

SightMate

by Meera Pandya, Josh Joung, Shakthi Angou

Introduction

- Background: Challenging for VI people to navigate indoor spaces due to changing layout, unclear directions, and many obstacles
- **Issue:** Guide dogs are inaccessible, and reliance on sighted guides makes independent navigation difficult
- **Goal:** Build an automated wearable navigation system that alerts the user of objects near them

Common Hazards

https://journals.sagepub.com/doi/10.1177/0264619619833723

Use Case

- Accessible and affordable alternative for guide-dogs or sighted guides in indoor navigation
- Will be used along with a cane, which is the most commonly used assistive device for the visually-impaired
- Project scope restricted to well-lit indoor spaces with minimal to medium-level object crowding

Requirements

minimum of **4 hours** because a guide dog usually takes a break every 4 hours.

Accuracy

at least **70%** because it is the minimum qualification to become a guide dog.

Measuring Distance

minimum of **2 meters** because a user would need enough distance to avoid the obstacle

Weight

no more than **200 grams**, battery pack may be offloaded to waist if needed

Recognition Delay

less than **2.5 seconds** to permit 2-meter detection (blind pedestrians walk at .8 m/s)

Noise Detection

user should be able to **hear surrounding noises** regardless of the audio device

Challenges & Solutions

1. Detecting an object with an accuracy of at least 70%

Test several options of existing object recognition models and build off of the one with best results

2. Handling consecutive changes in directions

Create a threshold for which the user needs to wait for a few seconds to detect the object before moving

3. Minimal delay between device modules

Reduce data latency within each module with a simple architecture to optimize performance time

4. Connecting a sensor to an object recognition program

Use an object recognition program that incorporates data collected from depth detectors or implement the OR model to identify objects by distance

5. Molding into a stable and comfortable device

Conduct weight testing to verify that the device is wearable without significantly restraining movement

Architecture

Tools

Software			Hardware
Tensorflow			Raspberry-Pi
PyTorch			Camera
OpenCV	SW	HW	Ultrasonic Sensor
	_		
	R /		VSCode
Scikit-learn		P	Github
YOLOv7			Raspberry-Pi OS
Module			Platform

Testing & Verification & Metrics

Testing	Verification	Metrics	
Object recognition model	Identify the closest object	> 70% on identifying an object	
Distance detection module	Measure the distance of the closest material	>70% on noticing the existence of the closest object within 2m	
Text-to-speech module	Able to hear both the audio output and background noise	> 90% on a noise testing to identify both speech and background noise	
Vibration module	Vibrate based on the distance of an object	>90% on vibrating once the device detects the object within 2m	
Device controls (buttons)	Turns on and off based on the user input	>90% on testing whether switches correspond to the user input	
Module integration	The recognition delay is minimal The weight is distributed evenly	< 2.5s to recognize an object >90% on user survey on the distribution of weight	
Functionality	The device detects and alerts the closest object within 2m of range from the user	>70% on the accuracy	

Risk Mitigation

- RPi Heatsink Issue → Pivot to using network connection (such as ESP_NOW) with an external processor for ML models
- Device Overweight → Offload battery and/or RPi to a pack worn on the user's waist
- **Poor Sensor Integration →** Modify recognition model to estimate distances using camera data

Division of Labor

Tasks	Detail	PIC	
Hardware	Raspberry Pi Setup	Meera Pandya	
Implementation	Camera, Audio device, Ultrasonic sensor, RPi Integration		
Software Program Implementation	Object Recognition ML Model	Josh Joung	
	Raspberry Pi OS		
Software Module Implementation & Device Integration	Speech and Vibration Module	Module Shakthi Angou	
	Device Design		

