

1
18-500 Design Project Report: Team C6 3/1/24

Abstract—Current method of broadcasting a live car race requires

the labor of cameramen as well as of the production team. Beyond
labor, it introduces an aspect of danger for cameramen near the track
as well as possibilities of error due to human tracking and latency of
feed switching. Cameraman is our approach to supplement, or even
replace, this current form of live stream production, with the
development of auto-tracking cameras and a feed selection algorithm.

Index Terms—camera; car; livestream; OpenCV; track; tracking

I. INTRODUCTION

Sports are a common and popular form of entertainment.

That said, entertainment requires an audience, and for sports
specifically, the medium between sports and sports audience is
live streaming. This is especially true for racing sports. To
capture footage of a race, multiple cameras along with
cameramen are stationed at various locations around the track.
These footage then get sent to the media center, where they
determine the best footage of the race at a given moment and
switch the main stream to that footage like circuit switching.
However, there are certain challenges of this current approach.
Cameramen are usually located near the track and swivel their
camera as cars pass by, which could lead to accidental
collisions with the car. Additionally, this requires a sizable
production team of cameramen as well as operators.

Cameraman is our effort to approach this gap. Cameraman
is a system of cameras that provides an autonomous live
stream of a toy car racing around a track. Each camera will be
attached to motorized stands and will provide an auto-tracked
camera feed which the system receives and algorithmically
determines and switches the live stream to the best feed at a
given time. This project, when scaled up, will help the
production team of a racing event as it reduces the labor,
danger, and errors due to human involvement. It could also
allow for better footage to be taken as auto-tracking cameras
could be placed in locations that are closer to the action.

Our competing technology is the system that is currently in
place, which consists of the production team of cameras,
cameramen, and system operators. The advantages of our
approach, as said before, is the removal of humans from
dangerous filming locations and from camera and system
labor that could be made autonomous. The goal of our project
is to enable our system of auto-tracking of cars and auto-
generation of live streams in a scaled down version of racing
sports in the form of toy car racing.

‘

II. USE-CASE REQUIREMENTS

To meet this general use case, we drafted several use-case

requirements. First, the bottomline capability our system must
have is the ability to track a car around the race track. The
cameras placed around the track must be able detect and locate
the car within its frames while the car travels around the track.
Therefore, our first use-case requirement is that our system
must be able to track a car traveling at 1.5m/s 2.5m/s for at
least 95% of a lap. This speed range was determined by
dividing the distance of a lap, 5.6m, by the time it took the car
to travel one lap at the slowest setting and the fastest setting.
The 5% leeway was determined because there are few areas in
the track consisting of turns or obstacles that make it hard for
cameras to see the car clearly.

A second use-case requirement for our system is that
tracking our object car should not be distracted by other cars
in the race. In other words, our system should not start
tracking a different car in the middle of the race. This
requirement should be met 100% of the time on the main
stream for the span of a lap.

Another requirement we must ensure is that the stream
should not lag too far behind the real time. Most sports
production experts agree that 8 seconds of broadcasting
latency is a safe level to reach. However, because our race is
smaller in scale and our system is less complex, we will be
striving for a faster latency. Therefore, our system will strive
for a camera to stream latency of less than 500ms.

Our last few requirements are related to the quality of the
stream. By nature of sports streaming, the standards of a
“good” stream are qualitative. Of course in aspects of latency
or even video quality, it is clear that lower latency and higher
definition is the standard of a better stream. But in terms of
angle of view, distance from track, and basis of feed
switching, it is hard to quantitatively define the goal of our
project. To make this more tangible, we can break it down into
a few requirements. First, the stream must show the front of
the car for over 75% of the time. This is because the front
view of the car is the most desired and commonly filmed angle
in races. However, a little bit of leeway is given because at
times, especially at turn, we do want to capture the side/back
of the car. Second, the car must be centered in the middle 50%
of the screen for more than 75% of a lap. Lastly, the distance
of the camera to the car must be as small as possible to capture
the closest footage of the car. The constraint of this
requirement will be that it must not break the other use-case
requirements (ie. most of the track should still be captured
between the four cameras).

We took into consideration the public health, safety, welfare

Cameraman
Jae Song, Bhavya Jain, Thomas Li

Department of Electrical and Computer Engineering, Carnegie Mellon University

2
18-500 Design Project Report: Team C6 3/1/24

as well as global, cultural, social, environmental, and
economic factors when formulating our use-case and use-case
requirements. First, safety is one of the reasons we are
designing this product-for auto-tracking cameras to replace
human cameramen, especially in areas of danger (close to the
track). Another factor is the social aspect of this project. Since
car racing is a form of entertainment, the audience as well as
the racers are socially engaged to the sport. Therefore, we had
to ensure a good quality of stream, as well as minimal
interference with the actual race itself. Lastly, this product
may have an impact on the economy of broadcasting and
stream production. The autonomous system requires very little
human labor to produce streams, so the cameramen and most
of the production operators will not be needed as a result.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system design can be broken up into three main

sections: hardware, computer vision, and feed selection.

A. Hardware

Our assembly of camera stands consists of a camera module

attached physically to the rotor of a servo motor. These stands
will be placed around the track in optimal locations (furthered
in system implementation), and thus require some material to
stabilize on, like a wooden plank. The camera on each stand
will run through the USB hub to connect to the PC.

We will be using an Arduino as the microcontroller for
motor control. The Arduino will receive serial data for motor

Fig. 1. Block diagram (overall system)

A closer view can be found in Fig. 3. in the appendix

instruction from the PC via USB, run a motor control
program, and control one or more of the servo motors attached
on the camera stands.

B. Video Processing

This module will receive the footage from each of the

cameras and run object detection and tracking on OpenCV. We
will be using data preprocessing to narrow down the search
space for detection and tracking algorithms. We will use
YOLOv4 as our object detection algorithm to detect the car as
well as output its general location on screen and detection
confidence level. We will be using GOTURN tracker as our
tracking algorithm to track the motion of the car in the feed
and output motor control instructions in parallel. It will also
interface with the feed selection algorithm by providing the
bounding box size.

C. Feed Selection

Our feed selection module takes inputs from the tracking

module with information of the tracked bounding box
coordinates. The algorithm will determine which feed is the
“best“ at a given time (correlates to size of the detected car in
the feed) and multiplex the output display from the four video
sources using the algorithm. We will implement thresholding
and hysteresis submodules to prevent switching back and forth
of the stream and to make the stream contiguous.

 

3
18-500 Design Project Report: Team C6 3/1/24

IV. DESIGN REQUIREMENTS

These design requirements, sectioned by the corresponding

use-case requirements, must be met to ensure that our solution
meets the 7 use-case requirements and sub-requirements.

The system must track a car traveling at 1.5 m/s-2.5 m/s for at
least 95% of a lap.

Then an object tracking algorithm must provide control
feedback to the motors that turn the cameras producing a
rotational speed corresponding to the car’s maximum speed of
2.5 m/s. The camera motors must be able to meet a maximum
rotation speed of 70 degrees per second to track the turns of
the car at 1.5 m/s. The cameras must be placed at a minimum
distance from the track such that the camera motors do not
exceed this maximum rotation speed.

The closest possible footage of the car should be captured
while meeting 95% coverage of the track.

Then the cameras must be positioned in a way such that
they each have a complementary view of each part of the track
that minimizes distance between the camera and the track
while providing 95% coverage. A feed selection algorithm
must switch the camera source being displayed on the stream
when the car moves between different areas of the track. The
feed selection algorithm must select the camera feed which
has the closest possible shot of the car to display.

The front of the car must be shown for at least 75% of the lap.
Then an object detection algorithm must accurately detect

the car given real-time input data from the cameras. It must
further accurately detect the front of the car, the side of the car,
and the back of the car. The feed selection algorithm must
switch cameras when the car travels between regions of the
track covered by two different cameras, such that less than
25% of the frames from the camera before the switch show the
back of the car. This meets the 75% requirement if it holds
every time the camera is switched.

The car must be centered in the middle 50% of the screen for
at least 75% of the lap.

Then an object detection algorithm must accurately bound
the car within 10% of its actual location in the frame given
real-time input data from the cameras. An object tracking
algorithm must provide control feedback to the motors to
achieve a position within 10% of the ideal position of the
camera. The camera motors must execute positional controls
commanded by the microcontroller within 5% of the actual
command. This meets the +/-25% margin of error total.

The end-to-end stream latency should not exceed 500 ms.
Then the camera must provide the image processing module

with an input frame within 100 ms of capture. The image
processing module must provide the feed selection algorithm
with an input frame within 200 ms of receiving it from a
camera. The feed selection algorithm must not delay the
communication of an input frame to the display while
switching camera sources for streaming for more than 100 ms.
The display must display an input frame within 100 ms of
receiving it. This meets the 500 ms total.

The above requirements should be met even with other cars
racing alongside it.

Then the image processing module must correctly detect the
car for at least 98% of frames containing the car in each lap
regardless of the presence of other cars in the frame to meet all
the other requirements.

V. DESIGN TRADE STUDIES

Hardware Components

A. Servo motor vs stepper motor

One decision we had to make was whether to use a servo

motor or a stepper motor as our camera panning motor. There
were many aspects we had to take into consideration before
making the decision to use the Beffkipp 9g micro servo
motors. First one is the accuracy of the motor. Stepper motors
use an open-loop control system, which means that there is no
feedback to the system when holding a motor position. Servo
motors, on the other hand, use a closed-loop control system,
meaning there is constant feedback to adjust and control the
motor position. Servo motors are generally used to provide
more accurate and reliable positioning. Another aspect was the
speed of the motor. Steppers operate in discrete steps and their
speed is limited by the rate they can switch from one step to
next. However, servos can operate at higher speeds with
greater precision because of their closed-loop control systems.
Then what is the downside of using servo motors? Servos are
generally more expensive than steppers. However, our project
does not require a big budget, which means we can spare more
money on servos rather than steppers to provide more precise
and faster camera panning.

B. Microcontroller
Another decision we had to make was choosing a

microcontroller for our motor controls. Arduino Uno Rev3 is
the microcontroller we decided on for several reasons. First,
for our application, we just needed simple control over four
servo motors. Therefore, everything Arduino Uno provided in
terms of performance, usage, and I/O fulfilled our
requirement. Arduino is very cost-effective compared to other
microcontrollers and it is widely known for its ease of use. All
of the team members have previous experience with Arduino
so that was definitely a factor in our decision. Other
microcontrollers provide better low-level programming, but
again, the high-level programming that Arduino provides is
enough for our application.

C. Racetrack
Choosing a racetrack to build our system around was

another decision we had to make. We decided to choose the
Wupuaait Slot Car Race Track Set because we needed one that
would be most similar to an actual car race (ie. no overhead
loops, not too many turns). This track offers a base
configuration that is large enough to build a system around
(~0.5m x ~1m). It is also configurable, meaning that we can
reconfigure the track and test our system on different
configurations, which is a reach goal. The speed that the cars
hit on this track was 1.5m/s - 2.5m/s, which is fast for a toy
car, but not too fast that our motors cannot catch up to its

4
18-500 Design Project Report: Team C6 3/1/24

speed.

D. Camera and USB hub
Another consideration was choosing the camera and

deciding to use a USB hub. First, we needed cameras that are
attachable to our micro servo motors, which means it would
likely have to be a camera module that is < 2in in length and
width. We also needed the protocol to be USB since we
needed to connect them to our PC. Additionally, we needed
the camera cable to run at least 0.5 meters from the camera to
the hub. Therefore, we decided on the Arducam 1080p USB
camera for computers. The camera more than fulfills our
performance requirements in terms of quality (1080p) and size
(1.5in x 1.5in, 1 meter cable). But our only worry was the
price point of $34.99 per camera. However, looking at our
budget, we had room to spend on these cameras in order to
gain good quality footage, as well as ease of interfacing to our
PC.

Because our PC does not have four USB-A ports, we
needed to purchase a USB hub. We chose to get the Syntech
USB-A to USB-C hub. This takes in four USB-A ports and has
one USB-C(USB-A with an adapter) output port. Each port
supports up to 480Mbps, which is enough for our cameras to
send footage - an average footage requires 5-15Mbps. We also
needed the cable of this hub to be at least 0.5 meters to
connect the hub located in the middle of the track to the PC
located outside the track, and the cable of the Syntech hub is 2
feet(~0.6 meters) in length.

Software Components

A. OpenCV

In our project, the utilization of OpenCV is highly

advantageous due to its extensive set of computer vision
functionalities tailored to our specific requirements. OpenCV
offers a comprehensive suite of image processing and
computer vision algorithms, making it an indispensable tool
for tasks such as image preprocessing, feature extraction, and
object tracking. Its rich collection of functions enables us to
efficiently implement various components of our system,
including noise reduction, blurring, contrast enhancement, and
color-based segmentation. Moreover, OpenCV's compatibility
with diverse camera hardware and video formats ensures
seamless integration with our camera setup, allowing us to
capture, process, and analyze video footage with ease.
Additionally, OpenCV provides robust support for real-time
processing, enabling our system to achieve low latency and
high performance even under demanding conditions.
Furthermore, its extensive documentation and community
support facilitate rapid development and troubleshooting,
streamlining the implementation process and enhancing the
overall efficiency of our project. In summary, OpenCV serves
as a versatile and powerful toolset that significantly enhances
the capabilities of our system, making it the ideal choice for
our computer vision tasks.

B. YOLOv4 for detection

In our project, the choice of YOLOv4 for car detection is

highly appropriate compared to other detection methods due to
its exceptional balance of speed, accuracy, and efficiency.

YOLOv4 (You Only Look Once version 4) is a state-of-the-art
object detection algorithm known for its real-time
performance and robustness. Unlike traditional methods that
rely on region proposal networks (RPNs) and multiple stages
of processing, YOLOv4 adopts a single-stage architecture,
enabling faster inference and lower latency. This makes it
ideal for our system, where quick detection of the car is
paramount, especially considering the high speeds at which
the car may be moving on the track. Furthermore, YOLOv4
offers excellent integration capabilities, allowing seamless
integration with our tracking and camera control algorithms.
Its unified architecture simplifies the deployment process and
facilitates efficient resource utilization. Additionally, YOLOv4
demonstrates superior performance in terms of accuracy,
thanks to advancements in model architecture and training
techniques. This ensures reliable detection of the car under
various conditions, including changes in lighting, weather, and
background clutter. Compared to other detection methods such
as Faster R-CNN or SSD (Single Shot MultiBox Detector),
YOLOv4 stands out for its superior speed-accuracy trade-off,
making it the most suitable choice for our project where quick
detection, low latency, and good integration are paramount.

3. GOTURN (Generic Object Tracking Using Regression
Networks) for tracking

In our project, the selection of GOTURN (Generic Object
Tracking Using Regression Networks) for car tracking is
highly appropriate considering its unique capabilities tailored
to our specific requirements. GOTURN is a deep learning-
based tracking algorithm designed to track objects across
frames in a video sequence with high accuracy and efficiency.
Unlike traditional tracking methods such as correlation filters
or optical flow, GOTURN employs a convolutional neural
network (CNN) architecture to learn object appearance
changes and motion patterns directly from data, making it
robust to variations in lighting, speed, and object scale. This is
particularly advantageous for our system, where the car may
resize and rotate with respect to the camera while navigating
the track at high speeds. GOTURN's ability to adapt to such
dynamic changes ensures reliable and consistent tracking
performance under challenging conditions.

Compared to other tracking algorithms and techniques,
GOTURN offers several key advantages tailored to our
project's requirements:

• Accuracy: GOTURN leverages deep learning to
learn and adapt to the specific appearance variations
and motion patterns of cars on the track. This results
in more accurate and robust tracking performance,
crucial for ensuring precise localization of the car
even amidst changes in lighting conditions, speed,
and object scale.

• Robustness: In our dynamic tracking environment,
where the car may resize and rotate with respect to
the camera while navigating the track at high speeds,
GOTURN excels in handling such variations with
resilience. Its ability to cope with object scale
changes, rotations, and occlusions ensures
uninterrupted tracking even in challenging scenarios.

• Speed: Despite its sophisticated deep learning

5
18-500 Design Project Report: Team C6 3/1/24

architecture, GOTURN maintains remarkable
computational efficiency, enabling real-time tracking
performance. This swift response is essential for our
system's requirements, ensuring timely adjustments
to the car's position without introducing any
noticeable latency.

• Adaptability: GOTURN's learning-based approach
allows it to adapt and generalize to different car
appearances and track conditions without the need for
manual parameter tuning. This adaptability enhances
the system's versatility, allowing it to track cars
effectively under varying environmental conditions
and track configurations.

The utilization of the GOTURN algorithm for object
tracking is highly advantageous compared to other tracking
algorithms and techniques, such as Kalman filters, particle
filters, and optical flow-based methods. While these traditional
tracking algorithms have their merits, they often struggle to
handle complex scenarios where the tracked object undergoes
significant scale and rotation variations, as is the case with our
moving car on the track. Kalman filters, for instance, rely on
linear dynamical models and assume Gaussian noise
distributions, which may not accurately capture the nonlinear
dynamics and uncertainties associated with object motion in
our dynamic environment. Similarly, particle filters suffer
from high computational costs and may struggle to maintain
accurate tracking under rapid changes in object appearance or
occlusion. Optical flow-based methods, while effective for
motion estimation, may struggle with object occlusion and
scale changes, leading to tracking drift or loss.

VI. SYSTEM IMPLEMENTATION

Hardware

A. Camera stand assembly
On each camera stand, the components we plan to attach are

the Arducam camera module and the micro servo motor. We
plan on using screws to physically attach the camera module
to an axis perpendicular to the motor that will be attached to
the rotor. This is to enable panning of the camera. Now to
make the stand stable and stationary, the ends of the servo will
be grounded via screws to a heavier object (wooden planks).
The simplicity of our camera stand design allows for
portability as well as usability, especially with the USB cables
and other wires running through them. We will be making four
of such camera stands.

B. Location of camera stands and communication to PC
We will be spreading our camera stands around the track to

capture the maximum percentage of the track. Finding these
optimal locations will take trial and error, but our approach
will be to view different camera angles and determine the ones
that are comparable to real broadcasted shots from F1 (ex. at
the end of straightaways, at turns, etc…). Additionally, there
will be a one way, USB 2.0 communication from the camera
to the PC to share the footage the camera captures. Therefore,
we require four USB ports on the PC. To support this in our
PC which does not have four ports, we will use a USB hub
with four USB-A input ports and one USB-C (or A using an

adapter) output port. The camera USB cables will meet at the
center of the track, where the hub will be.

C. Communication from PC to Arduino
We will be using the USB 2.0 protocol as the

communication method between the PC and the Arduino. This
communication will be solely one way, as the only
information that is sent from the PC to the Arduino is
regarding the movement of specific motors to guide the
tracking. On the PC side, since we are running OpenCV on
Python, we will use Python’s Serial library to send the
following data on motor movement: 1. Which motor? 2.
Which direction? 3. How much? (in angles or steps). This
transmission will be in parallel with OpenCV calculations on
car location relative to the screen. On the Arduino side, we
will: 1. wait for data from PC 2. move motor “n” in direction
“R” by x (angles or steps) 3. repeat forever. The specific cable
we are using is the USB 2.0 A/B cable.

D. Communication from Arduino to motors
The Arduino Uno will be placed in the middle of the track

with the USB A/B cable running from it to the PC outside the
track. This Arduino will lie on a breadboard and will control
all four servos via GPIO. Each servo cable has 3 pins:
negative, positive, and signal. The negative pins will be on the
GND of Arduino and the positive pins will be on 5V supply
powered by the Arduino. The signal pins of the servos will be
on the PWM Digital outputs.

We will be using the Servo library installed on Arduino. The
main functions we will utilize are attach(), servo.write(), and
delay(). Servo.attach(pin) allows us to attach a servo on a
specific pin. Servo.write(pos) allows us to write a specific
angle of position to that servo. delay(time) allows us to delay
time in milliseconds before moving to the next line of code.
The gist of our Arduino code will be: 1. setup servos with
designated pins 2. loop until data from PC arrives 3. use a
combination of servo.write() and delay() to move the motor to
a position at a controlled speed.

Fig. 2. Arduino to servo connections

6
18-500 Design Project Report: Team C6 3/1/24

Detection and Tracking Module
Live feed off of every camera will be relayed to the

processing system. The aim here is to track the camera and
relay car position information to the camera to allow for
smooth panning. Given that the sequence of camera positions
is known and since the car must pass through the cameras in
order, only the video feed of the current tracking camera and
the next camera will be processed. The acquired footage will
undergo the following:

A. Data preprocessing:

By extracting relevant features, such as the color of the toy

car, preprocessing helps narrow down the search space for the
detection and tracking algorithms. This focused approach
reduces the amount of computation required to analyze each
frame, leading to faster processing times and lower latency.

1. Color-based segmentation aims to isolate regions in the
image that correspond to the toy cars. Utilizing the HSV
color space, the implementation segments the image using a
color mask tailored to the target color of the toy cars (e.g.,
red). Color-based segmentation effectively narrows down
the search space for the toy cars, focusing computational
resources on regions likely to contain the objects of interest.

2. Smoothing is employed to create a more uniform
appearance of the image by reducing abrupt changes in
pixel intensity, thereby improving the continuity of the
tracked object. A blur filter is applied to the image to
achieve smoothing, with the flexibility to adjust the kernel
size based on the desired level of smoothing.

3. Contrast Limited Adaptive Histogram Equalization
(CLAHE) is applied to the L channel of the LAB color
space, enabling localized contrast enhancement while
preserving image details.

4. Noise reduction aims to mitigate the adverse effects of
unwanted signal fluctuations in the input frames, which can
obscure the true features of the toy cars and impede
accurate tracking. This implementation offers various noise
reduction methods, including Gaussian blur, median
filtering, and bilateral filtering.

B. Object detection:

The input to the object detection module consists of

preprocessed images with the toy cars highlighted in red. This
preprocessing step ensures that the objects of interest are
distinctly delineated, enhancing the YOLOv4 algorithm's
ability to detect them accurately. The YOLOv4 model is
seamlessly integrated into the system using the TensorFlow
deep learning framework. Upon receiving the preprocessed
images, the YOLOv4 algorithm is executed to detect toy cars
within the camera frames. The algorithm outputs bounding
box coordinates and confidence scores for the detected
objects, providing essential spatial and confidence information
for subsequent processing. To ensure robust detection, a
confidence threshold is applied to the confidence scores
associated with each detected object. Detections with
confidence scores below a predetermined threshold are filtered
out, effectively reducing false positives and enhancing the
overall accuracy of the detection process. Following

confidence thresholding, non-maximum suppression (NMS) is
applied to eliminate redundant bounding boxes and retain only
the most confident detections. This post-processing step
further refines the detection results, ensuring that only the
most salient object detections are considered for further
processing.

C. Object tracking:

Upon receiving the bounding box coordinates of the

detected toy car from the object detection module, the object
tracking algorithm initiates tracking using the GOTURN
tracker. The bounding box serves as the initial region of
interest (ROI) for the tracker, providing spatial context for the
location of the toy car within the camera frame. As the toy car
moves within the camera's field of view, the GOTURN tracker
continuously updates the position of the bounding box to
maintain tracking. The tracker adjusts the bounding box
coordinates based on changes in the object's position and
appearance, ensuring accurate and robust tracking
performance. Once the toy car enters the middle of the camera
frame, the tracking algorithm provides movement information
to adjust the camera's orientation and preserve the car in the
center of the frame. This involves determining the direction
and magnitude of camera movement based on the position of
the car within the frame. The camera's movement is
constrained within predefined limits to prevent excessive
panning and maintain a smooth tracking experience. Upon
reaching the pan limit or when the next camera starts tracking
the toy car, the tracking algorithm initiates a handover process
to seamlessly transition tracking responsibilities to the next
camera in the sequence.

Feed Selection Module

The feed selection module will accept as input the boundary

box dimensions produced by the video processing module in
its analysis of frames captured by each camera. It will also
accept a corresponding classification from that module on
whether each of these frames contains a front view, a side
view, or a back view of the car. Additionally, it will accept the
raw frames produced by each camera and forward a subset of
these frames to the monitor to be displayed through the High-
Level GUI library.

A. Feed comparison

For each set of frames from a single time-step, we will

determine which camera has the closest possible shot of the
car from the boundary box dimensions produced by the video
processing module. We will take into account whether the
camera sees the front, the side, or the back of the car, and
assume that within each category, the largest bounding box
corresponds to the closest possible shot of the car. We will
determine the best camera view as the front view with the
largest bounding box and the worst view as the back view with
the smallest bounding box, or no box if car is undetectable,
and everything in between.

B. Hysteresis

From frame to frame, keep track of which camera has the

best view of the car. If a camera maintains continuously the
best view of a car for a set threshold number of frames

7
18-500 Design Project Report: Team C6 3/1/24

(approximately 3 frames, 100ms for 30fps), we will switch
from the previously selected source to this camera as the new
source.

C. Source forwarding

We will display the frames from the selected source on the

monitor by repeatedly calling High-Level GUI library
functions on those frames. As soon as the selected source
changes, we will switch to displaying the frames from the new
source.

VII. TEST, VERIFICATION AND VALIDATION

Use-Case Tests

Tests for Use-Case #1: Ensure the system can track a car
traveling at 1.5m/s-2.5m/s for at least 95% of a lap.

Record video footage of the toy car moving at different
speeds within the specified range. Analyze the tracked
trajectory to verify the system's tracking capability. There are
4 main track turns that are seen on major circuits that will be
analyzed. The each correspond to different levels of camera
panning with different speeds of tracking: 1. straightaways 2.
sweepers (long and gradual turn) 3. hairpin turns (the tightest
possible turn) 4. chicanes (slightly S shape straightaways.

Tests for Use-Case #2: Verify that tracking the object car is
not distracted by other cars in the race.

Our track includes two slots. Introduce another car to the
other lane and run the race at the same time. In the span of a
lap, analyze the stream and calculate the percentage of the
stream, if any, is tracking the other unwanted car instead of the
main car. This percentage should be 0%, 2% at maximum.

Tests for Use-Case #3: Achieve a camera-to-stream latency of
less than 500ms.

This requirement deals with the latency from real-time race
that the camera captures to the footage that appears on the
stream. To test this requirement, we plan to use the starting
line as a marker for the car. When the car in the stream passes
through the marker, we can signal the camera by throwing a
flag to the screen. Now we can replay the footage on the
stream on slow motion and check the latency from when the
car passes the marker to when the flag is thrown. This latency
will correspond to the camera to stream latency, and should be
under 500ms.

Tests for Use-Case #4: Ensure good quality of stream

Ensure good quality of the stream with the front of the car

visible for over 75% of the time and ensure the car remains
centered (middle 50% area of the screen) for more than 75
percent of a lap. Analyze the position of the car within the
frame throughout the lap and verify compliance with the
centering requirement. An easily identifiable marker will be
placed in the front of the car. Gathering the race footage we
can measure the amount of time the front of the car was
visible on screen. Here car front view time/front detectable
time and car in center of frame time/car in detectable zone
time should be more than 75 percent. This is in accordance
with car racing streaming standards that prefer to show the
fronts of the cars and keep the cars centered in the shot.

Additional Tests

Detection to motor latency Test:

This latency is crucial for ensuring real-time responsiveness

in tracking the car's movement. The latency measurement
encompasses the time it takes for the camera to pan correctly
in response to the detected movement of the car, as determined
by the GOTURN algorithm. When the algorithm detects that
the car is moving out of the specified region of interest, it
signals the camera to adjust its position accordingly to keep
the car within the frame. The camera's pan speed is critical in
maintaining the car within the area of interest and minimizing
any lag between the detection and the camera's response. To
measure latency, we utilize the time module in Python, which
allows precise timing of events. The process involves time-
stamping the moment when the algorithm detects the car's
movement and time-stamping the moment when the camera
completes the pan adjustment. The difference between these
two timestamps represents the latency between the detection
and the camera's response. By repeating this process for
multiple instances of car movement detection, we gather a
dataset of latency measurements. We are hoping for a latency
of 5ms, a bit of room since the camera may lag behind the
moving car as long as it keeps it in frame.

Scalability Test:

The scalability test evaluates the system's ability to handle

the addition or removal of cameras placed anywhere on the
track while maintaining optimal performance and
functionality. We will test how the system performs with
different levels of separation between the two cameras -
whether they are stuck together or on opposite parts of the
track. The system should also handle blind spots in the track,
if too few cameras are placed, without breaking the stream.

VIII. PROJECT MANAGEMENT

A. Schedule

Our weekly schedule is provided in detail in Fig. 4. of the

Appendix.

B. Team Member Responsibilities

For the scope of the project, we decided to split the

responsibilities into three sections of hardware, computer
vision, and feed selection algorithm. Jae’s primary
responsibility will be to take charge of the hardware tasks of
this project, including camera stand assembly, determination
of camera stand locations, servo motor control, and Arduino
programming. He will also take the lead in interfacing Python
with Arduino to allow communication from computer vision
to the Arduino for motor control. His secondary responsibility
will be to take initiative in integration and testing approaches
after finishing hardware tasks, as others may need more time
to refine their parts. Bhavya’s primary responsibility is car
detection and tracking using OpenCV. His tasks include
detection of cars using libraries, tracking of cars and sending
location information to Arduino, real-time multithread car
tracking for four cameras, and sending relevant information
for feed switching to the feed selection module. His secondary
responsibility will be updating our block diagram and

8
18-500 Design Project Report: Team C6 3/1/24

schedule, as well as communicating with Thomas on the
interface between OpenCV and feed selection. Lastly,
Thomas’ primary responsibility is feed selection algorithm
development. He will be responsible for designing an
algorithm to reasonably switch feeds between the four
cameras to provide the best stream. He will communicate with
Bhavya to attain the data points he needs to make these feed
switches. His secondary responsibility will be to communicate
to Jae and Bhavya continuously on the things that can be done
on the hardware and computer vision part to improve the
quality of the stream.

C. Bill of Materials and Budget

Bill of Materials and Budget is broken down in Table I of

the Appendix.

D. Risk Mitigation Plans

One of the risks we may encounter is that the race car

moves too fast around the track for our system to continuously
track. This could occur if the motors are too slow or if the
feedback control incurs too much processing time. In order to
account for this risk, we will plan levels of distances for the
cameras from the track so that we can move the cameras
farther away if the close-distance configuration is not possible,
resulting in lower motor rotational speed requirements and
motor feedback processing time requirements.

Another risk we may encounter is that one of the cameras
detects the race car on the wrong side of the track and the
system erroneously switches to that camera to follow the race
car. In this case, because a real racetrack would involve longer
distances and obstructions and this risk is due to unique toy
racetrack conditions, we plan on building obstructions around
the track to simulate real racetrack obstructions and prevent
the cameras from detecting the car from the other side of the
track.

Another risk we may encounter is that the camera motors
stutter during tracking due to unforeseen mechanical or
control challenges with our current implementation plan. In
order to account for this risk, we plan on researching a PID
motor control module that could be implemented if necessary
to ensure the motor tracks properly.

IX. REACH GOALS

Beyond our MVP, we have reach goals that we will strive

for if time allows. First is our system’s flexibility to different
camera stand locations. While our specifications will work
with stationary camera stands at specific locations around the
track, our goal is to remove the dependency of our system on
knowing where the camera stands are around the track. This
will allow for different angles of footage and therefore
enhance the stream controllability. Another reach goal is to
accommodate for different track configurations. Similar to the
previous goal, since our track is configurable, if time allows,
we would like to remove the dependency of our system on
knowing what the track is. This will increase the usability of
our product. Lastly, we would also like to take the zoom of the
camera and incorporate it into our footage. For example, when
a car is far away, our system would be able to zoom into that
car, and zoom out as the car approaches the camera. This is

how cars are captured in real racing, and we look to
implement it into our system if time allows.

X. RELATED WORK

We have identified currently existing products on the

market which have a similar purpose and nature to our
product, though with slightly different applications and
technical challenges. One of these products is Streamline -
United Sports Services. This product, similar to ours, seeks to
deliver a real-time livestream of a race with multiple camera
angles and autonomous camera switching. They use a
computer, cameras, and cabling, like us. They differ from our
project notably by focusing on pool championships, in which
humans race back and forth along a pool line instead of around
a race track which has more variability in geometry. They also
differ from our project by using fixed cameras instead of CV-
based tracking cameras.

	 Another one of these products is Multi-Angle Remote
Production - PlaySight. This product, similar to ours, seeks to
deliver multi-angle production of a livestream with smooth
camera switching. They differ from our project notably by not
having autonomous switching between multiple camera
angles, though they do have multiple camera angles and CV-
based camera tracking separately. They also focus on sports
with human players, while we focus on race cars on a race
track which involves higher speeds and longer distances to be
covered.

XI. SUMMARY

Overall, our system fills in the gap of human labor, error,

and danger in the production of live streams by developing
auto-tracking cameras as well as generating a live stream
autonomously. The danger of cameramen having to stay near
the track to capture good footage is no longer a factor in our
system. Additionally, the labor and possible errors that come
with the production of the stream using these footages are also
mitigated by our system. Some challenges that are within
discussions include the system’s ability to track the car at high
speeds, quantifying and improving the quality of stream (feed
switching aspect), and our reach goal of achieving flexibility
to different camera stand locations as well as different track
configurations. Although they are challenges, we hope to
overcome them in order to create a useful and impressive
produce, as well as to enjoy the process of this project.

GLOSSARY OF ACRONYMS

CLAHE - Contrast Limited Adaptive Histogram Equalization

CV - Computer Vision

F1 - Formula One

GND - Ground

GOTURN - Generic Object Tracking Using Regression
Networks

GPIO - General Purpose Input/Output

HSV - Hue, Saturation, Value

I/O - Input/Output

LAB - Lightness, a coloring, b coloring

MVP - Minimum Viable Product

NMS - Non-maximum Suppression

PC - Personal Computer

9
18-500 Design Project Report: Team C6 3/1/24

PID - Proportional-Integral-Derivative

PWM - Pulse Width Modulation

ROI - Region of Interest

USB - Universal Serial Bus

YOLOv4 - You Only Look Once version 4

REFERENCES

1. J. Tang, “The choice between servo motors and stepper motors,”

Orientalmotor.com, 01-Dec-2021. .

2. “OpenCV: Getting started with videos,” Opencv.org. [Online]. Available:

https://docs.opencv.org/4.x/dd/d43/tutorial_py_video_display.html.
[Accessed: 02-Mar-2024].

3. “OpenCV: High-level GUI,” Opencv.org. [Online]. Available: https://
docs.opencv.org/3.4/d7/dfc/group__highgui.html. [Accessed: 02-
Mar-2024].

4. “OpenCV: Creating Bounding boxes and circles for contours,”
Opencv.org. [Online]. Available: https://docs.opencv.org/4.x/da/d0c/
tutorial_bounding_rects_circles.html. [Accessed: 02-Mar-2024].

5. “Does performance differ between Python or C++ coding of OpenCV?,”
Stack Overflow. [Online]. Available: https://stackoverflow.com/
questions/13432800/does-performance-differ-between-python-or-c-
coding-of-opencv. [Accessed: 02-Mar-2024].

6. M. Murphy, “Streamline,” United Sports Services, 12-Oct-2020.
[Online]. Available: https://unitedsportsservices.com/services/
streamline/. [Accessed: 02-Mar-2024].

7. “Multi-Angle Remote Production,” playsight, 05-Jul-2023. [Online].
Available: https://playsight.com/multi-angle-remote-production/.
[Accessed: 02-Mar-2024].

8. S. Mallick, “GOTURN : Deep Learning based Object Tracking,”
LearnOpenCV – Learn OpenCV, PyTorch, Keras, Tensorflow with code,
& tutorials, 22-Jul-2018. [Online]. Available: https://learnopencv.com/
goturn-deep-learning-based-object-tracking/. [Accessed: 02-Mar-2024]. 

10
18-500 Design Project Report: Team C6 3/1/24

Appendix 

Fig. 3: Closer View of Block Diagram (overall system)

11
18-500 Design Project Report: Team C6 3/1/24

Table I. Bill of Materials (from section VIII.C)

Fig. 4. Schedule (from section VIII.A)

	Introduction
	Use-Case Requirements
	Architecture and/or Principle of Operation
	A. Hardware
	B. Video Processing
	C. Feed Selection

	Design Requirements
	The system must track a car traveling at 1.5 m/s-2.5 m/s for at least 95% of a lap.
	The closest possible footage of the car should be captured while meeting 95% coverage of the track.
	The front of the car must be shown for at least 75% of the lap.
	The car must be centered in the middle 50% of the screen for at least 75% of the lap.
	The end-to-end stream latency should not exceed 500 ms.
	The above requirements should be met even with other cars racing alongside it.

	Design Trade Studies
	Hardware Components
	A. Servo motor vs stepper motor
	B. Microcontroller
	C. Racetrack
	D. Camera and USB hub
	Software Components
	A. OpenCV
	B. YOLOv4 for detection
	3. GOTURN (Generic Object Tracking Using Regression Networks) for tracking

	System Implementation
	Hardware
	A. Camera stand assembly
	B. Location of camera stands and communication to PC
	C. Communication from PC to Arduino
	D. Communication from Arduino to motors
	Detection and Tracking Module
	Data preprocessing:
	B. Object detection:
	C. Object tracking:
	Feed Selection Module
	A. Feed comparison
	B. Hysteresis
	C. Source forwarding

	Test, Verification and Validation
	Use-Case Tests
	Tests for Use-Case #1: Ensure the system can track a car traveling at 1.5m/s-2.5m/s for at least 95% of a lap.
	Tests for Use-Case #2: Verify that tracking the object car is not distracted by other cars in the race.
	Tests for Use-Case #3: Achieve a camera-to-stream latency of less than 500ms.
	Tests for Use-Case #4: Ensure good quality of stream
	Additional Tests
	Detection to motor latency Test:
	Scalability Test:

	Project Management
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Mitigation Plans

	Reach Goals
	Related Work
	Summary
	Glossary of Acronyms
	References
	Appendix

