
1
18-500 Final Report: IntelliStorage, May 4th, 2024

IntelliStorage
Jason Kim, Siyuan Li, Yuma Matsuoka

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract— For individuals who do not have enough time to
organize their food storage space at home. While many
commercial grocery-tracking systems exist, many require a
subscription service, or are compatible with one store (Costco,
Whole Foods). On top of this, rarely do these systems have a
built-in system of keeping track of expiration dates.
IntelliStorage provides a unified, convenient system that keeps
track of groceries at home and suggests items to use before their
expiration date.

Index Terms— Optical Character Recognition, Universal
Product Code Barcode, Distributed Consensus, Image
Acquisition, openCV, pyTesseract, Raspberry Pi, RAID, Message
Passing, User Interface

I. INTRODUCTION

In this fast-paced world, efficient management of household
tasks remains a significant challenge, particularly when it
comes to keeping track of groceries—a task that is both
time-consuming and often overlooked until it results in waste.
IntelliStorage is an innovative solution designed to simplify
the way individuals and families manage their groceries.
Intellistorage aims to provide a convenient method for
organizing and monitoring groceries at home, specifically
targeting those who struggle with time management and
keeping track of their groceries.

Intellistorage comprises a main module and several scanner
modules, all interconnected via Wi-Fi. This setup allows users
to scan items before storing them with important information,
including product details and expiration dates, displayed on
screen. This not only streamlines the organization process but
also significantly reduces food waste by alerting users to
upcoming expirations. Other technologies such as the Costco
and Whole Foods application offer partial solutions by giving
a list of items purchased. These technologies however fail to
consider that customers shop at multiple stores. They also fail
to consider the fact that these items are all made unique and
have different expiration dates. IntelliStorage is able to fill
these voids with an universal tracking tool for items and their
expiration dates.

Our project's goals are to minimize the time and effort
required for grocery management and to reduce food waste by
providing timely reminders about expiration dates. Ultimately,
IntelliStorage is not just about organizing groceries, it's about
organizing lives, one scan at a time.

I. USE-CASE REQUIREMENTS

The following use-case requirements have been set to

ensure our project meets the needs of its users. These
requirements are necessary for delivering a seamless
experience for the user.

A. Item Registration & Tracking
All modules within the IntelliStorage system must avoid the

need for extensive wiring. This ensures ease of installation and
flexibility in module placement around the home.

B. Rapid Information Processing
The system must be capable of storing information within

the time window of scanning two items. This efficiency is
crucial for users who are looking to save time while
organizing their groceries.

C. Fast Display Response
Upon scanning, the item's information and expiration date

must be displayed fast. This quick feedback is essential for a
smooth and user-friendly experience, allowing for immediate
action or corrections if necessary.

D. Daily Expiration Alerts
IntelliStorage must generate and provide users with a daily

report of items nearing their expiration dates. This feature is
vital for reducing food waste and ensuring users can consume
or utilize products before they spoil.

E. Quick Setup
The initial setup process for the IntelliStorage system,

including the main module and any scanner modules, should
not exceed 5 minutes. This requirement addresses the user's
need for a solution that is not only effective but also easy to
implement.

F. Scanning
The scanner modules must have a wide scanning angle and

a wide scanning distance range. These specifications ensure
that users can easily scan items of various sizes and shapes
without having to specially accommodate the item.

G. Touch Screen Interface
The display must be large enough to ensure the readability

of displayed information. It must be touchscreen as other input
devices, such as a keyboard or mouse, would take up too much
space and inconvenience the user.

II. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our design did not have any architectural changes from the
design report. In order to meet the user requirements and
operate efficiently, our system will consist of scanner modules

2
18-500 Final Report: IntelliStorage, May 4th, 2024

and a central module communicating with each other through
Wi-Fi as depicted in Fig. 1.
The central module forms the core of IntelliStorage,

equipped with a computational unit and a touchscreen display.
Its primary function is to manage and store the database,
maintaining it with the new data sent from scanner modules.
This module will be responsible for analyzing the stored data
to generate the daily recommendation of items to use.
Each scanner module has its computational unit and

touchscreen display. In order to scan items in, it is also
equipped with a barcode scanner to capture the barcode, a
camera to capture the expiration date, and a temperature
sensor to categorize the storage space’s temperature. The
barcode scanner and camera will be integrated together to
efficiently capture both pieces of data at once. The
temperature sensor will categorize the storage space as hot or
cold as item health and expiration date are highly correlated
with ambient temperature.
Fig. 2. breaks down the communication of data happening

intra and inter modules. At the front-end of the system, item
data will be parsed and stored locally on the nodes. A database
look-up will happen for the item code to find out its name, and
an image will acquire the expiration date. This set of data will
also be displayed for the user to view and confirm. If the data
looks wrong, the user also has the power to edit it. This data
will be communicated to the back-end of the system, where
the central computer will store it in a database. It will also take
the aggregate of the item data and create a priority list of what
items should be used. Many factors will be considered in this
algorithm, from the purchase date, expiration date, to even the
temperature of the storage unit.

Fig. 1. Overall System Setup

Fig. 2. Block Diagram of Data Flow

I. DESIGN REQUIREMENTS

A. Item Registration & Tracking
Our primary objective was to ensure precise data

registration for users. We determined that the optimal scanning
conditions included a 30-degree angle and a scanning distance
of 15-25 cm, based on manual tests measuring typical barcode
scanning distances and angles. Furthermore, we aimed for data
acquisition accuracy of 98% from the barcode scanner and
90% from the camera. We decided on 90% accuracy because
the state-of-the-art models that already exist for OCR (optical
character recognition) perform with around 90-98% accuracy.
Given the project’s scope, achieving this minimum threshold
could result in approximately 10% of items needing manual
user correction.
Additionally, we aim for the data to be read and registered

by the system within 4 seconds. This timeframe is based on
the notion that users would want to see the item registered
before they are ready to scan a new item. We simulated this
motion and timed the duration it took to scan and grab another
item, which was on average 4 seconds. This would also allow
the user to correct any mistakes in input before the new item
was grabbed.

B. Scaling
To fulfill our use case, we required our system to be

scalable for each user’s needs. By taking a survey of our
member’s pantries, we decided that roughly 40 unique items
were in our pantry, which resulted in our requirement. As we
are busy students with not enough time, this would fit the use
case and our consumption needs are baseline. Additionally, we
on average had 3 storage spaces per house, which led to the
number of scanner module requirements. In order to have
perceived zero lag between synchronizing data scanned on a
local module with another module, we want at maximum 10
seconds for data synchronization. This is due to roughly the
time it takes minimum to get from one storage space to
another in a house.
Additionally, we do not want scanned data items to be lost.

3
18-500 Final Report: IntelliStorage, May 4th, 2024

Regardless of a scanner module or the central computer going
down, we would like the system to preserve the data scanned
for use. It would be inconvenient and would deter the user
from using the system if all items had to be scanned after a
module got disconnected. This is why one of the design
requirements along with scaling is the preservation of data –
data integrity and consistency between the modules.

C. Usability
Lastly, we wanted data to be stored and accessed easily for

the user every time. We want to display item information
within 500ms of the user’s query, regardless of which machine
it was first scanned on. Any longer would be substantial lag
for multiple queries, frustrating the user and deterring them
from the platform.

We also want a daily report of items to use, which can be
customized by the user’s preference. As something such as a
recommendation is subjective, quantifying this as a
requirement is quite difficult. However, we will want the
algorithm to perform as expected in the edge case – if a
feature is the only feature to be considered, the algorithm
should return items in order with respect to that feature value,
and that value only.
Additionally, we would like the setup of the system to not be

a hurdle for the user. We thought that qualitatively, 5 minutes
would allow for system complexity while not being too high
of a hurdle for the user to use.

These design requirements are summarized in Fig. 3.

Requirement A
(Item Registration
& Tracking)

Requirement B
(Scaling)

Requirement C
(Usability)

>90% read-in
accuracy

40 items per
storage space

Store information
within 1 sec of
scanning

30 degree
scanning angle

3 storage spaces
per network

Display info
within 500 ms

15-25 cm
scanning distance

10 sec
Synchronization

Daily report of
expiring item

4 sec registration
time

Data integrity 5 min setup node

Fig. 3. Summary of the Design Requirements

III. DESIGN TRADE STUDIES

A. Camera Selection
In our process of selecting a camera, we looked for one that

was specialized at auto-focusing on medium-distance targets.
This requirement stemmed off of some real-life testing as none
of us had experience with camera technology. To better
understand, we borrowed a few cameras from the inventory
such as the TedGem 1080P WebCam. Although this camera

worked for previous OCR projects [1], we realized soon
enough that this did not fit our use case. For our 15-25 cm
scanning distance use case, the captured images were blurry.
As seen in Fig. 4, the characters were not detected even when
put under Google Lens, a industry-level OCR algorithm as
seen in [2]. We realized the cause was due to the camera’s
focus distance being 45cm, farther away than the use-case
requirement. This was expected as it was a webcam, which is
made to focus in on large details such as a face. Consequently,
we didn’t want a fixed focus camera as this would require the
user to put the scanning object at a fixed distance from the
camera. This would inhibit the barcode scanning process as
different barcode sizes require different scanning distances.

Fig. 4. OCR Distance test with TedGem 1080P WebCam.
In order to meet the accessibility requirement, the camera is

also very easy to install and attach to the module. Many
alternatives such as the ArduCam line of products required
RPi knowledge to assemble, something we could not
guarantee the user had. It also needs to be inexpensive, as
lowering the cost would lower the hurdle to entry for users.
Therefore we decided that a connection of a USB would be the
lowest barrier, as hardware installation would be simply
inserting the USB into the port of the Raspberry Pi (RPi).

Ultimately, we settled on the NexiGo N60 1080P WebCam.
Unlike the TedGem WebCam, it was able to auto-focus on
targets reasonably, as seen in Fig. 5. Notably, Google Lens
OCR was able to detect characters correctly in two of the three
cases as well [2]. This, coupled with the low cost made it a
logical choice for satisfying our requirements (Fig. 12).

Fig. 5. OCR Distance test with NexiGo N60 1080P WebCam.

B. Data Redundancy Type Selection
In our process to guarantee data integrity of the system, we

looked for a system that would allow for multiple node
failures while guaranteeing a shared state across the multiple

4
18-500 Final Report: IntelliStorage, May 4th, 2024

nodes. We would want a system that agrees on a shared state
as the state of all the storage space’s items should be agreed
upon. Even when one of the scanner modules fails, we would
want this state to persist as it contains all of the scanned data.
Users will be deterred if all the items in their house need to be
scanned when one node gets disconnected from power. We
also want restarted nodes to agree with this pre-established
consensus.

An initial solution was having a central computer with
sections of disk and memory partitioned off for each scanner
module’s items. If the system worked perfectly, it should
hypothetically be tolerant to scanner module failures as the
global state can be passed to the alive scanner module as the
agreed state. However, if the central module fails and stays
down, we cannot guarantee that an item registered on scanner
A will have corrupt data when scanned on scanner B.

In order to mitigate loss from the central computer failing,
we have decided to store parity blocks on each of the scanner
modules along with each data block, similar to a RAID-5
setup. This is where data is striped across all blocks and a
parity block for each row of blocks is scattered. A parity block
aggregates N blocks across the N scanner modules in a fashion
that allows a block to be recovered given the N-1 other
blocks. This process of creating and retrieving blocks from the
parity block is called erasure coding.
If a node fails and one of the data blocks is effectively gone,

we can recover it by erasure coding all the other blocks and
the parity. This setup alone may suggest that a block will not
be recovered if two nodes go down. However, with the
existence of the central computer being one of the nodes, we
can always guarantee that we will have enough updated blocks
to retrieve the missing block. In summary, this setup is akin to
a RAID-5 setup across each of the scanner nodes with a
RAID-0 setup on the central computer.

C. Data Consistency Method
In order to keep the data on each of these modules to be

consistent, we need a data consistency algorithm. Through
discussion, it was decided that the RAFT consensus algorithm
will be employed. In this algorithm developed by Diego
Ongaro and John Ousterhout, a leader node decides a
consensus for the follower nodes [3]. If a leader node goes
down, then an election is held to elect a new leader. Data is
sent on messages across nodes on an epochTimer interval,
with the data field being empty if there's nothing as a heartbeat
message.
This algorithm fits our case as we are able to customize

many facets of the algorithm, such as the timer for message
broadcasts. This is important as our use case differs from the
normal case of distributed systems where there is constantly
non-negligible workload. In this use-case, there are times
when no items are scanned (no new data generated) and times
when items are rapidly scanned into a storage space.
In order to minimize unnecessary actions while

guaranteeing consistency, we have planned to customize the
epochTimer to be 2 seconds during a scanning window and

1 minute otherwise. Due to the nature of the application,
scanning modules will most likely be active for less than an
hour per day. This means that during the remaining time, there
is not much updated data to be communicated, making a setup
with the epoch timer being 2 seconds to send 41,400 messages
over the inactive 23 hours (1). This is meaningless as even if a
node dies, a re-election and a leader needed for appending to
the shared state is not needed immediately. This is unnecessary
computation and wastes power. By reducing this threshold
down to 1 minute, we are able to reduce this message count to
1,380, a far more reasonable number (1). Re-election in this
case would only take 5 minutes after a node goes down, which
is fine as there is no urgency when the system is not being
used. If the system is needed, a scanner will be activated and
the timer will be set to 2 seconds, reducing this time as well.
Such customizations would not be possible on another
distributed consensus algorithm such as Paxos or Byzantine
Fault Tolerance. These other distributed consensus algorithms,
especially Paxos also allow gaps in their commit logs, which
would make it very difficult to debug correctly. Raft
guarantees continuity on the logs, which would make it easier
to trace through.

(1)𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑆𝑒𝑛𝑡 = (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑎𝑡𝑒) * (𝑡𝑖𝑚𝑒)

Another benefit of using RAFT is that it is very
programmer-friendly, creating logs on scanner modules for
debugging. This allows us to efficiently allocate time to other
components of the system.

D. Database Format
There are two different formats for a database that could be

used – a relational database and a key-value store. A relational
database such as SQL would benefit from being able to easily
find relations in a database, a positive for the recommendation
algorithm. However, it is very hard to replicate a relational
database across multiple modules. This is because the relations
across sets of data need to be stored as well, complicating the
distributed consensus protocol [4]. On the other hand, a
key-value store is what the name implies, it stores a key and
value. Although computation is required to find relations
between the values or the keys, it offers an easier method of
replication. Since the stored data is only keys and values,
simply sending these values to other modules would suffice
for establishing a shared state and dataset. Since data
communication and state replication happens more often than
an aggregation attempt for the recommendation algorithm, we
decided to have a key-value store instead.

E. Camera Flashing Interval
The flashing interval for the camera was initially at 0.5

seconds. This was a pre-set value, as we believed during the
planning phase that this would be sufficient. Through
comprehensive testing, we realized that this interval could be
reduced up to 0.1 seconds, with a tradeoff. Although the
camera was able to capture more images with this reduced
shutter speed, due to the delay of the OCR having to process

5
18-500 Final Report: IntelliStorage, May 4th, 2024

many more pictures, the faster speed was not effective.
Therefore we chose an interval which was in between the two
points and decided on 0.3 seconds, which took images every
0.3 seconds. This was also decided due to the design
requirement, where we would like the time between scans to
be less than 4 seconds. Having a flashing rate of 0.1 seconds
resulted in processing time of minutes, and 0.5 seconds gave
blurry pictures that resulted in no confidence for many of the
items we tried to scan in. 0.3 seconds gave a good accuracy
while having processing time around 3 seconds. This also
ensured that the image buffer wasn’t overloaded and
overheated the computer, while also allowing for better quality
of images and image processing.

IV. SYSTEM IMPLEMENTATION

A. Integrated Scanner Module

Fig. 6. Complete Integrated Scanner Module

Fig. 6. is the picture of the complete scanner module, which
contains the barcode scanner, camera, temperature sensor, and
the Raspberry Pi (RPi). The barcode scanner will act as the
trigger for both the barcode and the camera. Although the
frames captured by the camera around the trigger time will be
used to find the expiration date, the camera will be capturing
images continuously. Specifically, the frames captured by the
camera will be stored in a 40 picture buffer that will
continually be updated first-in first-out (FIFO) style. When the
barcode scanner acquires a barcode, this buffer will be saved
and OCR will be performed on each of these images. To
improve the processing time, each picture will be spun off into
its own thread for OCR processing. These results will be
pooled together and the image with the highest confidence
value will be used as the overall expiration date.
The mounted camera is an Arducam 4K 8MP IMX219

camera, which has the following specifications.
● 3280 x 2464 pixel resolution
● Diagonal=72 / Horizontal=60 / Vertical=47° FOV
● Focus Range = 40mm - ∞

Notably, this camera has a relatively high resolution with an
optimal close-range focus ability. This camera is different
from the NexiGo Webcam, which was mentioned in our
design report and was planned to use. After testing, we found
that its smallest focus distance was too large for our design. It

could only focus at around 200mm or further, and it gave a
photo without enough clarity for small texts. So we switched
to the Arducam, which gives the smallest focus distance of
40mm, and it perfectly fits our needs.
The camera faces the same direction as the barcode scanner.

The scanner will notify the user if it has scanned the barcode,
and the expiration date as well with a different tone. It will be
ensured that the user will not have any problems or discomfort
in getting all of the information necessary for each scan. The
RPi will be connected to a power source, and will not be on
the scanner itself. This is to limit the movement of the
computational unit and thus possible ways it could fail from
damage. It is to be mounted on a wall, where the user will be
able to interact with it via the touchscreen display. The
temperature humidity sensor will be connected to the RPi via
GPIO pins and will measure the temperature and humidity of
the storage space. In order for the best accuracy, the
temperature sensor should either be in the storage space or in
close proximity.

A simple and easy to use user interface (UI) is provided,
where the user will be able to see what they have scanned,
what the expiration date of the item is, and check if correct
information has been entered. If the user sees that incorrect
information has been entered, they can manually overwrite the
necessary information with the touchscreen. The user is also
able to see all of the items that are in the storage space, and
decide which item to use. When the user wants to take an item
out of the storage space, the user simply has to scan the item
and the corresponding information will be updated.

B. Barcode and Temperature Humidity Sensors

Fig. 7. Adafruit BME280 sensor [5]
The barcode scanner will read and output a serial number,

which is not useful by itself. This serial number will be looked
up in a large commercial produce item database to understand
what it actually is. The database we will be using is the
upcitemdb, which is an universal product code (UPC) item
database. Every time an item is scanned, its serial code will be
looked up in the upcitemdb and its result will be stored and
displayed for the user to confirm. If the item is not found in

6
18-500 Final Report: IntelliStorage, May 4th, 2024

this database, we will still allow the user to manually override
and manually input the item details.
The temperature humidity sensor constantly monitors the
environment of the storage system. The sensor’s readings can
help ensure that the storage conditions remain within the safe
range for the products stored because temperature is a critical
factor in preserving the condition of perishable goods. If the
temperature or humidity is too high or too low for the item, the
system will let the user know so that the user can adjust
accordingly.

C. Optical Character Recognition Model

Fig. 8. OCR Process Flow [6]
The optical character recognition model is what identifies

and logs all of the expiration dates from the item to the
database. It is of most importance that the model is accurate
and returns the output promptly. The process is divided into
three stages: Pre-processing, OCR engine, and
Post-processing. For pre-processing, libraries including
Numpy and OpenCV are used. The pre-processing goal makes
the input image clear and makes the dates as distinguishable as
possible. In order to pre-process these inputs, we are
employing multiple techniques, including

1. Resizing the image
2. Enhancing the image contrast
3. Adjusting color to grayscale
4. Analyzing image contours to filter out non-text

regions

The OCR engine is the core component that interprets the
visual information of the text from the given pre-processed
images. We are utilizing libraries including Pytesseract, which
is a wrapper for Google’s Tesseract-OCR Engine, Tensorflow
and OpenCV. The OCR engine is able to analyze the structure
of the text and recognize the characters. In order to improve
the engine’s performance, we are training it on specific fonts
and formats that are often used for the expiration dates of
products. Lastly for post-processing, the expiration date and
confidence score are exported as these two pieces of
information are crucial for determining the final value of the
expiration date.

D. Database
The database on the central computer is a key-value store

with the key being the item barcode and the value representing
the captured image, expiration date, scanning date, and other
important information. This is stored on the disk of the RPi 5
central computer. The scope of the database is extended
further as each of the scanner modules stores a partition of the
data. Updated data is communicated with the central database
as well as the other scanner modules as each of the scanner
modules also contains a parity block as seen in Fig. 9. This
parity block aggregates the data being stored on the other
scanners and is used to recover data if another node goes
down.

With the addition of the temperature sensor, we packed
more information in the initialization phase of the Scanner
Modules. On startup, the scanner module will read the
temperature and humidity data from the sensor and will send it
to the central module. The central module will keep track of
these values across the scanner modules and will note which
one has the highest and lowest temperature values. When
items are scanned in, we assume that fresh produce does not
have a barcode. For these manual override cases, the node it is
scanned on will check its temperature and see if it is the
lowest value out of all the modules. If it isn't the lowest, it will
ask the user to bring it to the lowest temperature module, and
will automatically register it on that scanner.

Fig. 9. Module Data Broadcasting Mechanism

E. Recommendation Algorithm
The recommendation algorithm takes in the key-value store

and outputs an ordered list of items to use. This algorithm is
implemented in Python, with weights for each of the
numerical features in the database. These features include the
initial scan date, expiration date, and temperature of the
storage unit. To adapt to the user’s needs, these weights are
able to be controlled by a slider with values from 0 to 100,
which characterizes how important each one is. 0 indicates to
not consider that feature entirely while 100 indicates that the
sorting should happen solely based on this feature. The
blending of this data normalizes the input features and weights
them with their respective values to get the item’s
recommendation heuristic value (2).

In order to reduce latency of computing these values,

7
18-500 Final Report: IntelliStorage, May 4th, 2024

differential sorts were performed periodically, every minute.
This resulted in partitions of items that were sorted, which
allowed the system to not have to sort the entire list at a given
request. This reduced the computation time that needed to be
put upfront that a user experienced when pressing the
recommendation button.

(2)𝐻(𝑖𝑡𝑒𝑚) =
𝑓∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∑ 𝑤
𝑓
𝑝(𝑓)

the scaled value of a feature𝑝(𝑓) ∈ [0, 1] , 𝑓
the user input weight for a feature𝑤

𝑓
, 𝑓

Note that
𝑓=𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∑ 𝑤
𝑓
 = 1

V. TEST, VERIFICATION AND VALIDATION

Fig. 10 shows a summary of the results from the testing
conducted, along with possible cause if a metric was not met.

A. Results for Item Registration & Tracking
Our use case was to scan items of all shapes and sizes into a

storage space, so we tried to replicate this test in order to test
the registration and tracking requirement. In order to
standardize a testing metric though, we created fake items
with cardboard boxes and printed expiration date & barcode
labels to replicate real life items. The item contents were taken
inspiration from our own pantry’s contents.
For the read-in accuracy sub-requirement, we replicated the

real use case by having team members try to scan items in
naturally, which turned out to be around 10cm at a 0 degree
angle to the normal of the item plane. This test was performed
60 times, 30 times per person to replicate different user’s
styles to judge the OCR and barcode recognition accuracy.
For this requirement, we were not able to meet the goal of

90% read-in accuracy, as we were only able to accurately scan
in 44 of the 60 items, resulting in 73%. We believe this was
due to the form factor of the product, where the camera was
mounted on top of the barcode scanner. Even if a hand is held
steadily, it might be oscillating very slightly which results in a
motion blur. With the camera’s focusing time, this resulted in
streaks in the image, making it very difficult for the items to
be detected. This often resulted in batches of camera photos
not having any detected expiration date, which resulted in an
overall confidence of -1. The expiration date detection was the
bottleneck for the overall accuracy of the system. Notably, all
60/60 items had a correct barcode read-in and item lookup.
We tested the remainder of the sub-requirements by

performing this test at the boundary conditions noted for the
60 items. For example, we put a protractor up and scanned
items in at an angle ranging from 0 to 45 degrees. We
measured the distance from the scanner to the item and
scanned items at distances from 5 cm to 30 cm. We tried to
overwhelm the system by scanning items in consecutively,
rapidly at intervals of 6 seconds all the way down to 3
seconds. A requirement was met if the barcode and expiration

date acquisition accuracy was not lower than the first test.
These boundary conditions were to allow the user to scan
items in various different positions, not constraining the user.
For this requirement, we were able to hit all the goals. For

scanning angle, we were able to get up to 35 degrees from the
normal of the item with a scan-in accuracy of above 73%. For
scanning distance, we were surprised to see that a lower
distance bound of 5 cm was achieved, and the upper bound
was also extended by 5 cm to a total of 30 cm. For scanning
time, we were able to achieve 3 seconds on average for each
scan while maintaining the scan-in accuracy, with the majority
of the time taken being the OCR algorithm figuring out the
expiration date.

B. Results for Scaling
Our use case was to have one module per storage space in

the house, so we wanted to verify that this system could be
scaled up. This section mainly tested the main module to make
sure that data consensus and message passing did not inhibit
the use case.
In order to test these sub-requirements, we set up three

scanner modules and one central module. We scaled up the
item scanning test across these modules and timing code was
inserted to figure out the latencies of communication. Data
consistency was monitored in a similar fashion. The modules
were also moved around the room to replicate the real
distances between these modules.
All the metrics for this test were able to be achieved. We

were able to get 100 items into each scanner module without
slowing down the message passing, which was far beyond the
40 item limit that we set out to achieve. We also noted that the
biggest part of the decline in performance past this point was
the heavy image files attached to the message, which was the
best confidence expiration date picture. We were able to have
this scanning setup work for the three storage spaces in a
home, with no data being lost in between. This meant that data
consistency was achieved via the central module, which had
an append-only log of the items being put in. Additionally, we
were able to display items scanned on other modules within
500ms of the item initially being scanned in on another
module. This was able to beat our use case target by a large
margin, again due to the broadcasting timing of the modules.

C. Results for Usability
Since this product revolves around the user being able to

easily use the system, we wanted to make sure the interface
latency did not affect the user. In order to test this requirement,
we built on the test that was conducted for item registration.
For the first sub-requirement, we inserted timing code to
figure out how long it took for data to be stored in the overall
system. Thes second sub-requirement was tested by
interacting with the user interface and seeing how long it took
for item recommendations to appear on this screen. We tested
this metric with very low scanned item counts (1, 10) as well
as high item scan counts (30, 40). The time requirement for
setting up the node was tested at the very start before
performing the scaling tests. This was tested by having a

8
18-500 Final Report: IntelliStorage, May 4th, 2024

team-member follow instructions to set up a module while
timing this action.
We were able to achieve all the metrics in this section as

well. Information was stored very fast, at on average 100ms
after the initial scan OCR/UPC database lookups. The display
information was also able to be displayed under 500ms, which

mainly was achieved by performing differential sorts
periodically, so that the recommendation result does not have
to be recomputed fully for any call. The daily report was
successfully fired off, with the UI displaying it at system clock
time of 8AM. The setup time requirement was also met, as all
three nodes were able to be set up under the 5 minute time
limit.

Requirement #1
(Item Registration & Tracking)

Requirement #2
(Scaling)

Requirement #3
(Ease/Accessibility of Use)

Target: >90% read-in accuracy
Result: 73% accuracy
Cause: Blurry saturated photos from shaky
hand

Target: 40 items per storage space
Result: >100 items

Target: Store information within 1 sec of
scanning
Result: 100ms

Target: 30 degree scanning angle
Result: max 35 degrees

Target: 3 storage spaces per network
Result: Achieved

Target: Display info within 500 ms
Result: Achieved

Target: 15-25 cm scanning distance
Actual: 5-30 cm

Target: 10 sec Synchronization
Result: 500ms

Target: Daily report of expiring item
Result: Achieved

Target: 4 sec registration time
Actual: 3 sec

Target: Data consistency
Result: Achieved

Target: <5 min setup node
Result: 4 min

Legend: Green is meeting the requirement, Red is failing to meet the requirement
Fig. 10. Testing & Verification Result Summary

VI. PROJECT MANAGEMENT

A. Schedule
The Gantt Chart attached as Fig. 11 lays out the task division
and schedule for this project. One notable change has been the
addition of the temperature sensor, which has cut down our
slack and integration time. Otherwise, the schedule is
relatively similar compared to previous iterations.

B. Team Member Responsibilities
There were three primary responsibilities for this project–

image acquisition and processing, barcode acquisition and
processing, and central software and database development.
Siyuan was responsible for the barcode acquisition. Software
integration was found to be time consuming, which Yuma took
a large part of the responsibility. Jason was responsible for the
image processing, which also took a lot of time to debug and
optimize, and Yuma for the central software and database
portion of the project. As Yuma also had experience in dealing
with computer vision, he also supported Jason in the image
field. Yuma also helped Jason with integrating the camera
module, and provided optimization strategies for image
acquisition and parsing. This included spinning off threads for
each picture to send to the OCR module and writing in FIFO
queues for image buffer freshness. Finally, Yuma and Jason
worked together on the central software and integration
towards the end as all these submodules inherently relied on
the main module.

C. Bill of Materials and Budget
The Bill of Materials and Budget attached as Fig.12 lays out

the materials purchased and their cost. Notably, we had to
purchase temperature sensors as this feature was added, and
we had to buy three more of each module set in order to test
scalability. Our total came out to $536.78, which was still
under the budget cap of $600.

D. Risk Management
The critical risk factors in our design were the ability

to identify and recognize different types of expiration date
labels on items with accuracy above 90%, and developing a
good user interface so that the user can interact with the
module effortlessly. While expiration dates themselves were a
set of numbers, each product had varying locations and
background colors, making it difficult for OCR algorithms to
properly identify them. Additionally, expiration dates came in
various different formats, some with the prefixes “EXP” or
“GOOD BY.” Therefore, we dedicated ample time to
researching, implementing, and testing an optimal OCR
model. Specifically, we researched in depth on how to
pre-process the image before inputting it into the model so that
background colors and text format would have minimal
impact on the accuracy. We also put in time to train the neural
network for our OCR model. Specifically, unifying the date
format as well as the background color have significantly
decreased the number of errors that the OCR engine would
produce. We were also not able to mitigate a few risks, as the

9
18-500 Final Report: IntelliStorage, May 4th, 2024

user interface development took a lot more time than
expected. We had to eventually port some of the features such
as manual overriding onto the terminal interface.

VII. ETHICAL ISSUES
The primary concern is that of item regionality. The current

system relies on the universal product code (UPC) Barcode
item database, which contrary to its name, is not an universal
format. This format mainly is for items originating from the
United States, which means the UPC database only contains
items from the U.S. [7]. The rest of the world uses the
European Article Number (EAN) barcode format which is the
international standard for barcodes, containing thirteen digits.
This stands as a large hurdle as individuals who consume
international products, i.e. that of Japan or China, may not get
the benefit of automatic barcode read-ins. This implies that all
these international items would have to be manually
overridden in the system, which adds time and complexity on
to the user. A possible solution for this issue is cascading the
database calls if an item is not found. For example, if an item
lookup fails in the UPC item database, the EAN database for
Japan can be called, then to Singapore, etc. This would add
scan-in time, but the first database being called could be
customized based on a user’s geographical region or
preference.
Another concern would be privacy. Inherently our system

contains a lot of information about the user, from what
products are bought, when they are bought, to where they are
kept. If any malicious actor were to receive the information,
this might be used to reveal or take advantage of an
individual's dietary habits or health conditions. This concern
can be mitigated in part by implementing good data
encryption. For example, a diffie-hellman key exchange can
happen in the initialization phase as well, which would allow
for all modules to have a shared secret to encrypt messages.
This still does not prevent middle-man attacks, which can be
alleviated by adding a MAC address or another form of
authenticating messages to verify they were sent from a
module in the system.

VIII. RELATED WORK

There are various past projects that have explored similar
topics of OCR and barcode recognition. A previous 18-500
ECE Capstone conducted in Fall 2022 by Group A3, “Where’s
the Barcode.” was a large inspiration for our project [1]. This
project gave us inspiration for the hardware and methods
available to us to capture a clear photo, with text able to be
extracted. Unfortunately, since the use case regarding the
camera distance was different across these two projects
(discussed in section V), we had to find alternative hardware.
Another source of work we have used as inspiration was an

article detailing the OCR process using known libraries such
as OpenCV and Tesseract by Nanonets [6]. It went over the
general process flow and dove into how each step of the
process was handled. It also had some code snippets of

introductory helper functions which would be adapted and
improved based on the specifics of our design.

IX. SUMMARY

Overall, we have demonstrated a solid proof of concept. We
were able to meet most of the requirements set out by the
Design Review, barring the accuracy of the system. This was
in part due to the form factor of the system, where the camera
is very susceptible to perturbations as it is mounted onto the
barcode scanner. This is coupled with the relatively slow
focusing speed of the ArduCam and the limitations of the
OCR algorithm. A few possible improvements if given the
time would be to train the OCR algorithm on more various
expiration dates, buying a ArduCam that has a faster focusing
speed, and possibly having a gyro below the camera to prevent
it from jerking and creating streaks in the acquired images.
This would inevitably be a tradeoff though as more/fancier
components in the system would raise the cost and
consequently the hurdle for a user to acquire the system.
During these fourteen weeks, we have learned a lot about

the real troubles of integration. We learned this the hard way,
as we were stuck with many separate but working components
in the last few weeks, but they were not stringed together. If
we were able to do this again, we would definitely have talked
together about the code we were writing and made function
signatures detailing what exactly would be input and output of
these components.
Another lesson learned is that UI development is hard. All

of us on the team have ample experience with developing
systems on the back-end, but not really how these systems
interact with the user. This resulted in UI development being a
large hurdle. This ranged from learning how UI libraries work,
to implementing hacky refactors to get components to be
updated.
The final important lesson we learned is that we shouldn’t

try to overachieve. We tried to add on more functionalities to
the system, such as the temperature sensor, which might make
the system more impressive and user-friendly. This resulted in
a period where we were trying to integrate a lot of things
without realizing what our MVP was. Keeping sight of what
the MVP is and trying to achieve it before doing anything else
is a very important insight I learned throughout this process.

10
18-500 Final Report: IntelliStorage, May 4th, 2024

GLOSSARY OF ACRONYMS

CV - Computer Vision
EAN - European Article Code
FOV - Field of View
OCR – Optical Character Recognition
RPi – Raspberry Pi
UI - User Interface
UPC - Universal Product Code
USB - Universal Serial Bus

REFERENCES
[1] Lee, Jiyeon , et al. “Where’s the Barcode.” Carnegie Mellon University,

2022, Accessed on Jan 31, 2024, [Online]. Available:
https://course.ece.cmu.edu/~ece500/projects/f22-teama3/

[2] Google, Google Lens, https://lens.google/
[3] Ongaro, Diego, et al. “In Search of an Understandable Consensus

Algorithm.” Stanford University, 2011, Accessed on Feb 28, 2024,
[Online]. Available: https://raft.github.io/raft.pdf

[4] Patterson, David A., et al. "A Case for Redundant Arrays of Inexpensive
Disks (RAID)." Carnegie Mellon University, 1988, Accessed on Feb 13,
2024, [Online]. Available:
https://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf.

[5] Adafruit. “Adafruit BME280 I2C or SPI Temperature Humidity Pressure
Sensor” Adafruit, 2023, Accessed on Feb 27, 2024, [Online]. Available:
https://www.adafruit.com/product/2652

[6] Zelic, Filip, and Anuj Sable. “How to OCR with Tesseract in Python
with Pytesseract and Opencv?” Nanonets, 2023, Accessed on Feb 16,
2024, [Online]. Available: https://nanonets.com/blog/ocr-with-tesseract/.

[7] Scandit. “Types of Barcodes: Choosing the right Barcode” Scandit,
2021, Accessed on April 15, 2024, [Online]. Available:
https://www.scandit.com/resources/guides/types-of-barcodes-choosing-t
he-right-barcode/

https://course.ece.cmu.edu/~ece500/projects/f22-teama3/
https://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf
https://www.adafruit.com/product/2652
https://nanonets.com/blog/ocr-with-tesseract/

11
18-500 Final Report: IntelliStorage, May 4th, 2024

Task 2/5 2/12 2/19 2/26 3/4 3/11 3/18 3/25 4/1 4/8 4/15 4/22 4/29

Preliminary Planning Key

Module Hardware Planning & Purchasing S All F

Preliminary Software Planning P Yuma I

Construction R Jason N

Scanner Module Construction I Siyuan A

Barcode Module Construction N L

Camera Module Construction G

Environment Detect Module Construction

Software Development P

Barcode API Research R

Barcode Module Software Development B E

Environment Detect Module Software R S

CV Method Research E E

Central Database Instantiation A N

CV Integration & Testing K T

Daily Update Report Software Development A

Software Integration T

Inter-Module Communication Testing I

Database Consistency Testing O

System Integration N

Testing & Validation

Field Construction

Scenario Design

Scenario Testing

Slack

Fig. 11. Gantt Chart

12
18-500 Final Report: IntelliStorage, May 4th, 2024

Description # Manufacturer Quantity Cost per Unit Total Cost Notes

NexiGo N60 1080P Webcam NexiGo 1 $29.99 $29.99 Did not use due to design tradeoff

FREENOVE 5 Inch
Touchscreen Monitor FREENOVE 2 $39.90 $79.80

iPistBit 5 Inch Touchscreen
Monitor iPistBit 1 $38.99 $38.99

Recent addition to make more
modules and test scalability

iPistBit 7 Inch Touchscreen
Monitor iPistBit 1 $48.99 $48.99

Recent addition to make more
modules and test scalability

Arducam IMX219 USB
Camera Module Arducam 3 $38.60 $115.80

Recent addition (x2) to make more
modules and test scalability

CanaKit Raspberry Pi 4
Starter Kit CanaKit 1 $109.99 $109.99

Recent addition to make more
modules and test scalability

WoneNice USB Laser
Barcode Scanner WoneNice 3 $22.79 $68.37

Recent addition (x2) to make more
modules and test scalability

Adafruit BME280 Sensor Adafruit 3 $14.95 $44.85
Recent addition (x2) due to
temperature module

Arducam Camera - 1 $0.00 $0.00
Cost not factored -- taken from ECE
Storage

USB WebCam - 1 $0.00 $0.00
Cost not factored -- taken from ECE
Storage

Raspberry Pi 5 Kit - 2 $0.00 $0.00
Cost not factored -- taken from ECE
Storage

Raspberry Pi 4 Kit - 1 $0.00 $0.00
Cost not factored -- taken from ECE
Storage

Computer Keyboard - 1 $0.00 $0.00
Cost not factored -- taken from ECE
Storage

Computer Mouse - 1 $0.00 $0.00
Cost not factored -- taken from ECE
Storage

Grand Total $536.78

Fig. 12. Bill of Materials and Cost

