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Abstract—A microgrid energy management system
to economically optimize the generator and ESS dis-
patch over a 24hr horizon given predicted renewable
generation and dynamic loads based on weather data.
Includes a web application to input custom microgrid
architectures and generation capabilities, and output
optimization schedules, costs, and power flow visualiza-
tions.
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1 INTRODUCTION

With the growing use of renewable energy sources,
there’s a need for better ways to efficiently simulate power
flow in microgrids, like the one in Figure 1. Microgrid de-
velopers are interested in knowing how their grid will per-
form from a feasibility and economic standpoint. With the
addition of stochastic wind and solar generation, optimal
control of a microgrid requires accurate and reliable fore-
casting. Existing commercial Optimal Power Flow (OPF)
tools are primarily designed for stable, large-scale distribu-
tion networks without the intricacies of batteries and re-
newables. Furthermore, traditional microgrid sources such
as diesel generators are problematic due their environmen-
tal issues and ramping constraints. Therefore an energy
storage system (ESS) is often included to provide real-time
power injections to balance supply and demand and per-
form energy arbitrage. An accessible web-based manage-
ment application will allow the developer to simulate the
operation of their customized grid at the 1-hour scale us-
ing an optimized economic dispatch algorithm and a gen-
eration and load forecasting tool that will give them rough
estimates of economics and stability.

2 USE-CASE REQUIREMENTS

The Sugar-DB simulation tool satisfies a specific set of
requirements needed by microgrid planners and controllers,
with each requirement linked to a specific design require-
ment:

1. Allow users to provide their own microgrid ar-
chitecture with ESS and renewable generation via
GridLAB-D design files and specify any US location
for their microgrid simulation to take place.

2. Accurately forecast power generation for any solar
and wind power sources in the grid as well as demand

for any loads in the grid. Make predictions for the full
day ahead with a 1-hour rolling dispatch interval.

3. Solve a multi-period OPF problem for the defined
grid architecture over a 24-hour horizon at 1-hour dis-
patch intervals to produce the optimal energy storage
and generation dispatch.

4. In the web interface, visualize power flows, energy
forecasts, and other relevant statistics related to the
user’s simulated microgrid.

Figure 1: Overview of nodes in a standard microgrid [1]

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Here we present the full system architecture for our ap-
plication. At the foundation, we have a suite of prediction
models that draw from OpenWeatherMap API, incorpo-
rating variables such as temperature, wind speed, and hu-
midity to accurately model solar, wind, and load forecasts.
The generation and demand predictions then feed into the
optimizer and produce information such as the grid states
and dispatch schedules.
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Figure 2: Block Diagram for the System Architecture

On the application side, the Operational Panel Webapp is
the user’s gateway, featuring an Input Setup Panel that
allows for the specification of the location and the upload
of the user’s customized microgrid design. The Network
Visualizer then graphically displays the microgrid layout,
providing clarity on node connections, paths, and types,
as well as real-time power flows. Additionally, we incor-
porate a Scheduling Visualizer and Forecasting Visualizer,
offering users a granular view of their microgrid’s operation
schedule and energy forecasts. [Fig. 2]

4 DESIGN REQUIREMENTS

Design requirements for each of the three core compo-
nents are divided into Functional Requirements which
define correct behavior and Performance Requirements
which define the tolerable speed and error of processes.

4.1 Energy Forecasting

Functional Requirements

• Weather API - Access real-world, hourly weather
forecasts within 1 second (Use Case Requirement 2)

• Model Features - Predict renewable power genera-
tion and demand (% of capacity) at a specific times-
tamp using only weather features accessible through
a weather forecasting API (Use Case Requirement 2)

Performance Requirements

• Model Error - All models achieve better perfor-
mance than naive approach and comparable accuracy
to our goals in 7 (Use Case Requirement 2)

• Model Speed - New predictions are generated in
less than 10 seconds (Use Case Requirement 2)

4.2 Optimization

Functional Requirements

• Correct Three Phase Linear Battery Model -
battery state variables meet equality and inequality
constraints that define this model at each time step
(Use Case Requirement 3)

• Distribution Device Models - power flow solver
supports the following devices commonly found in
distribution systems:

– Capacitors

– Fuses

– Synchronous Generators

– PQ Loads

– Reactors

– Shunts

– Switches

– Three Phase Transformer

– Pi-Model Lines
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• Robust Convergence - multi-period optimization
problem converges to a local optimum for all 3-phase
IEEE test cases (Use Case Requirement 3)

Performance Requirements

• Fast Convergence - multi-period optimization
problem converges within 15 minutes on Lenovo
Thinkpad with 8 × Intel® Core™ i5-8250U CPU @
1.60GHz. (Use Case Requirement 3)

• Accurate Power Flow - single state powerflow so-
lutions are within 0.2% error of verified GridLab-D
solutions. (Use Case Requirement 3)

4.3 WebApp

Functional

• Customizable Microgrid Architecture Design -
take in the user’s customized GridLAB -D microgrid
design via file upload (Use Case Requirement 1)

• Battery Charge Profile Visualization - real-time
power flow predictions on the user’s customized mi-
crogrid design with a clean, reasonable, and informa-
tive visualization (Use Case Requirement 4)

• Forecasted Generation and Load Visualization
- Visualize forecast, load, and dispatch (Use Case Re-
quirement 4)

Performance

• Response Time - under 1 second

5 DESIGN TRADE STUDIES

5.1 Forecasting Alternatives

• Simple Statistical Methods:

In our design process, we considered the tradeoffs be-
tween employing ML models and simpler statistical meth-
ods for energy forecasting. Simple statistical methods,
such as moving averages and exponential smoothing, of-
fer straightforward implementations, are computationally
efficient, and are easy to interpret. However, these meth-
ods rely heavily on recently observed data related to the
specific scenario of interest in order to output accurate
forecasts, and real-world feedback is not available within
our simulation. In addition, they tend to struggle to cap-
ture complex relationships and nonlinear trends present in
energy generation data. [2]

On the other hand, ML models, such as Random For-
est regression models, offer a more sophisticated approach
to forecasting. By training on historical data, Ensemble
ML methods have the capability to capture intricate pat-
terns and dependencies in the data, making them poten-
tially more accurate for predicting energy generation. [3]

• Physics-Based Methods:

Physics-based models offer an alternative approach to
energy forecasting, relying on fundamental principles and
physical laws governing energy generation processes. One
example is the Weather Research and Forecasting (WRF)
model: a widely used mesoscale numerical weather predic-
tion system, which simulates atmospheric processes based
on fundamental physical principles.[4] Physics-based mod-
els can provide valuable insights into the underlying mech-
anisms driving energy generation, allowing for more inter-
pretable and explainable forecasts. However, they require
extensive domain knowledge and computational resources
to develop and calibrate, limiting their practical applica-
bility in the range of scenarios we intend to capture. For
our purposes, more generalizable and less time-consuming
options, such as random forest regressors, are preferred.

5.2 Optimization Alternatives

• ML and Genetic Algorithm Methods:

The approach taken in this project follows methodology
used in optimization solving through the setup of a La-
grange function and a newton-raphson solver to find the ze-
ros of the corresponding Karush-Kuhn-Tucker conditions.
There are entirely different ways of finding optimal opti-
mization trajectories, however, including ML models and
genetic algorithms. ML-based models for multi-period en-
ergy dispatch offer ease of formulation and implementation
but suffer from lack of interpretability due to the black
box effect. Genetic algorithms offer an effective approach
towards trajectory optimization but are limited by their
lack of physics modeling [5]. Therefore, we chose to use a
well defined optimization problem that incorporates phys-
ical grid constraints.

• Generic Optimization Problem Solvers

There exist a plethora of general purpose optimization
solvers that can theoretically find the DC optimal power
flow for a microgrid because it is a linear program. Some
of the most popular include the Matlab FMINCON tool
(a Mixed-Integer Linear Program solver), CPLEX, and
Gurobi. The AC-OPF formulation used in this project, as
described in Section 6.2.1 includes non-linear constraints
which result in a non-convex optimization problem that
cannot be solved using these tools. There exist many pro-
prietary AC-OPF solvers that can handle these constraints
such as PowerWorld, PSSE, and ETAP but they are im-
possible to adapt into a multi-period AC-OPF problem be-
cause they are closed-source. Therefore we chose to use the
SUGAR3 AC-OPF solver because it is scalable, accessible
through a Python implementation, and robust to various
initial conditions. In addition, because SUGAR3 is de-
veloped at CMU we can enable close collaboration in our
multi-period extension to the framework.
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6 SYSTEM IMPLEMENTATION

6.1 Energy Forecasting Models

This section will highlight the data, methods, and tech
stack associated with our energy forecasting design plans.
The goal of our forecasting efforts is to train models that
can accurately predict wind and solar energy generation as
well as energy demand in any location in the U.S. These
predictions will be leveraged by our optimization frame-
work as inputs to the multi-period solver.

6.1.1 Data

For the forecasting component of our application, The
strength of our predictive models relies upon the accuracy
and relevance of the available data. As such, a diverse
range of data sources must be leveraged to meet our re-
quirements. Before model deployment, historical weather
and power generation/consumption datasets will be used
for training and evaluation:

Solar Data

• Source - 2022 dataset downloaded from the National
Solar Radiation Database combined with cloud cov-
erage data from the OpenWeatherMap API.[6, 7]

• Location - Pittsburgh, PA

• Characteristics

– Features: Month, Day, Hour, Temp, Humidity,
Pressure, Cloud Cover

– Target: Global Horizontal Irradiance (GHI) con-
verted to photovoltaic (PV) power (% of capac-
ity)

– 8760 data points

Wind Data

• Source - 2018 SCADA wind turbine dataset down-
loaded from Kaggle.[8]

• Location - Yalova, Turkey

• Characteristics

– Features: Month, Day, Hour, Wind Speed,
Wind Direction, Pressure

– Target: Wind Power (% of capacity)

– 5053 data points

Load Data

• Source - 2013 collection of datasets measuring elec-
tric load in 21 households, downloaded from the Uni-
versity of Strathclyde, Glasgow.[9]

• Location - United Kingdom

• Characteristics - 3 input features, 1 target variable,
5053 data points.

– Features: Month, Day, Hour, Temp, Humidity,
Pressure, Cloud Cover

– Target: Electrical Demand (% of nominal)

– 8760 data points

These datasets are pre processed by normalizing dates,
times, and power values, imputing missing values, and
aggregating features. The model outputs are scaled be-
tween 0 and 1 in addition to each model’s post process-
ing (i.e. weighting solar outputs by time between sunrise
and sunset). Following training, validation, and integra-
tion with our application, our models can take in future
hourly weather forecasts that mirror our training features
and predict each target variable for the day ahead, in 1
hour intervals.

6.1.2 Baseline Model

In order to help evaluate the performance of our final
models, we are using linear regression as a naive approach,
given its simplicity and interpretability. The resulting error
metrics act as baseline values and the coefficients given by
each model indicate the importance of different features in
predicting the target variable, which we can use for fine-
tuning later models.

6.1.3 Final Model

Our initial plan for the final forecasting pipelines in-
cluded LSTMs as the primary model, due to their ability to
capture trends in time series data, however these ended up
being uneffective for our purposes, since we don’t have ob-
served ground truth from every location to learn from. In-
stead, we used an AutoML tool developed at the Auton Lab
at CMU, which generated rankings of 10 potential model
choices based on their performance on each of our datasets.
From experimentation with these options, the best met-
rics were achieved by Random Forest, a method that is
particularly effective for handling complex datasets with
non-linear relationships and interacting variables, which
are characteristic of energy data. A full diagram of our
final pipeline is shown in 13.[10, 11, 12]

Figure 3: General Architecture of Random Forest [13]

A diagram of the basic structure of a random forest regres-
sor (or classifier) can be found in 3, highlighting the aggre-
gation of multiple decision trees to form a more accurate
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and stable prediction. This configuration allows the model
to leverage diverse data splits, ensuring each tree in the for-
est considers a random subset of features and data points,
which enhances the generalization of the model. The final
decision at each node is made based on the majority vote
or average of predictions, providing a balanced insight into
the predictive trends captured across the individual trees.
This process not only improves prediction accuracy but also
gives insights into feature importance, helping us to refine
the models for forecasting tasks.

6.1.4 Solar Conversions

Due to limitations in data availability and the direct
relationship between irradiance and PV power, our predic-
tion model for solar panels first predicts GHI (% of stan-
dard GHI) from weather features before being converted to
generated power (% of capacity) via equation 1. PPV is
output power, PPeak is the panel’s rater power, and Tc is
the panel’s cell temperature.[14]

PPV (t) = PPeak(
G(t)

Gstandard
)− αT [Tc(t)− Tstandard] (1)

6.1.5 Libraries and Frameworks

The code for building, training, and evaluating our ML
models was written in Python, along with the following
software tools:

• Pandas: For data manipulation and preprocessing
tasks.

• NumPy: For dataset array operations and mathemat-
ical computations.

• Scikit-learn: For our baseline models as well as for
preprocessing, model selection, and evaluation.

• TensorFlow: For building and training LSTM mod-
els, providing a high-level API for neural network con-
struction.

• Requests: For making HTTP requests to online APIs,
enabling data retrieval from weather services.

6.2 Multi Period Optimization Solver

6.2.1 Optimization Formulation

To construct our multi-period optimization framework,
we extend SUGAR AC-OPF, which optimizes steady-state
operation for a single time period to include time-variant
energy storage systems.

A. SUGAR3 SUGAR [15] solves AC OPF at the trans-
mission scale using circuit based heuristics to ensure ro-
bustness to initial conditions and convergence to a local
minima. SUGAR3 extends SUGAR to three phase distri-
bution systems using a similar equivalent circuit analysis
framework [16].

Optimizing a single time-period AC-OPF is represented
by a Lagrange function with dual and slack variables to
represent network equality constraints and device limits re-
spectively, shown in 2

LACOPF = Cg ∥Pg∥22+wf ∥If∥22+λT (g(X)+If )+µTh(X)
(2)

Where

• Cg is generator cost ($)

• Pg is synchronous generator real power (MW)

• λ is dual variable vector for equality constraints

• g(X) is vector of non-linear equality constraints given
by power flow equations

• µ is vector of slack variables for inequality constraints

• h(X) is vector of inequality constraints given by line
and device limits

• If is an feasibility current injected at each node to
ensure feasibility

• wf is a large weight to minimize feasibility currents

Figure 4 shows the methodology used in SUGAR3. A
multi-period optimization formulation and implementation
for a microgrid using SUGAR3 was developed

Figure 4: SUGAR3 Single Period AC-OPF Methodology
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B. Energy Storage System Model Time variant ESS
models are incorporated in the optimization problem with
constraints of state of charge (SOC) and maximum charge
and discharge rates. ESS are constantly discharging and
charging in the microgrid but their behavior can be mod-
eled through average real discharge power Pd and real
charge power Pc during a time period ∆t. The ESS dy-
namic charging equation 3 couples the SOC at time t and
the SOC at previous time step t − ∆t. The charging and
discharging efficiency terms ηc and ηd are between [0, 1].
The SOC, B, has maximum and minimum charge limits
B and B as seen in equation 4. The charge and discharge
rates are also bounded from above by maximum rates Pc

and Pd shown in equation 5.

Bt = Bt−∆t +∆t(ηcP
t
c − ηdP

t
d) (3)

B ≤ B ≤ B (4)

Pc ≤ Pc Pd ≤ Pd (5)

C. Slack Bus Cost In the power flow method, the slack
bus accounts for the mismatch between the rest of the gen-
eration and loads, and is set as a reference node with known
voltage and angle. The slack bus can be thought of as an
infinite source, which is equivalent to the bus connecting a
microgrid to the external grid. Therefore the slack power
in this simulation is the imported power from the grid. We
add the cost of importing external power to the objective
function through the square of the power Pg and a cost
weight Cg.

Multi Period Formulation

The models for generator ramping constraints and ESS
dynamics are inherently time variant, requiring outputs
from the previous state at each time period. Realistically
optimizing a microgrid with ESS requires correct model-
ing multiple periods to ensure SOC remains within limits.
Therefore a multi-period optimization problem was devel-
oped to solve for dispatch at each time period while follow-
ing time-varying constraints. The following formulation 6
describes the multi-period optimization problem over n pe-
riods from time t = 1 to tn with increments of ∆t.

min
X

tn∑
t=1

Ct
g(P

t
g)

2 + (Ct
dP

t
d − Ct

cP
t
c ) + ∥If∥22

s.t. gt(Xt) = 0 1 ≤ t ≤ tn

ht(Xt) ≤ 0 1 ≤ t ≤ tn

B ≤ Bt ≤ B 1 ≤ t ≤ tn

Bt = Bt−∆t +∆t(ηcP
t
c − ηdP

t
d)

P t
c ≤ Pc

P t
d ≤ Pd

(6)

This multi-period optimization problem minimizes the to-
tal cost of imported power and ESS dispatch over all peri-
ods while ensuring network feasibility. The Lagrange func-
tion LMP associated with this constrained optimization

problem is shown below.

LMP =

tn∑
t=1

Ct
g

∥∥P t
g

∥∥2
2
+ (Ct

dP
t
d − Ct

cP
t
c ) + ∥If∥22

+λt · gt(Xt) + µt · h̃t(Xt)

+λBt ·
(
Bt −Bt−∆t −∆t(ηcP

t
c − ηdP

t
d)
) (7)

The inequality constraint function h̃t(Xt) in equation 7 in-
corporates the ESS inequality constraints (4, 5). Notably,
the Lagrange function LMP is the sum of the SUGAR3
Lagrange functions 2 over all time periods with the added
coupling terms from the ESS.

A. Differential Dynamic Programing To solve this
optimization problem, a grid state at each time period must
be found that satisfies the KKT conditions. This is accom-
plished through differential dynamic programming (DDP).
DDP simulates the grid dynamics over multiple periods to
calculate a total cost through a forward pass, then updates
the coupling terms based on results from the forward pass.
During a forward DDP pass, the algorithm feeds forward
variables from the previous time step and sets future vari-
ables constant. At convergence, the backward pass does not
affect the next forward pass, indicating that the algorithm
reached a minimum.

B. Using Forecasted Generation and Loads The
forecasted generation and load outputs from the machine
learning model are used as inputs to the multiperiod opti-
mization problem at each period. At a time t, the machine
learning model outputs generation capacity factors ctw and
cts for wind and solar generation and a load factor LF t.
ctw and cts will be multiplied by the nameplate real power
capacity of the generators defined in the grid model and
the corresponding power within the grid state Xt will be
updated. LF t will adjust all loads within the grid state
Xt.
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Figure 5: Multi Period AC-OPF Methodology

6.3 Web App

For our web application’s backend, we’ve chosen the
Django Web Framework for its rapid development, fully-
featured functionalities, security, and scalability. Django
promotes reusability to reduce the amount of redundant
code and make the development process faster by provid-
ing many ready-to-use components for common web de-
velopment tasks. It has features that cover many needs
of web development such as authentication, URL routing,
template engine, object-relational mapper, etc. It also
focuses on security, providing built-in protection against
many common vulnerabilities by default. Furthermore,
Django uses a component-based architecture, which makes
it easy to scale the application up or down as needed and
handle high traffic volumes.

The frontend is crafted with pure CSS/HTML enhanced
with Vis.js for dynamic, interactive visualizations. A key
feature is using a parser, which transforms complex mi-
crogrid data into a user-friendly readable format, enabling
detailed visualizations of network connections, power flows,
and forecasting data.

Finally, the web app will be deployed on AWS EC2
for its reliability and accessibility. The AWS EC2 allows
scaling the compute capacity up or down automatically
according to the application’s needs, providing flexibility
for handling varying traffic loads efficiently, and ensuring
that the application is responsive even during peak times.
Also, AWS provides a highly reliable environment where
replacement instances can be rapidly and predictably com-
missioned. Additionally, with EC2, we pay only for the

compute time you consume, which can further optimize
the cost.

Currently, we plan to run the machine learning model
and optimizer locally. However, if running locally will affect
the overall performance, we’ll deploy the machine learning
model on a platform such as AmazonSagemaker and trans-
mit data back and forth through Websockets.

Figure 6: Web App Pipeline

7 TEST & VALIDATION

7.1 Forecasting Model Evaluation

For the machine learning component of our design, we
employed a comprehensive testing strategy to evaluate the
effectiveness and reliability of our forecasting models.

7.1.1 Baseline Model

We used linear regression as a naive forecasting ap-
proach to compare to our final models, given its simplicity
and interpretability. Across the three fitted linear regres-
sion models, The average R2 score was 0.34 and the aver-
age NRMSE score was 31%. Both of these baseline metrics
were surpassed by all three of our final pipelines.

7.1.2 Performance and Timing Metrics

In addition to exceeding the metrics of our baseline
models, we also achieved our performance goal of normal-
ized root mean squared error (NRMSE) < 20%, which is
based on prior research in the field of energy forecasting
using machine learning methods:
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Figure 7: NRMSE Scores for Forecasting Models

As for the timing requirements set in our design review,
our final pipeline easily meets our goals, running far faster
than expected:

Figure 8: Timing Metrics for Forecasting Models

7.1.3 Model Behavior Across Weather Conditions

To verify the behavior of our ML models, we plotted
averages of our predictions on test data against the ground
truth values and compared them with global trends. Fig-
ure 9 shows that our solar power predictions match the
expected real world behavior since power is only generated
at daylgith hours and generation increases with tempera-
ture in general.

Figure 9: Average Solar Power on Hot vs Cold Days

Figure 10 shows that our load predictions match the
expected real world behavior since demand peaks in the
mornings and evenings, when people are at home using ap-
pliances. It also shows a slight increase in cold weather due
to heating requirements

Figure 10: Average Load on Hot vs Cold Days

Figure 9 shows that our wind power predictions match
the expected real world behavior since power increases with
wind speed in direct coordination with the test ground
truth.

Figure 11: Average Wind Power vs Wind Speed

7.2 Optimization Algorithm Validation

To ensure that the optimization algorithm generates
cost-effective and feasible dispatch sequences within the re-
quired time frame, we will perform various correctness and
performance tests.

7.2.1 Functional Testing

To ensure that modifications to the SUGAR3 optimiza-
tion framework still produce correct results, the steady-
state solution of each time period was compared to the
solution of a verified AC-OPF solver - GridLabD [17]. The
SUGAR3 solutions all showed a maximum error no larger
than 0.2% which is the tolerance specified by the developers
of SUGAR3. This test verified that powerflow was solved
correctly.

To verify correct battery behavior, the residuals of the
battery equality and inequality constraints during all multi-
period testcases for the 2 bus microgrid reference model
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were less than 1e-20. This verifies that the battery follows
the constraints imposed by our optimization problem.

An example optimized battery dispatch is shown below
in 12. The two plots contain the average discharge power
and the cost importing power for each hour in a 24 hour
simulation. As expected, as the price of power increases,
the battery discharges more to minimize the amount of
imported power. Each colored line represents the battery
dispatch for a single epoch, with epoch 0 in purple and sub-
sequent epochs of the DDP loop in colors moving towards
yellow on the rainbow. This shows how DDP converges in
only a few epochs to an optimal solution.

Figure 12: Battery Dispatch and Slack Costs

7.2.2 Performance Testing

To ensure sufficiently fast convergence time to meet the
1 hour dispatch requirement, the multi-period optimiza-
tion solver was tested on a suite of realistic distribution
network test cases from IEEE. These include a 13 bus case,
an 4 bus case, and a 2 bus case, each with a single bat-
tery. For each of these testcases, the multiperiod optimizer
converged within less than 20 minutes.

7.3 Web App

Our web app underwent a series of testing suites to en-
sure a seamless user experience.

• Unit Testing - confirm each component’s function-
ality.

• Integration Testing - ensure each component works
harmoniously.

• User Integration Testing - check if the UI is intu-
itive and visually appealing.

• Compatibility Testing - verify our app functions
across browsers like Chrome, Firebox, and Safari.

• Usability Testing - gather feedback from real users
to evaluate the ease of use, intuitiveness, and overall
experience through task success rate, time on task,
and user satisfaction ratings.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Fig. 15.

8.2 Team Member Responsibilities

Responsibilities for this project are split between the
three components of the application: ML forecasting, op-
timization, and web app development. Carter is focused
primarily on training and deploying the forecasting mod-
els, Alby is focused on the optimization framework, and
Yuchen is focused on creating and designing the web in-
terface. Despite this division of workload, we collaborated
on many tasks, especially on the final integration with the
webapp.

8.3 Bill of Materials and Budget

We plan used a general purpose cloud computing ec2
instance from AWS. The final cost of the AWS instance
was around $94 in fees.

8.4 Risk Management

8.4.1 Data Quality and Diversity

• Risk - Insufficient or poor-quality data may hinder
the accuracy of our forecasting models, especially if
they do not capture a range of locations and condi-
tions.

• Mitigation - We conducted data preprocessing and
cleaning to address missing values, outliers, and in-
consistencies.

8.4.2 Model Complexity and Performance

• Risk - Overly complex models may lead to compu-
tational inefficiencies or overfitting, while overly sim-
plistic models may result in poor predictive perfor-
mance.

• Mitigation - We performed feature selection and
dimensionality reduction techniques to streamline
model complexity. We then evaluated our model per-
formance with cross-validation to ensure robustness
and generalizability.

8.4.3 External Dependencies

• Risk - Dependence on third-party APIs, libraries, or
tools may introduce disruptions to our project work-
flow and data access if a tool fails.

• Mitigation - We identified alternative APIs and li-
braries as backups in case of service interruptions or
changes in third-party providers, but didn’t need to
use them during the project demo.
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9 RELATED WORK

• SUGAR 3 - Regarding relevant projects, SUGAR3
lays the groundwork for our project. The SUGAR3
optimization methodology is an extension of the
SUGAR framework, designed specifically for solv-
ing the Alternating Current Optimal Power Flow
(AC-OPF) problem at the transmission scale. The
original SUGAR methodology utilizes circuit-based
heuristics to achieve robustness against initial con-
ditions and to ensure convergence towards a local
minimum. SUGAR3 builds upon this by applying
a similar equivalent circuit analysis framework to
three-phase distribution systems.

In the context of optimizing a single time-period AC-
OPF, SUGAR3 employs a Lagrange function that
incorporates both dual and slack variables. These
variables are crucial for representing network equality
constraints (which ensure that the power flow equa-
tions are satisfied) and device limits (which enforce
the physical and operational limitations of the de-
vices in the network), respectively. This approach
allows for a systematic and efficient optimization of
power flow within a three-phase distribution system,
ensuring that solutions are both feasible and opti-
mized within the defined constraints.

• GLM Plotter - It is an interactive visualiza-
tion app for power system networks described in
Gridlab-D Model files. This open-source app uses
Flask as the back end and D3’s force layout as
the front end. It serves as a great reference
for visualizing the microgrid. The GitHub repos-
itory can be viewed through the following link:
https://github.com/jdechalendar/glm-plotter.

• Renewables.ninja - It is a website that runs simu-
lations of hourly power output from wind and solar
PV farms by clicking anywhere on the map, which
is a great source of design reference for web apps.
The website can be viewed through the following
link:https://www.renewables.ninja/.

10 SUMMARY

Our design to create an application for simulating the
behavior of custom microgrid architectures allows micro-
grid developers to estimate costs of their systems using an
intelligent battery dispatch algorithm as well as visualize
power flows and energy forecasts. By allowing users to in-
put their custom microgrid architecture, including energy
storage systems (ESS) and renewable generation sources,
our application offers a comprehensive platform for effi-
cient energy management. The impact of our design ex-
tends to anyone interested in the feasibility and economic
performance of microgrids, providing them with the tools
to simulate and optimize their grids at a 1-hour scale and

make informed decisions about their operation. Challenges
in implementing this design included ensuring the accuracy
and reliability of our forecasting models as well as meeting
the ambitious requirements we set for our optimization and
visualization features. Additionally, integrating the web
interface with external tools and APIs presented technical
hurdles that required significant time to debug.

An important lesson learned was that becoming too
siloed in our different component without constantly com-
municating made integration more difficult as we had to
adjust our I/O code to fit everything together.

Future work would include expanding our testcases to
larger, more realistic microgrid models, using industry sup-
plied cost weights on battery operation and import power
pricing, and comparison of overall system cost with other
optimized and non-optimized dispatches.
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Figure 13: ML Pipeline for Power Generation/Demand Forecasting
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