

Final Presentation

D2: SightMate

by Meera Pandya, <mark>Josh Joung</mark>, Shakthi Angou

Requirements

Battery Life

minimum of **4 hours** because a guide dog usually takes a break every 4 hours

Weight (health)

no more than **450 grams**, battery pack may be offloaded to waist if needed

Accuracy (safety)

at least **70%** because it is the minimum qualification to become a guide dog Aiming for **80%**

Detection Distance (safety)

minimum of **2 meters** because a user would need enough distance to avoid the obstacle

Recognition Delay (safety)

less than **2.5 seconds** to permit 2-meter detection (blind pedestrians walk at .8 m/s)

Noise Detection (safety)

user should be able to **hear surrounding noises** regardless of the audio device

Block Diagram

Completed: Object Recognition (OR) Module

- Use YoloV4 YoloV5 OR ML Model
- Created **Distance Estimation** module (using reference images)
- Use pandas to interpret reference data (.csv) for 5 objects
- Detect & est. distance every frame

chair_test7.jpg

[['mam': 'chair', 'bowidth': 95.25952144975, 'confidence': 0.86723973273483, ['name': 'chair', 'bowidth': 95.25952144975, 'confidence': 0.86723973273483, ['name': 'chair', 'bowidth': 95.2595214573, 'confidence': 0.867239753423, ['name': 'chair', 'bowidth': 148.46552457457875, 'confidence': 0.867239754523, 'confidence': 0.867239754523, 'confidence': 0.867239754523, 'confidence': 0.867239754523, 'confidence': 0.8672397545425, 'confidence': 0.867239754524, 'lowaidth': 131.466723823125, 'confidence': 0.674306292111487), ['name': 'chair', 'bowidth': 153.2317773475, 'confidence': 0.67430629211487), ['name': 'chair', 'bowidth': 153.2317773475, 'confidence': 0.67430629211487), ['name': 'chair', 'bowidth': 153.2317773475, 'confidence': 0.67430629211487), ['name': 'chair', 'bowidth': 153.2317773475, 'confidence': 0.87450529211, 'bowidth': 153.5317773475, 'confidence': 0.435568241875, 'confidence': 0.43556824883572, 'confidence'

Objet: chair Bowdith: 95.229521484375 Distance: 480.0802765187882 cm Objet: chair Bowdith: 141.465576112875 Distance: 437.7332719848976 cm Objet: chair Bowdith: 121.914559718125 Distance: 337.945739754401 cm Objet: chair Bowdith: 39.74243164625 Distance: 398.08951366572 cm Objet: chair Bowdith: 144.846232828125 Distance: 388.08951366572 cm Objet: chair Bowdith: 54.779751853125 Distance: 388.089508647135 cm Objet: chair Bowdith: 56.779751853125 Distance: 388.1917862482866 cm Objet: chair Bowdith: 56.779751853125 Distance: 65.739441655738 cm Objet: chair Bowdith: 59.155314265 Distance: 55.2986518735 cm Objet: chair Bowdith: 59.155314265 Distance: 55.298658735 cm Objet: chair Bowdith: 89.1563241375 Distance: 55.29858878 cm Pef: chair Bowdith: 89.1563241375 Distance: 55.29858878 cm

Completed: Proximity & Speech Modules

Device control buttons:

Control A: vibration setting (alerting user non-disruptively) Control B: (Single Press): speech identification of immediate obstacle (MVP) (Double Press): continuous speech identification setting

Proximity Module:

Ultrasonic sensor picks up on objects within 2m of the user. DE feature in the OR model is connected to the **vibration motor** placed at the back of the user's neck to alert them of obstacles approaching.

■ Speech Module:

Output from the OR model is processed and converted into speech using a **TTS engine** called **espeak** that we use with the **pyttsx3** python library.

Completed: Hardware Implementation

System	Components	Integration Plan	
Object Recognition System	e-CAM50_CUNX/NANO Camera	MIPI interface w/ onboard connector	
Proximity Detection	HC-SR04 Ultrasonic Sensor DE feature in OR model	Connect to Jetson GPIO pins via custom PCB for voltage conversion and/or current limiting	
System	Vibration Motor		
Dictation System	Control Buttons		
Dictation System	CM108 Audio Converter	USB plug-in	
Overall 10,000 mAh Battery		Rechargeable power bank	

Complete Solution

Test, Verification and Validation

Testing	Verification	Risk Mitigation	
Object recognition model	Identify the closest object using a built-in camera	Implement the model with Yolov7 for greater accuracy	
Distance estimation module	Compare the distance of the closest material measured by the model with the actual distance		
Text-to-speech module	Pass noise testing that tests whether users can hear both speech and background noise	Bone-conduction headphones	
Vibration module	Vibrate if there is an object within 2m in front of the user	Recalibrate the distance estimation feature	
Device controls (buttons)	Turns on and off (vibration module, auto/manual settings) when the user presses the button	Unit-testing for the different modes	
Module integration	- Compare the time for the product to provide the result to the minimal recognition delay. -The overall product weighs less than 450g -Battery lasts more than 4 hours	Find bottlenecks in our system to improve latency	
Functionality	The device detects and alerts the closest object within 2m of range from the user	All of the above	

Test Success

Testing	Metrics	Result
Object Recognition Model	> 70% on identifying an object	95% (38/40 images, 5 objects)
Distance Estimation Feature	± 30cm of actual object distance	Tests done on 4 different distances. Average of 21.5% uncertainty within ± 30cm
Text-to-speech Module	user-testing for surrounding sounds 20 trials each object	100% (20/20 person, 20/20 couch, 20/20 chair, 20/20 cat, 20/20 cellphone)
Vibration Module	> 95% accuracy on vibration	100% (20/20 on person, 20/20 on nothing)
Device Controls (buttons)	100% accuracy on controls	100% (20/20 on button A, 20/20 on button B)
Module Integration (weight)	< 450g on the overall product weight	192g (device) + 209g (battery) = 401g < 450g

Test Failure & Improvement Plan

Testing	Metrics	Failure	Plan
Recognition Delay	< 2.5s to recognize an object	~8 seconds delay for 20 seconds testing. Frame delay due to the latency of the OR model	Reduce the bottleneck of the model -restrict the number of classes to identify) -skip a detection every 3 frames
Battery Life	> 4 hours of running	Headless device needs to be deployed	Deploy the device headless and run it on the battery
Functionality	> 70% on the accuracy	Headless device needs to be deployed	Measure accuracy with the headless device with LAMP volunteers

Trade-offs

• Chose **pre-trained model** instead of trained model with indoor object dataset

Model	Real Objects	Detected	Falsely detected	Percentage (%)
Pre-trained	58	49	5	84.4
Trained	58	21	4	36.2

- Chose **Distance Estimation feature** in the OR model instead of ultrasonic sensor
 - Ultrasonic sensor does not work well with Jetson Nano
 - DE feature rarely goes over ± 30cm, although some calibration is necessary

Actual (m)	Detected (m)	Off (m)
1.80	1.82	+ 0.02
1.20	0.89	- 0.31
0.20	0.38	+ 0.18
2.2	1.94	- 0.26

Timeline

Workload Split:

Hardware by Meera

Object Recognition Model by Josh

Speech and Vibration Modules by Shakthi

Overall Integration and Device Design by All

- 1. Headless Device
- 2. User Testing
- 3. Reduce frame delay
- 4. Improve product appearance

Project Takeaways

Technical knowledge/technology necessary for the project

- 1. Machine Learning techniques, frameworks (Josh)
- 2. Circuit & PCB design, GPIO configuration (Meera)
- 3. Linux Sound Architecture, Sensor & GPIO Configuration (Shakthi)
- 4. NVIDIA Jetson Nano configuration/programming (All)

Importance of slack time

- 1. Integration of multiple modules took longer than expected
- 2. Progress not met as expected (conflict with other courses or events)

Reading documentation / Research

- 1. Github README & Issues
- 2. NVIDIA tutorials
- 3. Stack Overflow
- 4. YouTube videos