socket and receives Reset and CorrectState requests from
the web server. It will then forward these requests to the
State for processing.

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 8

Figure 6: Example Spectator View

6.5 Website

With a competitive UNO tournament happening re-
cently, it is very important to have an interface for spectat-
ing the game, validating the game state, and making any
necessary corrections from failed classification or dealing.

The website is a separate process and can be hosted on
either the Raspberry Pi or a third party machine like a lap-
top. The website uses Python’s Flask as its backend. The
Controller and clients communicate changes to the state
with the web server through web sockets.

The website frontend shows the current cards each per-
son has with different roles to show only the cards for the
player you choose. The user is also able to correct state
errors by replacing an incorrect card with the correct card.
A snapshot of the final website can be seen in Figure 6.

7 TEST & VALIDATION

A compilation of all of our test results can be found in
Figure 7.

7.1 Tests for Size

This validates the size use case and design requirements.
We measured the width and height of the base of the plat-
form using a ruler. It is 26 cm x 26 cm which is less than

our target of 1 ft x 1 ft. The height of the entire system is
also within 1 ft at the highest point which is where the top
camera sits.

7.2 Tests for Rotation

This helps validate the automatic gameplay use case
requirement. It also validates all of the rotation design re-
quirements. Here we tested how quickly and accurately the
platform can rotate from one player to the next player. By
passing these tests we also implicitly verified the require-
ment for weight as we rotated the platform successfully.
To do this, we first marked the 90◦ intervals representing
a 4-player game. We also marked ±10◦ areas around each
player as the valid zone. Then we ran many rotations and
timed them with a stopwatch. Each rotation took about
1.90 s - 2.00 s, which is within our initial requirement of
3 seconds. Our initial methodology of releasing the step-
per motor caused the motor to jerk and cause a huge error.
Letting the stepper motor hold its position results in higher
power usage and more heat but gains accuracy in exchange.
We decided to go with holding the motors since the battery
life with the motors held is still significantly above our re-
quirement. In terms of accuracy results, when the chassis
moves in the same direction as before, it has less than 5◦

error, within our 10◦ target. However, when the direction
is reversed, the stepper motor stalls and skips steps, re-
sulting in up to 15◦ error, slightly higher than our design
requirement. However, since it is fairly easy to correct this
during the game by lifting up the chassis, we still validate
the automatic gameplay use case requirement.

7.3 Tests for Battery Life

This validates the longevity use case requirement and
the battery life design requirement. To test this we played
normal UNO games on loop while recording the time. We
played for 5 battery cycles where a battery cycle involves
draining the battery from 100% to 0%. We then recorded
the average battery life which was 93 minutes, 50% longer
than our 1 hour target.

7.4 Tests for Card Classification

This test helps validate the automatic gameplay use
case requirement. This will also validate the card classi-
fication design requirement. We were interested in mea-
suring both the accuracy and latency of card classification.
After collecting our own data and synthesizing new data,
we ended with around ten thousand images in our dataset
for the bottom camera and twenty thousand images for
the top camera. After splitting these sets into train, test,
and validation datasets, using the 80%, 10%, 10% rule, we
observed 100% accuracy on testing and validation sets for
both models after 2 epochs. In the field, we experienced
less than 1 incorrect classification per 500 images. This re-
sult far exceeds our requirement of > 95% accuracy. As for

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 9

color, the naive CV implementation saw a 93% accuracy,
whereas the ML model reached 100% accuracy.

Our final classification time for both type and color
ended up being around 300 ms. This time would have been
cut in half if we chose the naive CV implementation, but we
would have lost significant accuracy. We have easily cleared
our requirement of 1000 ms allocated for classification.

7.5 Tests for Card Dealing

This helps validate the automatic gameplay use case
requirement. This also validates the card dealing design
requirement. In this test, we test both the latency and ac-
curacy of dealing a card. To do so, we continuously dealt
1000 cards. We timed the total time to deal the cards and
calculated the average time to deal one card. We measured
a dealing latency of 1.5 seconds per card which is higher
than our design requirement of 1.0 seconds per card. This
is because the motors need more time to ensure that the
card is fully dealt every time. If we spin the motors for
a shorter period of time, the amount of dealing errors in-
creases drastically. However, this is not too big of a deal
as aside from the dealing phase, card dealing represents a
small portion of total game time and is masked by the la-
tency of other actions such as machine rotation. Thus, we
still validate the automatic gameplay use case requirement.
We also counted the number of errors that occurred during
dealing. Our accuracy was 97.5% which is higher than our
95% target.

7.6 Website Latency

This helps validate the real-time website update use
case and design requirement. For this test, we measured
the round trip latency of updating the website and receiving
a response from the website confirming the update. This
time was logged on the Raspberry Pi. To measure the one
way latency, we divided the round trip latency by two. Us-
ing the logs, we found the website latency to be 200-250
ms, which is far less than our 2000 ms requirement.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Fig. 8 on page 13. Most of
our initial tasks were parallelizable. While integration was
mostly dedicated towards the end of the semester and in-
dividual tasks, Thomas and David were able to do gradual
integration between the hardware and embedded software
on the way, reducing the amount of time used for full system
integration. The software driving the system took longer
than expected to finalize. While we thought we had our
final control flow after around week three, we decided to
make the switch to async much later on. This caused de-
lays in starting the website, which bled into our final week.
Although we did finish and test the website, it would have

been better to have more slack time in the final parts of
our schedule.

8.2 Team Member Responsibilities

David worked on the embedded code and worked with
Jason on implementing the software on the Raspberry Pi
as well as the website. Thomas managed all the hardware
components. This includes developing CAD models for all
hardware components, laser cutting the outer chassis, and
prototyping different designs for the card dealer. Also, he
assembled the final chassis. Jason drove the software design
and implementation for the project. This task includes de-
signing and implementing the control flow, providing con-
troller interfaces for David to implement, collecting data
for classification, and training a home-grown UNO card
classifier.

8.3 Bill of Materials and Budget

The BOM is shown in Table 1 on page 12. Many parts
we have purchased only come in larger quantities than what
we need. Thus, the budget to build our project is realisti-
cally lower than what is listed. We have purchased addi-
tional batteries in case they die during demo day as well.

8.4 Risk Management

8.4.1 Hardware

The most significant risk in hardware was getting the
dealer to only deal one card at a time more than 95% of
the time, and the rotation of the chassis being accurate
throughout a whole game of UNO. For the dealer, since
we are dealing from the bottom, we had to make sure the
bottom roller has enough friction to grab a card but also
make sure the card above it is not caught together. Based
on some experimentation, we figured out that the amount
of pressure from the top and the opening size for the card
to leave were the most important parts. We purchased 3D
print filament to use with our 3D printer and improved the
accuracy of the card dealer over many design iterations un-
til we finally got a design that achieved our target accuracy.
We also changed the design of the dealer to make it quicker
to iterate on, since we only had to replace a small part of
the dealer. We also added an IR sensor to detect when a
card is not dealt successfully. This means that even if an
error occurs, we do not corrupt the state of the machine,
and we can have a human intervene to fix the dealer safely.

To mitigate the risk around chassis rotation error, we
lock the stepper motor even when it is not in use. This
improves our rotation accuracy at the expense of power as
we draw the full stall current. It is also relatively easy to
fix any deviations in the rotation as we can manually turn
the machine to face the correct player.

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 10

8.4.2 Software

One of the biggest sources of risk in the software sub-
system was the card classification algorithm. A low accu-
racy may have actually downgraded the UNO experience,
rather than upgrade it. Throughout the dataset collection
and training process, we maintained a medium-sized list
of potential ideas for improving accuracy. One of these
ideas was adding more preprocessing to the pipeline. As it
stands, the images are sent directly into the classification
model(s) with no preprocessing. If there had been diffi-
culties with achieving high enough accuracies, we were al-
ready exploring contour algorithms to cut the card symbols
out of the image for much more straight-forward classifica-
tion. Additionally, we had plans to upgrade our model to a
transformer-based model, which have recently proven very
effective in image classification contexts. Continually gen-
erating new ideas for worst-case scenarios while developing
our main algorithm helped to mitigate the risk of any fail-
ures or underperformances of our primary ideas.

Another source of risk was the switch to an asyn-
chronous model. To mitigate risk, we kept this change on
a separate branch from the main branch, where our func-
tional synchronous model lived. The main point of the
asynchronous model was to be able to process request at
any time, even while waiting for user input. If the asyn-
chronous approach had failed, we had backup plans to sup-
port asynchronous state corrections at the end of each turn.
This would have slightly harmed the experience, but it
would have been functional. Having a mostly-implemented
backup system on a separate branch made it much easier
and safer to take risks with a new software model.

9 ETHICAL ISSUES

If our product were to be widely adopted in use for UNO
tournaments, there are a few security concerns associated
with the device. Firstly, if someone were able to hijack the
system, they could intercept the score calculation, and a
round winner would get fewer points than they deserved.
This would require that someone manually count the cards
to double-check validity, but of course, this defeats the pur-
pose of counting the cards in the first place. Also, a person
hijacking the communication between the game state and
the website could trick the system into thinking they are
a moderator. Moderators are able to see all of the oppo-
nents’ cards, instead of just their own. They could then, in
theory, pass this extra information along to someone they
are helping in the tournament. Most of the UNO tourna-
ments have stakes involved, making this a larger issue. To
add to the security concerns, an adversary could hijack the
cameras of machines in households. While the cameras are
not placed to give out a lot of information except the cards,
there still exists a concern about privacy.

Another possible issue is the reliance on machine learn-
ing. While we have mitigation methodologies and ways
to fix classification failures, this could still cause disagree-

ments among players. Also, it not only decreases play-
ers’ trust in the machine to accurately track the game, but
it could also lead to confusion on whether someone has
cheated or the machine has made a mistake. These col-
lectively could reduce the quality of the experience from a
family game night all the way to a tournament with high
stakes.

10 RELATED WORK

Previously in capstone, team PokerCam created a full
poker game tracker. They built a custom cardshoe that
uses a camera and machine learning to identify everyone’s
hand. We have realized that UNO, which is one of the
most popular card games with a competitive scene, doesn’t
have a similar system. Also, there are many automatic
card dealers that deal cards for people, but in UNO, the
direction of play constantly changes, making it hard to
use traditional automatic card dealers. Merging these two
ideas, we wanted to build a machine that has an UNO
game tracker with automatic card dealing. This will as-
sist dealers in tournaments and promote a more enjoyable
experience when playing casually. Watching videos online
about automatic card dealing and shuffling provided us a
general idea of how we could deal cards from the bottom[5]
and rotate the chassis[6].

11 SUMMARY

Overall, we successfully created a novel, engaging, and
innovative way to play the game of UNO. From casual
family gatherings to intense tournament settings, UNO-
matic provides seamless control-flow handling for all levels
of players. Our system exceeded the majority of our design
requirements. This includes an incredibly accurate card
classifier, a reliable card dealer, an engaging multi-purpose
website, and perfect control-flow and state management.

Some places for improvement were the device rotation
accuracy and the card dealing latency. Although these
did not quite meet the design requirements, they still are
within our user requirements. The rotation accuracy prob-
lem seems to stem from the low motor quality and motor
wear over time. This can be fixed by implementing sensors
that provide a feedback mechanism to ensure the rotation
is accurate. Also, while the dealing latency is still higher
than our proposed requirement, it doesn’t impact the user
experience negatively since the dealing phase is a short,
one-time cost at the beginning of the game. This is a harder
problem to solve since it involves improving the dealer de-
sign or finding the right material with higher friction that
requires less time to grab and extrude the card.

11.1 Future work

If we were to add features to the hardware side, we
could add another camera/sensor that would face the play-
ers. This would then be used in conjunction with machine

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 11

learning to find the next player as the machine rotates.
Thus, the players could sit in any configuration instead of
being forced to sit in a circle. We could also add a mi-
crophone and speech processing model to listen for UNO
instead of having players press buttons. This would mimic
normal UNO game play better.

As an extension to the software portion of the project,
it would be nice to implement some kind of validation for
the moderator view on the website. Currently, any viewer
can switch to the moderator view, which exposes all play-
ers’ cards. In the future, it would be necessary for tourna-
ment settings to include some kind of password-protected
authentication to enter moderator mode.

11.2 Lessons Learned

One of the most important things we learned was the
importance of design iteration. On both the hardware and
software side, we went through many versions and designs
before we settled on our final product. 3D printing proved
invaluable in quickly producing many different card deal-
ers with slightly different characteristics. On the software
side, we did an almost full system rewrite to accommodate
the asynchronous execution model. However, we were able
to reuse a lot of code from the previous iteration which
helped a lot in migrating quickly. The modular design of
our software from the beginning made it easier to do even a
dramatic architecture change like the one we did. Another
lesson we learned is the difficulty of making trade-offs. Sev-
eral times we came to a crossroads which forced us to sac-
rifice in one area to meet the needs in another. Moving
to the async execution model was a large engineering effort
cost, but allowed us to implement many of the features that
ended up in our final design. Also, for chassis rotation, we
had to sacrifice battery life in order to gain rotation accu-
racy, which was an important decision to make.

Glossary of Acronyms

• mAh - milli Amp hours

• RPI – Raspberry Pi

• Wh - Watt hours

• IO - Input Output

References

[1] Wikipedia. Uno (card game). 2022. url: https://en.
wikipedia.org/wiki/Uno_(card_game).

[2] VeeFriends. Announcing the Official UNO™ Tourna-
ment at VeeCon 2023. 2023. url: https://blog.
veefriends . com / announcing - the - official -

uno- %EF%B8%8F- tournament- at- veecon- 2023-

bcc19ec9e6db.

[3] Bulldogcastors. Castor wheels Roll Resistance.
https://www.bulldogcastors.co.uk/blog/castor-
wheels-roll-resistance/. 2/29/2024. 2016.

[4] Dave Lippert and Jeff Spektor. Calculating proper
rolling resistance: A safer move for material handling.
https://www.plantengineering.com/articles/calculating-
proper-rolling-resistance-a-safer-move-for-material-
handling/.

[5] 3DprintedLife. Rigged Card Sorting Machine - AL-
WAYS Get The Hand You Want! 2020. url: https:
//www.youtube.com/watch?v=eMTXyl7tPEk&ab_

channel=3DprintedLife.

[6] Mr Innovative. Diy Arduino based card dealing ma-
chine. 2021. url: https://www.youtube.com/watch?
v=dx9-wwSQbUE&t=176s&ab_channel=MrInnovative.

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 12

Figure 7: Compiled Tests Results

Table 1: Bill of materials

Description Manufacturer Quantity Cost Total
Small breadboards Amazon 1 $10.00 $10.00
Stepper Motor 1 Amazon 1 $9.00 $9.00
Stepper Motor 1 (replacement) Amazon 1 $9.00 $9.00
Stepper Motor 2 Amazon 1 $18.00 $18.00
Stepper Motor 3 Amazon 1 $13.00 $13.00
Continuous Servo Amazon 1 $25.00 $25.00
Voltage Converter Amazon 1 $20.00 $20.00
9V Rechargeable Batteries Amazon 1 $23.00 $23.00
RPI screw terminal block Amazon 1 $20.00 $20.00
Battery 12v 3000mAh Amazon 2 $26.00 $52.00
Battery 12v 3000mAh (extra) Amazon 2 $26.00 $52.00
9V Battery to DC adapter Amazon 1 $6.00 $6.00
12V DC Motor Amazon 1 $9.00 $9.00
3D Printer Filament Amazon 1 $19.00 $19.00
Rubber bands Amazon 1 $7.50 $7.50
Wheels Amazon 1 $8.00 $8.00
Screws Amazon 1 $17.00 $17.00
18 AWG Wire Amazon 1 $12.00 $12.00
Bearing Amazon 1 $9.00 $9.00
Axle Amazon 1 $6.50 $6.50
White LED backlight 1 Amazon 1 $7.00 $7.00
White LED backlight 2 Amazon 1 $7.50 $7.50
Adafruit Motor Shield Digikey 2 $20.00 $40.00
RPI wide angle camera Digikey 1 $35.00 $35.00
Wooden boards Tech Spark 6 $3.00 $18.00
Camera adapter - 200mm Digikey 2 $1.00 $2.00
Camera adapter - 300mm Digikey 2 $2.00 $4.00
Raspberry Pi 5 Inventory 1 $0.00 $0.00
RPI wide angle camera Inventory 1 $0.00 $0.00
Arduino Uno Thomas Kang 1 $0.00 $0.00
Grand Total $458.50

18-500 Final Project Report: Team D4 UNOmatic 5/4/2024 13

F
ig
u
re

8
:
G
a
n
tt

C
h
a
rt

