Use Case & Requirements

e A searching rover application that can
autonomously locate people needing help and
shine a laser spotlight on them

e Ideal customers are rescue agencies and
humanitarian organizations

e Requirement #1: Accurate laser control and
human identification

e Requirement #2: Longevity of autonomous drive
of the rover

e Requirement #3: Fast response times on web
application

Quantitative Design Requirements

#01
Accurate laser control and
human identification

Accuracy of human identification
through YOLOVA5: top-1 Accuracy of
> 80% and top-5 Accuracy of > 90%.
False positive rate of < 1%.

Ability to turn on the laser and

navigate to the laser pointing position:

offset between laser and human is + 1
feet

#02
Longevity of autonomous drive
of the rover

Complete search in creeping line
search pattern in <5 minutes at a
speed of 1 m/s

Stability of rover during movement
and ability to hold 0.5kg of load like a
camera, camera count, and laser
circuitry

Cost effectiveness of the rover: <$300

#03
Fast response times on the
web application

Speedup of YOLOV5 object detection
through a distributed server of 5x
compared to the sequential model

Low latency of communication
between all subsystems: latency of
<50ms between seeing a human and
reporting on web app

Secure and user-friendly

Solution Approach and Changes

Perform search
in a creeping
line search
pattern

—)

No One
Found

Perform
YOLOVS5 object
detection on
video stream

Person
Found!

on when a
person is
detected

Laser switches

*Now using a efrenre rover!

CV server sends
degree difference to
rover controller

Rover centers
laser at person
(noting angle
and positioning)

Impact

Social: Providing aid remotely
in dangerous scenarios
Cultural: Offer aid to people
without discrimination of
human bias while searching
Global: Less need for direct
intervention in SAR operations
worldwide, more human lives
kept safe

Rover
Wood Mount
i Waveshare WAVE ROVER Body
fetgo MOSFET Circuit
Laser Head
;T— uart —
IMX219 Camera . -
Moduls = Ribbon Cable Raspberry Pi E
\
ArduCam PTZ

Camera Controller

Video Stream and GPS Coordinates

Person Detection and Location

AWS EC2 Instance

Django Server Website

GPS tracking of rover over terrain

Rover Program

Movement Control

Laser Control

PTZ Camera Control

System

Specification

GoogleMaps APL: GPS
tracking rover

Rover Live Video Feed

KEY
Picamera Streaming & ~
HARDWARE Off-the-Shelf
N
SOFTWARE Custom Built
S 3
\ Y,
Distributed CV Server
Leader Server Array of CV Processing Units
- cv ing Unit | "0 oo
Load Algorithm to assign jobs Video frames
Resulting info
" o [YOLO Datection
l Video frames oY sg SO Mgt
it | YOLO Datech
Protocol to send data to controller Video frames v Sak o '
.
.
.

GPS Coordinates

Rover Hardware

ArduCam PTZ Laser IMX219 Camera
Camera Module Module Ribbon Cable
Controller

' P " Panning /O Laser
Tuophone UGV PTZ Circuit Tilt /O 9 Circuit PTZI2C RaspberryPi 4

Wave Rover

Final Demo Plans

e Testarena: 16’ by 16’ flat concrete
flooring surrounded by tall cardboard
panels

e Test setup: Rover placed at edge of
arena; 1 human randomly placed

e Rover follows creeping line search pattern
and points the laser at the person once
detected

e We ensured the human was detected in
different positions (sitting, standing, face
covered) considering all of our design
requirements

Testing, Verification, and Metrics

Requirements

Accurately identify humans in a flat
landscape

Autonomous rover control

Low latency

Point light to person’s location

Power consumption

Testing

Unit test images of people in different flat
environments, body parts hidden, multiple
people

Checkpoint tests of creeping search and
targeted rotation

Time taken to send, process, and return
information based on video data

Comparison tests between person’s
actual coords vs laser-pointed coords vs
calculated coords video frame data

Drive time of rover with and without laser
+ actuator attachment

Metrics

Top-1 Accuracy: > 80%
Top-5 Accuracy: > 90%

Can move in pre-specified pattern, and
correctly rotate to laser-pointing position if
person found (+ 1 feet of staying on course)

Latency of detection, data routing, and
result processing: < 5s

Offset in person location and calculated
location: + 0.5 feet

Offset in person location and
laser-pointed location: + 1 feet

Maintain <5 minute loss of drive time
when searching

Testing

UNIT TESTING with multiple (x) repeated trials

CV: Ensure the human is detected in the image (20)

Moving control: Run creeping line search, and see if it stays on track (20)
Latency: Clock the time between video being sent, human being detected,
and rover being notified (20)

Laser accuracy: Measure distance between laser pointed location and
“center of human” when the rover settles on target (20)

Power consumption: Run rover with/without paraphernalia until dead (2)

Overall Testing: Find human during the search, and adjust laser to point
o See video here!

https://drive.google.com/file/d/1ZQ5Lo7XyXo5vdskEbhy395UBR3K-CzlO/view?usp=sharing

Results

Requirements

Accurately identify humans in a flat
landscape

Autonomous rover control

Low latency

Point light to person’s GPS location

Power consumption

Goal Metrics

Top-1 Accuracy: > 80%
Top-5 Accuracy: > 90%

Can move in pre-specified pattern, and
correctly rotate to laser-pointing position if
person found (+ 1 feet of staying on course)

Latency of detection, data routing, and
result processing: < 5s

Offset in person location and calculated
location: + 0.5 feet

Offset in person location and
laser-pointed location: = 1 feet

Maintain <5 minute loss of flight time
when searching

Results

Top-1 Accuracy: 95%
Top-5 Accuracy: 100%

Average Distance Off-Course: 8.2 feet

Average Time: 1.44s-1.64s

Avg Offset in person location and
calculated location: + 0.3 feet

Avg Offset in person location and
laser-pointed location: + 0.38 feet

Average Loss: 8 minutes

Design Tradeoffs

e Rover vs. drone (10x cheaper)

e Preset search pattern vs. random
exploration

e Panning camera vs. fixed camera

e Manual camera control vs. autonomous
camera control

e Accuracy of laser vs. speed (2x slower)

e Number of worker nodes vs. speedup (4)

Speedup over sequential model with increases in CV nodes

6 ®

~

Speedup over sequential model
- N w » o
£
A
L 4
o

o
o
N
w
IS
3
[}
~
®

Number of CV processing nodes

Source: https://drones.wfp.org/index.php/activities

Project Management

task/milestone

Perform material research
Load Balancing Algorithm (1/2)
General Website Setup

Design Presentation Slides

Find methods for obtaining drones

Load Balancing Algorithm (2/2)
Implement GPS Tracking

Talk with Basti, Work on rover pivot by
re-examing parts and redesign project
Rover Camera & Communication
Research

Computer Vision Algorithm on the
Distributed Server

Obtain rover project materials, initial
work, spring break

Implement communication from
Raspberry Pi to the Distributed CV server

Implement working PTZ camera on RPi
desktop

Obtain more mats, switch from rover wifi

to UART comms

PTZ refinement and camera debugging

Integrate frame breakdown with CV
server code/ build laser pointing circuit

Rover movement with UART comms

Camera Frankenstein
Communication from CV server to rover
Finalize rover movement and tuning

Real time communication of video data

Monitoring Site Refinement & Scripting
Threading

Laser pointer accuracy
Integrate physically together
Final Presentation Slides
Test entirety of setup
Prepare for final demo

description

Perform research on correct materials to buy (motors, Arduino components, etc.), especially finding the right drone
Perform research on optimal load balancing algorithms and implement in Go

Create base template for Django website, do front/backend setup of site, and research hosting live video streaming
Design Presentation Slides

Find where and how to purchase/obtain drones to use that are suitable for our needs - talk with robotics professors
(like Basti)

Implement the load balancing algorithm in Go, and finish unit testing. Research fetching the video stream from the

Research and implement GPS tracking of drone using GoogleMaps API on top of Django website
Talk with Prof. Basti about drones, Talk with Tamal and Kim about failure, redesign project to be accomadating for
rover over drone usage

Research camera modules with moving feature that can be attached to rover, order, research new communication
methods of camera data to Ronit and monitoring site since drone fly app is removed

Implement the Computer Vision Algorithm on the CV processing units. Integrate with video frames and unit tests

Order rover and PTZ camera, examine rover code

Use FFMPEG to receive a uploaded video stream and break it into several frames for batch processing in Go

0S conversion from Buster to Bullseye, Firmware updates and changes to fix stale external trigger issue with camera,
order new ribbon cables in order to fix no camera display issue, implement PTZ on RPi with nondeprecated libraries
that OpenCV can support

Purchase smaller batteries and laser heads, test with rover web app, work out the correct JSON commands to send
over UART

Implement keyboard press control of PTZ gimbal using Arducam libraries and continue debugging camera
firmware/potentially hardware issue of stream going stale and no camera display showing

Build a laser pointing circuit using the Raspberry Pi pins and GPIO. Integrate frame breakdown with the Distributed
CV server and write unit tests

Work out the correct JSON commands to send over UART and/or debugging rover movement, set up new RPi for
concurrent work (VNC, ssh, Bullseye)

Order new imx219 camera and attach to camera serial data of RPi along with PTZ portion of broken camera and
disable communication between the components to allow for separate movement and live stream, research live
streaming from RPi to personal computer

Write scripts to use TCP to communicate from the CV server to the rover to turn on the laser pointer
Get controlled movement for rover through extensive debugging, and tune it to do exact turns and movement

Implement RPi streaming communication through use of OpenCV and picamera2 libraries to send video data to Ronit
and monitoring site and embed stream into site through iframe

Create script that will have preset camera movement pattern to look around and also further flesh out web
application with manual movement controls of camera

Have the code running on one RPi with threading between video streaming and code logic, or by using two RPis

Coordinate math to be able to point laser correctly, accounting for angle and positioning; Work with CV server to
handle location and pointing logic

Integrate everything, make mount

Final Presentation Slides

Make sure everything is integrated and working with server and website
Fine-tune anything that is needed

person/people
with pri
responsibility

David
Ronit
Nina
All
David

Ronit
Nina

David

Nina

Ronit

David

Ronit

Nina

David

Nina

Ronit

David

Nina

Ronit

David

Nina

Ronit
Al

Ronit & David
All
All
All
All

start
date

2/7
2/7
277
2/14

2/14

2/14
2/14

2/21

21

/21

2/28

2/28

2/28

3/13

3/13

3/13

3/20

3/20

3/20
3/27

3/27

3127
4/3

4/10
an7
4/17
4724

finish
date

2/14
2/14
2/14
2/18

221

21
721

2/28

2/28

2/28

3/13

313

3/13

3/20

3/20

3/20

3727

3127

3727
4a/3

4/3

a/3
4/10

4/10
an7
a1
4724

51

Lessons Learned

e START EARLY!
e Thorough research of OS compatibility and deprecated
libraries is required with each component

e Integration and communication of components is tricky, ¥ “Anything that
and latency considerations are important can go wrong
e Murphy is always watching | will go
o Always assume something will break and prepare Aol

ahead for it Edward A. Murphy, Jr.
o Always push any changes to GitHub in case of
hardware failures
o If it's not a software or firmware issue, it could
potentially be a hardware issue

Source:
https://www.freightnews.co.za/article/tariff-clas
sifications-how-avoid-murphys-law

