
1
18-500 Final Project Report: SightMate 05/04/2024

SightMate
Josh Joung, Shakthi Angou, Meera Pandya

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of providing an automated
wearable navigational experience that will alert the user of
obstacles in their vicinity along with the optional functionality
of identifying the object. The detection will primarily focus on
common indoor objects to provide visually impaired people
the ability to explore unknown indoor spaces without the need
of guide dogs. The system will broadly consist of an object
recognition model, text-to-speech engine, and depth sensors
tied together by an on-board computer to create a seamless
navigation experience that will hopefully be a more accessible
alternative to sighted guides.

Index Terms—Distance Estimation (DE) feature, espeak,
HC-SR04 Ultrasonic Sensor, NVIDIA Jetson Nano, Object
Recognition (OR) model, PCB, pyttsx3, YoloV5

I. INTRODUCTION

Using guide dogs is one of the most common methods for
visually impaired people to navigate through the obstacles and
reach the destination. However, the problem occurs when the
users are incapable of raising guide dogs due to the operation
cost and unavailability. This project is attempting to address
the inefficiency and inaccessibility in using these trained dogs
for visually impaired people. Guide dogs are generally very
costly to train and maintain, and sometimes unavailable in an
indoor setting. In addition, they can be difficult for
visually-impaired people to care for. The project aims to offer
an accessible alternative for guide dogs, creating a wearable
device to aid in maneuvering around obstacles for
visually-impaired people. Specifically, the product is an
automated navigation system that indicates to the user when
they are approaching objects in front of them. It lets the users
notice whatever object is in their pathways, similar to what
guide dogs would do but with a much cheaper and easily
maintainable solution. This product is intended to be used
along with a cane, which is the most commonly used assistive
device for the visually-impaired. There is a restriction to the
scope of this project to well-lit indoor spaces with minimal to
medium-level object crowding.

II. USE-CASE REQUIREMENTS

There were multiple requirements for the use case for
the visually impaired people. Since our device is an affordable
alternative to guide dogs, some of our requirements use guide
dog qualifications as a baseline metric.

1. Battery duration
The first requirement was sufficient battery duration.

It should operate for a minimum of 4 hours because a guide
dog usually takes a break every 4 hours. People also typically
spend less than 4 hours exploring around indoor settings.

2. Accuracy of the object recognition model
A relatively high accuracy of the object recognition

model was necessary for visually impaired people to utilize
the product. The minimum qualification to become a guide
dog is 70%, so the project aimed for the minimum accuracy to
be 70%. Yet, the objective accuracy is 80% to ensure the
user’s safety and usability.

3. Detection distance
The detection distance is 2 meters to give users

enough time and distance to avoid an obstacle once the alert is
triggered.

4. Weight of the product
The weight of the product was planned to be no more

than 450 grams to minimize strain on the user’s neck. As a
backup plan, we considered offloading the battery pack to the
waist, but this proved unnecssary after measuring the weight
of all the components.

5. Recognition delay
The average walk speed of blind pedestrians is 0.8

m/s, so the upper limit of the recognition delay was
constrained to be less than 2.5 seconds to permit 2-meter
space.

6. Noise detection
Regardless of the audio device in the product, the

users should be able to hear surrounding noises regardless to
ensure safety and reduce danger concerns.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. Annotated image of the integrated device without
casing.

The system primarily consists of an object
recognition model with a distance estimation feature, a
text-to-speech engine, and depth sensors tied together by an
on-board computer, creating a seamless navigation experience

2
18-500 Final Project Report: SightMate 05/04/2024

that will hopefully be a more accessible alternative to sighted
guides. As seen in Fig. 1, we are using the NVIDIA Jetson
Nano as our onboard computer due to its compatibility with
the YoloV5 model given its GPU and its ability to work with
ML libraries like OpenCV. An Arduino Uno is used to connect
the ultrasonic sensor. There are two buttons to control the
proximity and speech modes, a camera to collect visual data
and bone conducting headphones that output speech without
preventing the user from hearing their surroundings. The
device is powered by a portable battery and has an estimated
usage time of 5 hours.

Fig. 2. The overall architecture of software and hardware
components.

Our device can be divided into three subsystems: the
proximity, the object recognition system, and the speech
system.

The proximity system uses an Arduino Uno R3 board
connected to an ultrasonic sensor that measures distances and
channels data to the Arduino’s serial output. The serial output
stream is then pulled by the Jetson and stored in a global
variable. A vibration motor is connected to the Jetson, and is
triggered if the proximity setting is turned on with button A
and an object is detected under 2m. This system runs
alongside the OR model using the multithreading package in
Python.

For the object recognition system, the camera
attached to the Jetson will use the GStreamer program to send
an image at 1FPS to the YoloV5 OR model, which then yields
an array of all objects detected in the frame. Then, the DE
module leverages pandas to extract the box width of detected

objects from the OR model. By comparing this data with
pre-collected reference measurements, it estimates the distance
of the objects and identifies the closest one.

Lastly, the speech system uses a TTS engine called
espeak that takes the OR model’s output and converts it into
speech. When button B is pressed, the user hears a speech
output of the closest object in their path through
bone-conducting headphones, as well as the relative distance
of the obstacle (close or far) and where it is located relative to
the user (left, right, or center). If the model is unable to detect
the object successfully, the user hears “not detected”.

The peripheral devices used in these subsystems are
connected to the Jetson by our custom PCB, which controls
current flow using resistors and a transistor, and interfaces the
buttons and vibration motor with the Jetson’s GPIO pins. The
camera, the audio converter, and Arduino are directly
connected to the jetson through the MIPI connector port and
USB ports, and the ultrasonic sensor connects to the Arduino’s
digital output pins. The entire system is powered by a 10,000
mAh rechargeable power bank, which can easily run the
device for over 5 hours.

As seen in Fig. 2, we have utilized the bottom-up
principle in which we have broken down the solution into
several modules with a single functionality and later integrated
them. Individual modules are tested first before the integration
because it is challenging to identify the error in one module
when there are several modules working together. Hence, we
are using this principle to mitigate the risk as soon as possible
at the earliest stage. It also allows parallelism because each
team member can work on a distinct module at the same time,
which reduces the implementation time. Once each module is
successfully implemented, then modules are combined to

3
18-500 Final Project Report: SightMate 05/04/2024

produce each subsystem. To illustrate, control buttons, an
ultrasonic sensor, and a vibration motor are integrated for the
proximity system. Likewise, one module can be utilized in
multiple systems, and this allows an efficient and
resource-saving development through such “recycling.”

The principles of science have been used in the DE
feature from the OR model. As it is impossible to determine
the distance of an object with a single camera, we have
utilized the principle of focal points to determine the distance.
To do so, a known distance and width of the object are
measured in advance. Then, The focal length is calculated by
using

.𝑓𝑜𝑐𝑎𝑙 = (𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 *𝑘𝑛𝑜𝑤𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝑘𝑛𝑜𝑤𝑛 𝑤𝑖𝑑𝑡ℎ

Width in reference is from the reference data collected
beforehand by running the OR model on our selected items.
Then, the distance is calculated by using

.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑘𝑛𝑜𝑤𝑛 𝑤𝑖𝑑𝑡ℎ *𝑓𝑜𝑐𝑎𝑙
𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒

Width in frame is retrieved by that can be𝑥
𝑚𝑎𝑥

− 𝑥
𝑚𝑖𝑛

collected from the OR model.
The principles of mathematics have primarily been

used in the testing. The concept of average and uncertainty has
been utilized to determine the success of the testing stage and
compare the results between each implementation.

IV. DESIGN REQUIREMENTS

A. Camera to OR model frame rate
The camera of the device captures images and

forwards it to the object recognition module at a constant
frequency of 1 frames per second (fps). This process of
capturing images and directing it to the OR model happens
continuously, regardless of the device modes described above.
Given that humans perceive visuals comfortably up to 24 fps,
achieving a higher frame rate would undoubtedly improve the
experience for the user, in terms of usability. However, for the
needs of this device, which is mainly to provide the user with
situational awareness of a static environment, along with
resource constraints for battery life and other hardware used, 1
fps is the metric we arrived on. This requirement ensures that
the recognition delay is less than 2.5 seconds.

B. Proximity Module Feedback Frequency
The sensor polling frequency refers to how many

times per second the ultrasonic sensor is going to measure for
distance, and based on the hardware specification of the
HC-SR04 Ultrasonic Sensors we are using, this value is set to
25 Hz. However, when rerouting this sensor data to the
vibration motors, a much lower frequency is required so as to
not overload the user with sensory output. A comfortable
frequency of vibration is 2-4 Hz. To ensure that the proximity
module has minimal latency, this module is separated from the
OR module of the device, with minimal layers from
end-to-end. This design can therefore contribute to meeting
the recognition delay of 2.5 seconds by alerting the user
sufficiently for them to notice the potential danger.

C. Proximity Detection Distance
A distance of 2 meters before the user encounters an

obstacle is a safe range within which the user can move away
from it safely. Given this, we set 2m to be the threshold of
object detection for the proximity module, meaning that when
the ultrasonic sensor detects an object under this threshold
distance, this triggers the program that communicates to the
user of the object they are approaching, as described in the
above section on proximity feedback via vibration motors.

D. Battery Life Analysis
The goal in terms of battery life was to allow for 4

hours of continuous usage. This is in alignment with the
typical length of navigation and aid provided by service dogs
before they take breaks, and a reasonable target for duration
spent outside for daily activities before access to recharging
the device. Given this metric, below is a breakdown of the
power consumption of the major components of the device:

To allow for the 4-hour usage requirement, a ~10,600
mAh battery was needed. The actual battery life per use may
vary depending on the size of the OR module and other
latencies in our overall system. After full subsystem
integration, we ran the device on battery power until the
battery ran out, and found that even after 4 hours, 60% of the
battery capacity remained, indicating that the device is capable
of running for up to 10 hours before recharge.

E. OR Module Accuracy
Mean Average Precision (mAP) is a widely used

metric for evaluating the performance of object recognition
models (Buhl), particularly in tasks such as image
classification or object detection with multiple classes. It
calculates the average precision across all classes, providing a
comprehensive measure of a model's ability to correctly
identify objects of interest in an image. Industry standard
considers an mAP of 0.4 - 0.6 to be reasonable to good
performance. In the context of guide dogs, which are trained
to assist visually impaired individuals, it's noted that their

Component Current (mA)

NVIDIA Jetson
Nano

2000

Camera 491

Ultrasonic Sensor 5

Vibration Motor 85

Audio Converter 70

Total 2651

4-Hour usage 10,604 mAh

4
18-500 Final Project Report: SightMate 05/04/2024

accuracy in guiding is expected to be around 0.7 mAP. To
ensure that our OR model could effectively supplement or
exceed the capabilities of guide dogs, the aim was to achieve
an overall accuracy rate higher than 0.8 mAP. This higher
number was in line with our goal to address the need for
precise computer vision systems that help visually impaired
people move safely and freely. Consequently, the user
requirement of having 70% accuracy of OR model could be
met.

F. Wired Bone Conduction Earphones
The Jetson is connected to wired bone conduction

earphones for the audio output. They allow the users to hear
background noise and device output simultaneously through
their structures and designs. Hence, this strategy met the use
case requirement of the users being able to hear the
surrounding sounds to notice a potential danger. The wired
option is relatively cheap and easily accessible for the users,
so it can also reduce the production cost. The device case also
has a removable side, giving the user access to the audio port
if they prefer to connect their own audio device.

G. Modules with Minimal Weight for Integration
The size and weight of individual modules are

assessed and considered to alleviate the weight of the product
as much as possible. The product consists of a small camera
module that is capable of sending real-time image data, and
one HC-SR04 Ultrasonic Sensor is used for a proximity
measure. The minimum size of PCB that is able to handle the
functionality of integration is used to contribute to minimizing
the size and weight of the product. This design strategy met
the weight requirement of 450 grams.

V. DESIGN TRADE STUDIES
A. Hardware

We chose to use an NVIDIA Jetson Nano to run the
software and mount the hardware for our device, largely due
to its highly performant GPUs which will be capable of
continuously running the OR model.
Initially, we considered using a Raspberry Pi 4 as our
single-board computer. It has a vast community along with
abundant online resources relevant to OR models, camera
modules, and ultrasonic sensors, which may potentially save
us time in figuring out the integration of modules. However,
the problem with RPi4 is overheating of the product. When
multiple modules involving a ML program are run, it tends to
overheat, causing high latency and potentially even a system
shutdown during the run. This issue is relevant because it has
a low power video processor, so using a camera module will
frequently lead to overheating. To mitigate this overheating
risk, we considered hosting the OR model on a server and
using the RPi to communicate with the server to send images
and receive recognition data. The issue regarding this
mitigation plan is that RPi4 needs to be connected to Wi-Fi to
send data to the server. Because it would be challenging for
visually impaired people to manually connect Wifi in an
unknown indoor environment, this plan has been aborted.

The hardware device that can handle the cons of RPi4
is the NVIDIA Jetson Nano. Although it has less online
documentation and community support than RPi4, the biggest
factor of using Jetson is that it contains higher performance
and more powerful GPUs than RPi4. Therefore, Jetson is more
suitable in using a ML model like this project. It has less
frequent overheating and allows flexibility in development
compared to the RPi.

B. OR model version
We chose the YoloV5 model that is developed by

Ultralytics. It is built on the PyTorch framework, which makes
it easier to use and fine-tune for developers. Considering that
this project needed a model with a DE feature, using this
version reduced the development time. The Yolo versions
generally have relatively high performance in OR. They are
also very commonly used for real time data processing, so
sending real-time data with a camera module can be easily
implemented in this project. Furthermore, there are vast online
resources and tutorials, so the learning curve in using this
model was reduced. A potential issue was the accuracy of the
model, since there are more recent versions that have greater
response time and higher accuracy. Another potential issue
was the integration of the DE feature. Because the integration
is not provided in the open source library, some time was
designated to integrate the feature onto the YoloV5 model.
However, there is open source documentation for the
integration of the DE feature to the Yolov4 model, so it was
used as the primary source for implementation.

Several alternatives to using the YoloV5 model were
considered.

The Detectron2 model, supported by the Facebook
research group, provides a modular programming design, so it
can be flexible and customizable. It also includes several
features including pre-trained models and mixed precision
training. However, there is a steep learning curve to the model.
Understanding its architecture, configuration, and API’s is
required to fine tune the model. Additionally, not only it relies
on high-end GPUs and large amounts of memory to train the
model but also many dependencies. This model could cause
compatibility issues or dependency conflicts during the
deployment.

An alternative plan was to use the Yolov4 OR model
that has a DE feature attached to it. Because the model is
available in an open source library, the project could have used
the code directly, which can reduce a lot of development time.
Using the results of the detected object and corresponding
distance, only fine tuning the data is needed to output the
desired functionality of the product. However, this model is a
pretrained model with several objects that are irrelevant to
indoor settings. Therefore, it cannot recognize a common
indoor object like a table or a sofa. Furthermore, this model
cannot be retrained with a personalized dataset anymore
because the development team no longer supports a “darknet”
module, which has been used to train the OR model. Despite
the increase in development time, it is critical to re-train the
OR model to an indoor object dataset to meet with the scope

5
18-500 Final Project Report: SightMate 05/04/2024

of the project. Therefore, a different version needed to be
considered.

Another consideration of the model is using Yolov8,
which is the most recent version of the OR model. It has the
highest detection speed and greatest accuracy among all
versions. However, it is not built on the PyTorch framework,
which makes this version harder to use and fine-tune for
developers. Considering that a DE feature has to be attached to
the model too, using Yolov8 can be problematic in spite of its
high speed and accuracy.

C. Using headphone jack adapter instead of Bluetooth
to connect audio device
Since the Jetson does not have an audio connector

onboard, we considered several methods of incorporating
audio output into the device. In particular, we had to choose
between using a wireless Bluetooth connection or a wired
connection. The Bluetooth connection would be preferable for
allowing the user greater mobility than the wired connection,
but incorporating a Bluetooth module would require an
interface for users to pair their device, and our design plan
does not include an interface already. Additionally, we were
concerned that Bluetooth would draw more power than a
wired audio connection, especially if an interface needed to be
implemented. We would then require a larger battery capacity
to meet our 4-hour usage requirement. Since a larger battery
introduces more weight on the user, we chose to implement
the wired connection for the sake of the user’s comfort.

VI. SYSTEM IMPLEMENTATION

A. OR module

Fig. 3. The OR model architecture connecting a camera
module, Jetson, and audio module

The initial plan was to use the OR model
synchronously with the video capture module called
Gstreamer from opencv. This means that for each frame
captured from the camera, we run the OR model and DE
feature to determine the closest object. However, we realized
that due to the latency in the OR model, there was a frame

delay, which created a huge data latency around 8 seconds for
every 20 seconds of running, which heavily violated our use
case requirement for the data latency.

Hence, we used multithreading to run the OR model
asynchronously to the video capture program. This allows the
OR model to use the frame, updated every second by the
camera module. In the event that the race condition is met, the
data fetched from the global variable would be from the
previous instance, which is at most 1 frame behind real time,
which works with the use case requirement. This would not be
noticeable to the user and hence does not affect their
navigation experience. For this reason, we decided not to use
mutex or other lock methods for the global variable, which can
potentially create a bottleneck and increase the latency of data
transfer.

Once the OR model outputs all detected objects and
relevant data such as boxwidth, x-min, x-max, object name,
then it sends them to the distance estimation module. By
comparing the reference data, it converts the boxwidth of each
object to a distance. Then, it calculates the minimum distance
and sends the closest object and its distance to the speech
module. At the same time, it also sends x-min and x-max
values, which are the x-coordinates of the box drawn on the
detected object. By using these coordinates, the speech
module determines whether the object is at the left or right of
the user and whether it is at close distance or at far distance.
Then, the user is able to hear the speech with the information
of the object detected, its relative position and relative
distance to the user, which supports our objective of assisting
in navigation.

B. Proximity module

a. Software
We set a 2m range for the proximity module,

meaning that objects detected within a 2m range are
communicated to the user via the vibration motors if the
setting is turned on. Based on the design requirements section
highlighting the 25 Hz polling frequency of the ultrasonic
sensor, we distilled the data transfer down to 2-4 Hz before
producing vibration feedback, so as to avoid the risk of
overwhelming the user. This process of filtering data before
routing to the vibration motors is handled by this program.

b. Hardware
The initial plan was to connect the ultrasonic sensor

directly to the NVIDIA Jetson Nano but upon testing of the
subsystem, there were timing issues that remained unresolved
even after implementing multithreading in Python. This
prompted us to conduct modular testing of the hardware to try
to isolate the cause. However, upon research in the NVIDIA
community, we found that users had faced similar challenges
with connecting ultrasonic sensors to the NVIDIA Jetson and
the consensus was to avoid doing so due to the Jetson’s
inability to handle real time processing well. Moreover, the

6
18-500 Final Project Report: SightMate 05/04/2024

particular sensor we had was most compatible with an
Arduino Uno, and hence this triggered the switch to offloading
the proximity module to an Arduino board. The Arduino
communicates with the Jetson by directing the measured
distance data to its serial output that the Jetson will then pull
and convert to a vibration output if the mode is turned on by
the user.

The vibration mode is toggled on and off with a push
button which is directly mounted on the PCB, while the
ultrasonic sensor and vibration motor are connected to the
Arduino and PCB using jumper wires to allow for flexibility
in placing the components. The vibration motor is located on
the carrying strap on the back of the user’s neck instead of on
the main device, so that the vibration can be felt regardless of
the user’s clothing.

C. Speech module

a. Software
This module employs a text-to-speech engine called

espeak, along with the wrapper library pyttsx3. The voice used
as the speech output is customized with a rate, pitch, accent,
and specific phrases that will help the user navigate. Initially
we had implemented an output that simply gave the name of
the object (“person”) or “not detected” when the user pressed
the button to identify an object. However, during our testing
stage, we realized that the speech output had potential to
provide even more helpful information to the user, especially
since the OR model already had a distance estimation feature.
Hence, we incorporated the relative direction of the object
(left, right, center), and distance (close, far) into the speech
outputs. An example would be “person detected at left in close
distance”. The relative distance is outputted based on the OR
model’s boxwidth and where the box edges are relative to the
center of the user.

During integration of the speech module with the OR
model on the Jetson, particularly during the transition to
making the device “headless” (running entirely without a
monitor), we were faced with many bugs relating to the
permissions of the different programs running together. Our
first step in the process was to make the main file run upon
reboot of the Jetson, without needing us to manually run a
script. For a main file to run during startup, it required root
permissions that when given began interfering with the speech
module’s audio output permissions. We were faced with many
hours of debugging to identify and resolve this and became
familiar with the Advanced Linux Sound Architecture. The
changes we had made to the permissions had soon become a
problem and completely broke the OR model. As we had
about a week to resolve the problem before the final demo, we
decided to reflash the Jetson’s SD card and redo the
painstaking process of installing all the packages we needed
and its dependencies, which took over 6 hours of installation.
Despite this adding time to our initial work plan, restarting the
process helped us start from a clean slate and avoid the
mistakes we made in the previous round.

b. Hardware
The speech module output was implemented using a

CM108-based USB-A to headphone jack adapter. Since the
Jetson has USB-A ports available on the board but no onboard
audio port, this was the simplest way for us to implement an
audio connection, and allows the user to connect the
headphones they are most comfortable with. The vibration
setting can be toggled on and off by a push button, which is
mounted on the custom PCB.

D. Custom PCB

Fig. 4. A design of a custom PCB.

Designing a custom PCB allowed us to safely
connect the buttons and vibration motor to the Jetson Nano’s
GPIO pins. The J4 PWR_HDR pins connect to the Jetson’s
5V, 3.3V, and ground pins to supply power to the PCB, and the
J3 GPIO_HDR pins connect to the Jetson GPIO pins which
we configure in software for each hardware component.

The two control buttons each have a pull-up resistor
to regulate current flow to the Jetson to prevent damaging the
pins (walterfms2i). The BUTTON1 and BUTTON2 pins are
configured as GPIO inputs for the Jetson to read the button
value.

The vibration motor we used is a 3V DC motor. Since
the direction and speed of the motor is not necessary for us to
control, we used an N-channel MOSFET to supply current to
the motor instead of using an H-bridge or an off-shelf motor
driver. The gate of the MOSFET is driven by a GPIO output
pin, and the motor connects to the PCB via the J1
MOTOR_HDR pins.

E. Wearable Case

7
18-500 Final Project Report: SightMate 05/04/2024

The wearable device case consists of a box housing the
hardware components and a carrying strap integrated with the
vibration motor. The box, designed using Fusion 360, is made
of laser-cut cardboard pieces for each side, with tabbed edges
that interlock together to improve the case’s stability.
Excluding the front and right side panels, all sides are secured
together with hot glue. The front and right panels have longer
tabs with Command Velcro Strips to attach them to the rest of
the case. This allowed us to access the Jetson’s USB ports,
which we needed for running the device non-headlessly for
debugging purposes, as well as for changing the audio output
device. Internally, the case has cardboard supports to contain
the battery, Arduino, and Jetson, preventing them from
shifting position while the device is in use.
Our camera strap is a modified camera strap, since camera
straps come with additional padding to ensure the user’s
comfort. We modified the strap by running the vibration motor
along the strap to the back of the user’s neck, and sewed a
fabric strip onto the strap to conceal the motor and its wires.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for Accuracy of OR module
The accuracy of the recognition system was

dependent on two features. The first is testing the accuracy of
the object recognition. The verification is done if the OR
model is able to recognize the items in an indoor object dataset
that has multiple items for each image. Both a pre-trained
YoloV5 model that is trained by MS COCO, which consists of
millions of images with many different objects, and a trained
YoloV5 model, which is trained with the customized indoor
object dataset consisted of around three thousand images, are
tested and compared to determine which model to use. After
training the YoloV5 model with the indoor dataset, it was run
to detect a test dataset of indoor objects. Surprisingly, among
58 real objects, the trained model only detected 21 objects
correctly, which yields a 36.2% accuracy. On the other hand,
the pre-trained model successfully detected 49 out of 58
objects, which yields a 84.4% accuracy. Although the tradeoff
of using a pre-trained model is that the classification can only
be done for predetermined indoor objects, it had far greater
accuracy than the trained model.

The second test is for the DE feature of the OR
model. This functionality was verified by checking whether it
can identify the closest item in different types of images that
consists of one of the five chosen indoor objects. When
running a test file that goes through 40 test images for 5
objects, the DE feature correctly identified the closest object
for 38 images. This result gives a 95% accuracy, which greatly
exceeds the use case requirement of 70% OR. These two tests
are relevant and applicable to this use case requirement
because the type of model to use heavily determines the
accuracy. Once the first feature testing passed, the DE testing
was done subsequently.

B. Results for proximity module

8
18-500 Final Project Report: SightMate 05/04/2024

Two features of the proximity module were tested.
The first feature is the accuracy of distance detection and the
second is its capability to vibrate when an object within 2m
has been detected.

The first feature testing is relevant to the use case
requirement to accurately detect the existence of an object.
Only if this module accurately captures the distance of an
object then can the module alert the user of an immediate
obstacle. 8 different distances were tested for the accuracy of
the ultrasonic sensor. When it ran on 5cm, 10cm, 50cm,
100cm, 150cm, 200cm, 250cm, and 300cm, it gave only -1cm
error, which gives an uncertainty of approximately 0.06%.
This result is significant when compared to how the testing for
the distance measured by the DE module resulted in 21.5%
uncertainty. Therefore, we tested the accuracy of the proximity
module in distance detection, which is the use case
requirement to detect distance at least 2m for ± 30cm error.

The second feature testing is relevant to this modular
testing because the proximity module should be able to detect
an obstacle within 2m. This element is essential for users to
avoid obstacles and is relevant to their safety, so this testing
was conducted rigorously. By placing a person at 10cm, 50cm,
100cm, 150cm, 200cm, 250cm, and 300cm, the test checked
whether the vibration motor turns on when the detected
distance is less than or equal to 2m. The test result shows that
the vibration motor is turned on for all distances under 2m,
which yields a 100% accuracy on the proximity sensor. This
accuracy meets the use case requirement of having a 95%
accuracy on the proximity module.

C. Results for speech module
The main form of testing included a user-testing to

determine whether the speed of speech output by the device is
a comfortable one. Along with this, we ensured that the
device’s outputs do not prevent the user from still being able
to hear their surroundings as we know that the visually
impaired do rely on their hearing. The TTS engine used is one
of industry standard and is proven to have high performance
accuracy and was customizable to meet our requirements with
rate of speech output, volume, accent etc. The quantitative
aspect in the testing process includes fine-tuning the length of
speech output (how descriptive does the object identification
need to be), along with the time given between the outputs in
the continuous object identification mode. Hence, testing this
module was done mainly user-centric, with some part of it
involving quantitative testing to meet overall latency
requirements. The first part of the testing was done by
consulting three students on determining the rate and volume
of the speech module. A speech rate from 100 to 200 was
tested with the increment of 10, and all participants responded
with 170 as the most comprehensible speed. With the same
respondents, we tested the volume of the speech from 1.0 to
5.0. There was a mixed result with a mean of 3.0, so the
volume was decided to be 3.0. This user testing allowed the
device to meet the user's comfort as best as possible.

Another test involved recognizing the surrounding
noises despite the audio output. We conducted concurrent

testing on the participants to determine to which direction they
heard a clap sound while the audio output was running. The
indoor objects have been output to the bone-conducting
headphones while the clap sounds are made in the
background. The users successfully recognized where the
noises came from and which object the speech module output
for 20 trials on 5 different objects respectively. They also all
agreed that the bone-conducting headphones allow no
interference of background noises. With 100% accuracy on the
speech module, we met the use case requirement of the users
being able to hear background noises.

D. Results for device settings
We tested the device’s speech and vibration modes in

several stages. First, we tested the buttons on the PCB once it
was fabricated by connecting the Jetson’s GPIO pins and
writing a simple program to ensure that a button press was
detected. Failure in this stage would have indicated that the
PCB may need to be debugged and redesigned. Once this
stage succeeded, we used the button presses to set the
device’s settings to each possible combination of speech and
vibration modes and ensured that the device could support
each mode. We considered this test a success if every mode
combination was supported.

The first testing was conducted by having a program
output a print statement once the button is pressed. For each
button A and button B, 20 trials were done and achieved
success on every trial, yielding another 100% on the unit
testing. This result indicates that the device does not have any
problems on the PCB side and simply needed to revise the
mode control commands.

The second testing was done on an integrated speech,
proximity, and recognition system. While the OR model was
running, the test was conducted by clicking on the buttons to
change the vibration setting and the speech mode. 20 trials for
each button were done to test the functionality of each button.
Button A is used for changing the vibration mode while button
B is used to output a single speech identification of an object.
Again, the trials resulted in 100% success in changing the
modes. By achieving 100% on the functionality of the buttons,
we met the use case requirement for the device controls. This
result was essential for the user’s convenience and usability of
the device.

E. Results for the integrated device
After integrating different modules into one device,

weight testing, functionality testing, and battery life testing
were conducted. Using a scale, we measured that the device
weighed 426g, which included an Arduino board, ultrasonic
sensor, portable battery, Jetson Nano, and a camera module.
By achieving a weight less than 450g, which was the use case
requirement for the device weight, our device ensured the
user's comfort. A comfortable neck strap was also used to
emphasize comfort even with long-term usage of the device.
Functionality testing was measured by setting up an
environment with indoor objects and having the user navigate
through the environment by identifying the closest obstacles in

9
18-500 Final Project Report: SightMate 05/04/2024

front of them. This testing was conducted on one user with a
blindfold on, and there were 5 different setups for chairs and a
person. The user accurately detected the closest object with
100% accuracy. However, we faced limitations regarding the
environment. The test was conducted in a closed setting with
no moving objects and very few objects placed in the user’s
path. We realized that the device gave false positive results
when there were many objects placed in a lab, for example,
where there were many people and chairs along with many
other objects. Since we limited our scope to an indoor
environment with few objects, this issue did not yield
significant harm in our project.

Battery life was tested by connecting the portable
battery to run the program on the Jetson Nano. We measured
the percentage of battery loss after a certain period of time to
estimate the battery life of the device. During the test, we ran
the program headless and let it run for 4.86 hours. Then, 60%
of its battery was depleted. Therefore, we estimated that the
battery life was at least 5 hours, greatly exceeding the use case
requirement of having 4 hours of battery life. This was
essential because it allowed the user to navigate in an indoor
environment for a longer period of time without worrying
about the device shutting down.

F. Results for the recognition delay
The recognition delay was tested by measuring the

time it took to recognize an object when a camera moved to a
different direction to face a different object. This testing was
relevant to the real user setting because it could measure the
time it took to detect a new closest object when the user
moved around. A total of 30 trials were conducted, and the
result averaged to 1.88s to recognize an object. Two different
camera settings of 1FPS and 2FPS were tested to see if there
was a significant change in latency, but the 2FPS recognition
delay was 1.61s, which was very minute considering that the
use case requirement was 2.50s. To reduce the overhead on the
device, we decided to use the 1FPS setting because it still had
a low data latency while sending less data input to the device
program. Having 1.88s of latency allowed the user to identify
the obstacle at ease at a walking speed.

VIII. PROJECT MANAGEMENT

A. Schedule
We faced many schedule changes throughout the

project due to various factors. We were pushed to continuously
adapt our schedule due to design changes, unforeseen delays
in implementation and debugging, and iterative testing.
Planning for slack time along the way was very helpful and
enabled us to stay on track despite all the changes we
encountered. Attached to the end of the report, at appendix A,
is the schedule we used for this project,
.

B. Team Member Responsibilities
We separated our overall system into 3 subcategories

that each of the members of our team take the lead on.
However, the overarching functionality of the device was

ensured by all of us, covering overall integration, the testing
and verification process, as well as the outer look (design) of
the device. This splits the work as follows:

C. Bill of Materials and Budget
We were able to source several components for our device
from personal or class inventories. The remaining components
that we purchased from external sources are well within our
budget, with some main costs including the customized PCB,
the strap to hold the device and make it wearable,
bone-conducting headphones, and the power banks. A
summary of the items purchased as well as estimated future
costs are listed at the end of this report (appendix B).

D. Risk Mitigation

1. Weight of device
Our goal was to keep the overall weight of the device under
400-450g. However, we anticipated that this estimate might
still be uncomfortable, or that the device might become even
heavier, jeopardizing the intended use-case of the device. To
address this, we had planned for the backup of offloading the
battery pack to a waist-strap, so as to distribute the total
weight and improve practicality. We made this plan during our
testing phase, anticipating feedback from participants who
volunteered to test our device.
During development, we successfully met the weight
requirement, and during user testing, users were comfortable
with the weight. We had a risk plan of offloading the battery,
but fortunately, it wasn't needed.

2. Connection to peripherals (Custom PCB)
We planned to connect the peripherals (buttons, sensor, and
vibration motor) to the GPIO pins of the Jetson, with a custom
PCB in between to manage the voltage and current levels. A
risk with this approach was that custom PCBs take time to
order, and there may not have been enough time to redesign a
PCB if there were bugs. We managed this risk by first
breadboarding the PCB circuit to ensure it was adequate for
safely connecting the peripherals before we placed the PCB
order. Our contingency plan in case the PCB still had bugs
was to replace the PCB with an Arduino, which would have
required us to switch to serial communication between the

Team Member(s) Primary Responsibility

Josh Joung OR and DE Modules

Meera Pandya Hardware Implementation and
Device Casing

Shakthi Angou Proximity and Speech Modules

All Overall Integration, Device
Design, Testing and Verification

10
18-500 Final Project Report: SightMate 05/04/2024

Jetson and Arduino and would have caused us to reevaluate
our power and weight requirements.
However, we got the PCB right on the first try, avoiding the
need for any contingency measures.

3. Image classification base model and DE feature
Our current OR module was built off of an existing industry
standard model called the YoloV5. This was a change from the
initial plan to use the Yolov4, which upon further research we
decided to change as that version of the model did not
accommodate training with our own dataset, which was a key
functionality we wanted our model to have. This steered us
towards the YoloV5, which had improved functionality and
support. If we faced issues with the accuracy of the model, we
had a stretch-goal to upgrade to the Yolov8 as our base model,
which was the most recent version. The same mitigation
method as the OR module would have been executed to raise
the accuracy of the DE feature. However, in the final stages,
we were happy with the accuracy of the Yolov5 OR model and
were able to make the adjustments we needed, such as adding
reference objects we needed, calibrating the distance
estimation feature to improve its accuracy, and reducing any
data latency by removing any bottlenecks.

4. Ultrasonic detection range
Ultrasonic sensors have a range of approximately 2
centimeters to 4 meters, with a sensing cone of 30 degrees
(“Ultrasonic Distance Sensor”). If we had experienced failures
to detect an obstacle within range, we planned to include
additional sensors as needed to cover the entire necessary
sensing range. If the sensors falsely indicate the presence of
obstacles in the 2-meter range, we planned to reduce the
detection threshold on the software end to prevent erroneous
sensing. However, upon testing an integration, we found the
ultrasonic sensor tied to the Arduino Uno and ran on its own
separate thread using multithreading to be a very accurate
subsystem that did not need any further fixing. This was due
to the major design change made to offload the proximity
module to the Arduino as described above.

IX. ETHICAL ISSUES
With a device that directly concerns the safety of the user,

along with privacy due to the presence of an OR model,
ethical issues should certainly be considered. Although to us
as the designers of this device the functionality may appear
easy to understand, to someone who does not have knowledge
of the technical aspects of this device may be more prone to
misinterpretation or misuse of the device. For example, using
the device in a dark environment or running while using it
would both be instances that the device’s scope does not
cover and someone who doesn’t understand this can definitely
misuse the device. This may not only result in incorrect
navigational outputs given to the user that may confuse them
and lead them in unintended paths, it can also hurt them if they
are in harm’s way. Hence, to mitigate a situation like this, it is
important to accompany such a device with educational
information that will teach the user exactly when, where, and
how to use the device so as to reduce chances for misuse.

Another solution would be to add features that communicate
to the user when they are using the device incorrectly. For
example, if the lighting is too dim for the object recognition
model to accurately output a value, we could implement a
“pre-check” test to see if the lighting is good and if not instead
of forcing an output, we can simply indicate to the user that
there is poor lighting. Or if they are running while using the
device, we could have a warning beep or a voice output to tell
them to slow down before using the device.
Another edge case would be the range of detection and

notification of obstacles to the user. The user should not
entirely rely on the proximity module to know when an object
is approaching as in some cases, where there is a fast moving
object like a person on a skateboard passing by, the 2m
detection range may not be adequate. So if the user is either
unaware of the range, or becomes overly reliant on it, this may
lead to issues. Once again, an educational package along with
the device could help reduce the likelihood of this happening.

X. RELATED WORK

During the initial stages of our project, we drew inspiration
from a device named Theia that was built by Anthony Camu
(Camu) , a final year Industrial Design student at
Loughborough University in 2021. Their device has a similar
purpose of aiding navigation for the visually impaired via a
handheld device. It uses LIDAR technology in combination
with a control moment gyroscope to construct a 3D image of
the user’s surroundings and determine the safest path to take.
Our device modifies most parts of this project but we certainly
were inspired by this student-lead project to provide a cheaper
and more accessible alternative to guide dogs.

XI. SUMMARY

Our system was capable of meeting all of our design
specifications, and significantly exceeded our requirement for
battery life. Unfortunately, our device does have several
limitations in performance. Firstly, the angle of detection of
the ultrasonic sensor is significantly limited in comparison
with the camera. As a result, the sensor struggled to detect
obstacles at ground level even when the obstacle was within
the frame of the camera, and the camera’s wide angle lens
detected objects which were not a direct obstacle due to the
user. Additionally, we were unable to increase the length of the
strap due to the vibration motor’s wires being a fixed length
along the strap, which led to varying effectiveness depending
on the user's height. Given more time, we would resolve these
issues by incorporating additional ultrasonic sensors to
increase the angle of detection, and we would either purchase
a camera with a narrower angle of visibility or would
incorporate image processing before running the OR model to
ensure that the device detects only imminent obstacles. To
resolve the height issue, we would solder longer wires onto a
vibration motor and look into ways of disguising the extra
wire length when the strap is extended.

A. Lessons Learned
To other groups interested in developing navigation devices

11
18-500 Final Project Report: SightMate 05/04/2024

or accessibility devices, we would emphasize the importance
of consulting the group of people they intend to help. For us,
speaking to the LAMP visual impairment advisory board was
incredibly valuable in our ideation and design stages. We
received constructive feedback on our idea and heard
suggestions for features to incorporate, such as adding cats to
our list of detected objects. Speaking to the group that the
device assists is useful in determining whether there exists a
need for the project and what improvements could be made.
We would also like to emphasize the importance of conducting
user testing on a diverse group of users. For us, the device’s
performance varies based on the user's height, and conducting
more rigorous testing with users of different body types would
have helped us refine the wearable case to be more universally
effective.

The neck-wearable device essentially guides visually
impaired users in an indoor environment to avoid obstacles
and identify an item right in front of them. It encourages
visually impaired people to go to an unknown environment,
such as visiting an acquaintance's house, with less safety
concerns. This project consequently motivates them to connect
with more people and explore the world around them.

GLOSSARY OF ACRONYMS

MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
RPi – Raspberry Pi
DE - Distance Estimation
OR - Object Recognition

REFERENCES

[1] Buhl, Nikolaj. “Mean Average Precision in Object
Detection : A Comprehensive Guide.” Encord, 5
November 2023,
https://encord.com/blog/mean-average-precision-object-d
etection/. Accessed 1 March 2024.

[2] Camu, Anthony. “Introducing Theia: The Handheld
Robotic Guide Dog – Polytec Personnel Engineering and
Scientific Staff Cambridge Cambridgeshire.” Polytec
Personnel,
https://www.polytec.co.uk/whats-new/introducing-theia-th

e-handheld-robotic-guide-dog.html. Accessed 1 March
2024.

[3] Dal, Asadullah.
“Yolov4-Detector-And-Distance-Estimator.” GitHub, 16
Apr. 2022,
github.com/Asadullah-Dal17/Yolov4-Detector-and-Distan
ce-Estimator.

[4] Jocher, Glenn. “Ultralytics/Yolov5.” GitHub, 21 Aug.
2020, github.com/ultralytics/yolov5.

[5] nemestomi2. “Using HC-SR04 Ultrasonic Sensor with
Jetson Nano?” NVIDIA Developer Forums, 11 June 2020,
forums.developer.nvidia.com/t/using-hc-sr04-ultrasonic-s
ensor-with-jetson-nano/78861/3. Accessed 01 Mar. 2024.

[6] “Ultrasonic Distance Sensor (HC-SR04).” PiSupply,
uk.pi-supply.com/products/ultrasonic-distance-sensor-hc-s
r04#:~:text=The%20HC%2DSR04%20sensor%20works,t
o%20the%20nearest%200.3cm.

[7] User, Deci. “Overview and Comparison of Neural
Network Training Libraries.” Deci, 4 Apr. 2022,
deci.ai/blog/neural-network-training-libraries-tools/.

[8] walterfms2i. “Adding Buttons to Jetson Nano.” NVIDIA
Developer Forums, 19 Sept. 2019,
forums.developer.nvidia.com/t/adding-buttons-to-jetson-n
ano/81942. Accessed 01 Mar. 2024.

[9] “YOLOv8 vs. YOLOv5: Choosing the Best Object
Detection Model.” Www.augmentedstartups.com,
www.augmentedstartups.com/blog/yolov8-vs-yolov5-cho
osing-the-best-object-detection-model.

Appendix A: Schedule

12
18-500 Final Project Report: SightMate 05/04/2024

Appendix B: Bill of Materials

13
18-500 Final Project Report: SightMate 05/04/2024

Purchased Items Quantity Cost

IMX219-160 Camera 1 $28

Zyamy Micro Flat
Vibration Motor

10 count $7.59

64 GB MicroSD Card* 1 $13.99

5V 2A Power Supply* 1 $9.95

Ultrasonic Sensors 10 count $9.99

CM108 Audio Card 1 $6.99

Custom PCB 5 $34.80

Battery Pack 2 $35.99

Wearable Device Straps
and Casings

1 $14.99

Total $162.29

Inventory Items Quantity

Nvidia Jetson Nano 1

Breadboard, Resistors, Capacitors Variable

* May not come from project budget , paid for by 18-500

