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Abstract—Current method of broadcasting a live car race requires 

the labor of cameramen as well as of the production team. Beyond 
labor, it introduces an aspect of danger for cameramen near the track 
as well as possibilities of error due to human tracking and latency of 
feed switching. Cameraman is our approach to supplement, or even 
replace, this current form of live stream production, with the 
development of auto-tracking cameras and a feed selection algorithm. 

Index Terms—camera; car; livestream; OpenCV; track; tracking 

I. INTRODUCTION 
Sports are a common and popular form of entertainment. 

That said, entertainment requires an audience, and for sports 
specifically, the medium between sports and sports audience is 
live streaming. This is especially true for racing sports. To 
capture footage of a race, multiple cameras along with 
cameramen are stationed at various locations around the track. 
These footage then get sent to the media center, where they 
determine the best footage of the race at a given moment and 
switch the main stream to that footage like circuit switching. 
However, there are certain challenges of this current approach. 
Cameramen are usually located near the track and swivel their 
camera as cars pass by, which could lead to accidental 
collisions with the car. Additionally, this requires a sizable 
production team of cameramen as well as operators.

Cameraman is our effort to approach this gap. Cameraman 
is a system of cameras that provides an autonomous live 
stream of a toy car racing around a track. Each camera will be 
attached to motorized stands and will provide an auto-tracked 
camera feed which the system receives and algorithmically 
determines and switches the live stream to the best feed at a 
given time. This project, when scaled up, will help the 
production team of a racing event as it reduces the labor, 
danger, and errors due to human involvement. It could also 
allow for better footage to be taken as auto-tracking cameras 
could be placed in locations that are closer to the action.

Our competing technology is the system that is currently in 
place, which consists of the production team of cameras, 
cameramen, and system operators. The advantages of our 
approach, as said before, is the removal of humans from 
dangerous filming locations and from camera and system 
labor that could be made autonomous. The goal of our project 
is to enable our system of auto-tracking of cars and auto-
generation of live streams in a scaled down version of racing 
sports in the form of toy car racing. 

‘ 

II. USE-CASE REQUIREMENTS 
To meet this general use case, we drafted several use-case 

requirements. First, the bottomline capability our system must 
have is the ability to track a car around the race track. The 
cameras placed around the track must be able detect and locate 
the car within its frames while the car travels around the track. 
Therefore, our first use-case requirement is that our system 
must be able to track a car traveling at 1.5m/s 2.5m/s for at 
least 95% of a lap. This speed range was determined by 
dividing the distance of a lap, 5.6m, by the time it took the car 
to travel one lap at the slowest setting and the fastest setting. 
The 5% leeway was determined because there are few areas in 
the track consisting of turns or obstacles that make it hard for 
cameras to see the car clearly. 

A second use-case requirement for our system is that 
tracking our object car should not be distracted by other cars 
in the race. In other words, our system should not start 
tracking a different car in the middle of the race. This 
requirement should be met 100% of the time on the main 
stream for the span of a lap. 

Another requirement we must ensure is that the stream 
should not lag too far behind the real time. Most sports 
production experts agree that 8 seconds of broadcasting 
latency is a safe level to reach. However, because our race is 
smaller in scale and our system is less complex, we will be 
striving for a faster latency. Therefore, our system will strive 
for a camera to stream latency of less than 500ms. 

Our last few requirements are related to the quality of the 
stream. By nature of sports streaming, the standards of a 
“good” stream are qualitative. Of course in aspects of latency 
or even video quality, it is clear that lower latency and higher 
definition is the standard of a better stream. But in terms of 
angle of view, distance from track, and basis of feed 
switching, it is hard to quantitatively define the goal of our 
project. To make this more tangible, we can break it down into 
a few requirements. First, the stream must show the front of 
the car for over 75% of the time. This is because the front 
view of the car is the most desired and commonly filmed angle 
in races. However, a little bit of leeway is given because at 
times, especially at turn, we do want to capture the side/back 
of the car. Second, the car must be centered in the middle 50% 
of  the screen for more than 75% of a lap. Lastly, the distance 
of the camera to the car must be as small as possible to capture 
the closest footage of the car. The constraint of this 
requirement will be that it must not break the other use-case 
requirements (ie. most of the track should still be captured 
between the four cameras). 

We took into consideration the public health, safety, welfare 
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as well as global, cultural, social, environmental, and 
economic factors when formulating our use-case and use-case 
requirements. First, safety is one of the reasons we are 
designing this product-for auto-tracking cameras to replace 
human cameramen, especially in areas of danger (close to the 
track). Another factor is the social aspect of this project. Since 
car racing is a form of entertainment, the audience as well as 
the racers are socially engaged to the sport. Therefore, we had 
to ensure a good quality of stream, as well as minimal 
interference with the actual race itself. Lastly, this product 
may have an impact on the economy of broadcasting and 
stream production. The autonomous system requires very little 
human labor to produce streams, so the cameramen and most 
of the production operators will not be needed as a result. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Our system design can be broken up into three main 

sections: hardware, computer vision, and feed selection. 

A. Hardware 
Our assembly of camera stands consists of a camera module 

attached physically to the rotor of a servo motor. These stands 
will be placed around the track in optimal locations (furthered 
in system implementation), and thus require some material to 
stabilize on, like a wooden plank. The camera on each stand 
will run through the USB hub to connect to the PC. 

We will be using an Arduino as the microcontroller for 
motor control. The Arduino will receive serial data for motor  

 

Fig. 1. Block diagram (overall system) 
A closer view can be found in Fig. 3. in the appendix 

instruction from the PC via USB, run a motor control 
program, and control one or more of the servo motors attached 
on the camera stands. 

B. Video Processing 
This module will receive the footage from each of the 

cameras and run object detection and tracking on OpenCV. We 
will be using data preprocessing to narrow down the search 
space for detection and tracking algorithms. We will use 
YOLOv4 as our object detection algorithm to detect the car as 
well as output its general location on screen and detection 
confidence level. We will be using GOTURN tracker as our 
tracking algorithm to track the motion of the car in the feed 
and output motor control instructions in parallel. It will also 
interface with the feed selection algorithm by providing the 
bounding box size. 

C. Feed Selection 
Our feed selection module takes inputs from the tracking 

module with information of the tracked bounding box 
coordinates. The algorithm will determine which feed is the 
“best“ at a given time (correlates to size of the detected car in 
the feed) and multiplex the output display from the four video 
sources using the algorithm. We will implement thresholding 
and hysteresis submodules to prevent switching back and forth 
of the stream and to make the stream contiguous.
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IV. DESIGN REQUIREMENTS 
These design requirements, sectioned by the corresponding 

use-case requirements, must be met to ensure that our solution 
meets the 7 use-case requirements and sub-requirements. 

The system must track a car traveling at 1.5 m/s-2.5 m/s for at 
least 95% of a lap.

Then an object tracking algorithm must provide control 
feedback to the motors that turn the cameras producing a 
rotational speed corresponding to the car’s maximum speed of 
2.5 m/s. The camera motors must be able to meet a maximum 
rotation speed of 70 degrees per second to track the turns of 
the car at 1.5 m/s. The cameras must be placed at a minimum 
distance from the track such that the camera motors do not 
exceed this maximum rotation speed. 

The closest possible footage of the car should be captured 
while meeting 95% coverage of the track. 

Then the cameras must be positioned in a way such that 
they each have a complementary view of each part of the track 
that minimizes distance between the camera and the track 
while providing 95% coverage. A feed selection algorithm 
must switch the camera source being displayed on the stream 
when the car moves between different areas of the track. The 
feed selection algorithm must select the camera feed which 
has the closest possible shot of the car to display.

The front of the car must be shown for at least 75% of the lap. 
Then an object detection algorithm must accurately detect 

the car given real-time input data from the cameras. It must 
further accurately detect the front of the car, the side of the car, 
and the back of the car. The feed selection algorithm must 
switch cameras when the car travels between regions of the 
track covered by two different cameras, such that less than 
25% of the frames from the camera before the switch show the 
back of the car. This meets the 75% requirement if it holds 
every time the camera is switched. 

The car must be centered in the middle 50% of the screen for 
at least 75% of the lap. 

Then an object detection algorithm must accurately bound 
the car within 10% of its actual location in the frame given 
real-time input data from the cameras. An object tracking 
algorithm must provide control feedback to the motors to 
achieve a position within 10% of the ideal position of the 
camera. The camera motors must execute positional controls 
commanded by the microcontroller within 5% of the actual 
command. This meets the +/-25% margin of error total. 

The end-to-end stream latency should not exceed 500 ms. 
Then the camera must provide the image processing module 

with an input frame within 100 ms of capture. The image 
processing module must provide the feed selection algorithm 
with an input frame within 200 ms of receiving it from a 
camera. The feed selection algorithm must not delay the 
communication of an input frame to the display while 
switching camera sources for streaming for more than 100 ms. 
The display must display an input frame within 100 ms of 
receiving it. This meets the 500 ms total. 

The above requirements should be met even with other cars 
racing alongside it. 

Then the image processing module must correctly detect the 
car for at least 98% of frames containing the car in each lap 
regardless of the presence of other cars in the frame to meet all 
the other requirements. 

V. DESIGN TRADE STUDIES 

Hardware Components 

A. Servo motor vs stepper motor 
One decision we had to make was whether to use a servo 

motor or a stepper motor as our camera panning motor. There 
were many aspects we had to take into consideration before 
making the decision to use the Beffkipp 9g micro servo 
motors. First one is the accuracy of the motor. Stepper motors 
use an open-loop control system, which means that there is no 
feedback to the system when holding a motor position. Servo 
motors, on the other hand, use a closed-loop control system, 
meaning there is constant feedback to adjust and control the 
motor position. Servo motors are generally used to provide 
more accurate and reliable positioning. Another aspect was the 
speed of the motor. Steppers operate in discrete steps and their 
speed is limited by the rate they can switch from one step to 
next. However, servos can operate at higher speeds with 
greater precision because of their closed-loop control systems. 
Then what is the downside of using servo motors? Servos are 
generally more expensive than steppers. However, our project 
does not require a big budget, which means we can spare more 
money on servos rather than steppers to provide more precise 
and faster camera panning.

B. Microcontroller
Another decision we had to make was choosing a 

microcontroller for our motor controls. Arduino Uno Rev3 is 
the microcontroller we decided on for several reasons. First, 
for our application, we just needed simple control over four 
servo motors. Therefore, everything Arduino Uno provided in 
terms of performance, usage, and I/O fulfilled our 
requirement. Arduino is very cost-effective compared to other 
microcontrollers and it is widely known for its ease of use. All 
of the team members have previous experience with Arduino 
so that was definitely a factor in our decision. Other 
microcontrollers provide better low-level programming, but 
again, the high-level programming that Arduino provides is 
enough for our application.

C. Racetrack
Choosing a racetrack to build our system around was 

another decision we had to make. We decided to choose the 
Wupuaait Slot Car Race Track Set because we needed one that 
would be most similar to an actual car race (ie. no overhead 
loops, not too many turns). This track offers a base 
configuration that is large enough to build a system around 
(~0.5m x ~1m). It is also configurable, meaning that we can 
reconfigure the track and test our system on different 
configurations, which is a reach goal. The speed that the cars 
hit on this track was 1.5m/s - 2.5m/s, which is fast for a toy 
car, but not too fast that our motors cannot catch up to its 
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speed.

D. Camera and USB hub
Another consideration was choosing the camera and 

deciding to use a USB hub. First, we needed cameras that are 
attachable to our micro servo motors, which means it would 
likely have to be a camera module that is < 2in in length and 
width. We also needed the protocol to be USB since we 
needed to connect them to our PC. Additionally, we needed 
the camera cable to run at least 0.5 meters from the camera to 
the hub. Therefore, we decided on the Arducam 1080p USB 
camera for computers. The camera more than fulfills our 
performance requirements in terms of quality (1080p) and size 
(1.5in x 1.5in, 1 meter cable). But our only worry was the 
price point of $34.99 per camera. However, looking at our 
budget, we had room to spend on these cameras in order to 
gain good quality footage, as well as ease of interfacing to our 
PC.

Because our PC does not have four USB-A ports, we 
needed to purchase a USB hub. We chose to get the Syntech 
USB-A to USB-C hub. This takes in four USB-A ports and has 
one USB-C(USB-A with an adapter) output port. Each port 
supports up to 480Mbps, which is enough for our cameras to 
send footage - an average footage requires 5-15Mbps. We also 
needed the cable of this hub to be at least 0.5 meters to 
connect the hub located in the middle of the track to the PC 
located outside the track, and the cable of the Syntech hub is 2 
feet(~0.6 meters) in length. 

Software Components 

A. OpenCV 
In our project, the utilization of OpenCV is highly 

advantageous due to its extensive set of computer vision 
functionalities tailored to our specific requirements. OpenCV 
offers a comprehensive suite of image processing and 
computer vision algorithms, making it an indispensable tool 
for tasks such as image preprocessing, feature extraction, and 
object tracking. Its rich collection of functions enables us to 
efficiently implement various components of our system, 
including noise reduction, blurring, contrast enhancement, and 
color-based segmentation. Moreover, OpenCV's compatibility 
with diverse camera hardware and video formats ensures 
seamless integration with our camera setup, allowing us to 
capture, process, and analyze video footage with ease. 
Additionally, OpenCV provides robust support for real-time 
processing, enabling our system to achieve low latency and 
high performance even under demanding conditions. 
Furthermore, its extensive documentation and community 
support facilitate rapid development and troubleshooting, 
streamlining the implementation process and enhancing the 
overall efficiency of our project. In summary, OpenCV serves 
as a versatile and powerful toolset that significantly enhances 
the capabilities of our system, making it the ideal choice for 
our computer vision tasks.

B. YOLOv4 for detection  
In our project, the choice of YOLOv4 for car detection is 

highly appropriate compared to other detection methods due to 
its exceptional balance of speed, accuracy, and efficiency. 

YOLOv4 (You Only Look Once version 4) is a state-of-the-art 
object detection algorithm known for its real-time 
performance and robustness. Unlike traditional methods that 
rely on region proposal networks (RPNs) and multiple stages 
of processing, YOLOv4 adopts a single-stage architecture, 
enabling faster inference and lower latency. This makes it 
ideal for our system, where quick detection of the car is 
paramount, especially considering the high speeds at which 
the car may be moving on the track. Furthermore, YOLOv4 
offers excellent integration capabilities, allowing seamless 
integration with our tracking and camera control algorithms. 
Its unified architecture simplifies the deployment process and 
facilitates efficient resource utilization. Additionally, YOLOv4 
demonstrates superior performance in terms of accuracy, 
thanks to advancements in model architecture and training 
techniques. This ensures reliable detection of the car under 
various conditions, including changes in lighting, weather, and 
background clutter. Compared to other detection methods such 
as Faster R-CNN or SSD (Single Shot MultiBox Detector), 
YOLOv4 stands out for its superior speed-accuracy trade-off, 
making it the most suitable choice for our project where quick 
detection, low latency, and good integration are paramount. 

3. GOTURN (Generic Object Tracking Using Regression 
Networks) for tracking 

In our project, the selection of GOTURN (Generic Object 
Tracking Using Regression Networks) for car tracking is 
highly appropriate considering its unique capabilities tailored 
to our specific requirements. GOTURN is a deep learning-
based tracking algorithm designed to track objects across 
frames in a video sequence with high accuracy and efficiency. 
Unlike traditional tracking methods such as correlation filters 
or optical flow, GOTURN employs a convolutional neural 
network (CNN) architecture to learn object appearance 
changes and motion patterns directly from data, making it 
robust to variations in lighting, speed, and object scale. This is 
particularly advantageous for our system, where the car may 
resize and rotate with respect to the camera while navigating 
the track at high speeds. GOTURN's ability to adapt to such 
dynamic changes ensures reliable and consistent tracking 
performance under challenging conditions.

Compared to other tracking algorithms and techniques, 
GOTURN offers several key advantages tailored to our 
project's requirements:

• Accuracy: GOTURN leverages deep learning to 
learn and adapt to the specific appearance variations 
and motion patterns of cars on the track. This results 
in more accurate and robust tracking performance, 
crucial for ensuring precise localization of the car 
even amidst changes in lighting conditions, speed, 
and object scale.

• Robustness: In our dynamic tracking environment, 
where the car may resize and rotate with respect to 
the camera while navigating the track at high speeds, 
GOTURN excels in handling such variations with 
resilience. Its ability to cope with object scale 
changes, rotations, and occlusions ensures 
uninterrupted tracking even in challenging scenarios.

• Speed: Despite its sophisticated deep learning 
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architecture, GOTURN maintains remarkable 
computational efficiency, enabling real-time tracking 
performance. This swift response is essential for our 
system's requirements, ensuring timely adjustments 
to the car's position without introducing any 
noticeable latency.

• Adaptability: GOTURN's learning-based approach 
allows it to adapt and generalize to different car 
appearances and track conditions without the need for 
manual parameter tuning. This adaptability enhances 
the system's versatility, allowing it to track cars 
effectively under varying environmental conditions 
and track configurations.

The utilization of the GOTURN algorithm for object 
tracking is highly advantageous compared to other tracking 
algorithms and techniques, such as Kalman filters, particle 
filters, and optical flow-based methods. While these traditional 
tracking algorithms have their merits, they often struggle to 
handle complex scenarios where the tracked object undergoes 
significant scale and rotation variations, as is the case with our 
moving car on the track. Kalman filters, for instance, rely on 
linear dynamical models and assume Gaussian noise 
distributions, which may not accurately capture the nonlinear 
dynamics and uncertainties associated with object motion in 
our dynamic environment. Similarly, particle filters suffer 
from high computational costs and may struggle to maintain 
accurate tracking under rapid changes in object appearance or 
occlusion. Optical flow-based methods, while effective for 
motion estimation, may struggle with object occlusion and 
scale changes, leading to tracking drift or loss. 

VI. SYSTEM IMPLEMENTATION 

Hardware 

A. Camera stand assembly
On each camera stand, the components we plan to attach are 

the Arducam camera module and the micro servo motor. We 
plan on using screws to physically attach the camera module 
to an axis perpendicular to the motor that will be attached to 
the rotor. This is to enable panning of the camera. Now to 
make the stand stable and stationary, the ends of the servo will 
be grounded via screws to a heavier object (wooden planks). 
The simplicity of our camera stand design allows for 
portability as well as usability, especially with the USB cables 
and other wires running through them. We will be making four 
of such camera stands.

B. Location of camera stands and communication to PC
We will be spreading our camera stands around the track to 

capture the maximum percentage of the track. Finding these 
optimal locations will take trial and error, but our approach 
will be to view different camera angles and determine the ones 
that are comparable to real broadcasted shots from F1 (ex. at 
the end of straightaways, at turns, etc…). Additionally, there 
will be a one way, USB 2.0 communication from the camera 
to the PC to share the footage the camera captures. Therefore, 
we require four USB ports on the PC. To support this in our 
PC which does not have four ports, we will use a USB hub 
with four USB-A input ports and one USB-C (or A using an 

adapter) output port. The camera USB cables will meet at the 
center of the track, where the hub will be.

C. Communication from PC to Arduino
We will be using the USB 2.0 protocol as the 

communication method between the PC and the Arduino. This 
communication will be solely one way, as the only 
information that is sent from the PC to the Arduino is 
regarding the movement of specific motors to guide the 
tracking. On the PC side, since we are running OpenCV on 
Python, we will use Python’s Serial library to send the 
following data on motor movement: 1. Which motor? 2. 
Which direction? 3. How much? (in angles or steps). This 
transmission will be in parallel with OpenCV calculations on 
car location relative to the screen. On the Arduino side, we 
will: 1. wait for data from PC 2. move motor “n” in direction 
“R” by x (angles or steps) 3. repeat forever. The specific cable 
we are using is the USB 2.0 A/B cable.

D. Communication from Arduino to motors
The Arduino Uno will be placed in the middle of the track 

with the USB A/B cable running from it to the PC outside the 
track. This Arduino will lie on a breadboard and will control 
all four servos via GPIO. Each servo cable has 3 pins: 
negative, positive, and signal. The negative pins will be on the 
GND of Arduino and the positive pins will be on 5V supply 
powered by the Arduino. The signal pins of the servos will be 
on the PWM Digital outputs.

We will be using the Servo library installed on Arduino. The 
main functions we will utilize are attach(), servo.write(), and 
delay(). Servo.attach(pin) allows us to attach a servo on a 
specific pin. Servo.write(pos) allows us to write a specific 
angle of position to that servo. delay(time) allows us to delay 
time in milliseconds before moving to the next line of code. 
The gist of our Arduino code will be: 1. setup servos with 
designated pins 2. loop until data from PC arrives 3. use a 
combination of servo.write() and delay() to move the motor to 
a position at a controlled speed. 

Fig. 2. Arduino to servo connections 
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Detection and Tracking Module
Live feed off of every camera will be relayed to the 

processing system. The aim here is to track the camera and 
relay car position information to the camera to allow for 
smooth panning. Given that the sequence of camera positions 
is known and since the car must pass through the cameras in 
order, only the video feed of the current tracking camera and 
the next camera will be processed. The acquired footage will 
undergo the following:

A. Data preprocessing:  
By extracting relevant features, such as the color of the toy 

car, preprocessing helps narrow down the search space for the 
detection and tracking algorithms. This focused approach 
reduces the amount of computation required to analyze each 
frame, leading to faster processing times and lower latency.  

1. Color-based segmentation aims to isolate regions in the 
image that correspond to the toy cars. Utilizing the HSV 
color space, the implementation segments the image using a 
color mask tailored to the target color of the toy cars (e.g., 
red). Color-based segmentation effectively narrows down 
the search space for the toy cars, focusing computational 
resources on regions likely to contain the objects of interest. 
2. Smoothing is employed to create a more uniform 
appearance of the image by reducing abrupt changes in 
pixel intensity, thereby improving the continuity of the 
tracked object. A blur filter is applied to the image to 
achieve smoothing, with the flexibility to adjust the kernel 
size based on the desired level of smoothing. 
3. Contrast Limited Adaptive Histogram Equalization 
(CLAHE) is applied to the L channel of the LAB color 
space, enabling localized contrast enhancement while 
preserving image details. 
4. Noise reduction aims to mitigate the adverse effects of 
unwanted signal fluctuations in the input frames, which can 
obscure the true features of the toy cars and impede 
accurate tracking. This implementation offers various noise 
reduction methods, including Gaussian blur, median 
filtering, and bilateral filtering. 

B. Object detection:  
The input to the object detection module consists of 

preprocessed images with the toy cars highlighted in red. This 
preprocessing step ensures that the objects of interest are 
distinctly delineated, enhancing the YOLOv4 algorithm's 
ability to detect them accurately. The YOLOv4 model is 
seamlessly integrated into the system using the TensorFlow 
deep learning framework. Upon receiving the preprocessed 
images, the YOLOv4 algorithm is executed to detect toy cars 
within the camera frames. The algorithm outputs bounding 
box coordinates and confidence scores for the detected 
objects, providing essential spatial and confidence information 
for subsequent processing. To ensure robust detection, a 
confidence threshold is applied to the confidence scores 
associated with each detected object. Detections with 
confidence scores below a predetermined threshold are filtered 
out, effectively reducing false positives and enhancing the 
overall accuracy of the detection process. Following 

confidence thresholding, non-maximum suppression (NMS) is 
applied to eliminate redundant bounding boxes and retain only 
the most confident detections. This post-processing step 
further refines the detection results, ensuring that only the 
most salient object detections are considered for further 
processing.  

C. Object tracking:  
Upon receiving the bounding box coordinates of the 

detected toy car from the object detection module, the object 
tracking algorithm initiates tracking using the GOTURN 
tracker. The bounding box serves as the initial region of 
interest (ROI) for the tracker, providing spatial context for the 
location of the toy car within the camera frame. As the toy car 
moves within the camera's field of view, the GOTURN tracker 
continuously updates the position of the bounding box to 
maintain tracking. The tracker adjusts the bounding box 
coordinates based on changes in the object's position and 
appearance, ensuring accurate and robust tracking 
performance. Once the toy car enters the middle of the camera 
frame, the tracking algorithm provides movement information 
to adjust the camera's orientation and preserve the car in the 
center of the frame. This involves determining the direction 
and magnitude of camera movement based on the position of 
the car within the frame. The camera's movement is 
constrained within predefined limits to prevent excessive 
panning and maintain a smooth tracking experience. Upon 
reaching the pan limit or when the next camera starts tracking 
the toy car, the tracking algorithm initiates a handover process 
to seamlessly transition tracking responsibilities to the next 
camera in the sequence. 

Feed Selection Module 
The feed selection module will accept as input the boundary 

box dimensions produced by the video processing module in 
its analysis of frames captured by each camera. It will also 
accept a corresponding classification from that module on 
whether each of these frames contains a front view, a side 
view, or a back view of the car. Additionally, it will accept the 
raw frames produced by each camera and forward a subset of 
these frames to the monitor to be displayed through the High-
Level GUI library.

A. Feed comparison 
For each set of frames from a single time-step, we will 

determine which camera has the closest possible shot of the 
car from the boundary box dimensions produced by the video 
processing module. We will take into account whether the 
camera sees the front, the side, or the back of the car, and 
assume that within each category, the largest bounding box 
corresponds to the closest possible shot of the car. We will 
determine the best camera view as the front view with the 
largest bounding box and the worst view as the back view with 
the smallest bounding box, or no box if car is undetectable, 
and everything in between. 

B. Hysteresis 
From frame to frame, keep track of which camera has the 

best view of the car. If a camera maintains continuously the 
best view of a car for a set threshold number of frames 
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(approximately 3 frames, 100ms for 30fps), we will switch 
from the previously selected source to this camera as the new 
source. 

C. Source forwarding 
We will display the frames from the selected source on the 

monitor by repeatedly calling High-Level GUI library 
functions on those frames. As soon as the selected source 
changes, we will switch to displaying the frames from the new 
source. 

VII. TEST, VERIFICATION AND VALIDATION 

Use-Case Tests 

Tests for Use-Case #1: Ensure the system can track a car 
traveling at 1.5m/s-2.5m/s for at least 95% of a lap.  

Record video footage of the toy car moving at different 
speeds within the specified range. Analyze the tracked 
trajectory to verify the system's tracking capability. There are 
4 main track turns that are seen on major circuits that will be 
analyzed. The each correspond to different levels of camera 
panning with different speeds of tracking: 1. straightaways 2. 
sweepers (long and gradual turn) 3. hairpin turns (the tightest 
possible turn) 4. chicanes (slightly S shape straightaways.

Tests for Use-Case #2: Verify that tracking the object car is 
not distracted by other cars in the race.  

Our track includes two slots. Introduce another car to the 
other lane and run the race at the same time. In the span of a 
lap, analyze the stream and calculate the percentage of the 
stream, if any, is tracking the other unwanted car instead of the 
main car. This percentage should be 0%, 2% at maximum.

Tests for Use-Case #3: Achieve a camera-to-stream latency of 
less than 500ms. 

This requirement deals with the latency from real-time race 
that the camera captures to the footage that appears on the 
stream. To test this requirement, we plan to use the starting 
line as a marker for the car. When the car in the stream passes 
through the marker, we can signal the camera by throwing a 
flag to the screen. Now we can replay the footage on the 
stream on slow motion and check the latency from when the 
car passes the marker to when the flag is thrown. This latency 
will correspond to the camera to stream latency, and should be 
under 500ms. 

Tests for Use-Case #4: Ensure good quality of stream 
Ensure good quality of the stream with the front of the car 

visible for over 75% of the time and ensure the car remains 
centered (middle 50% area of the screen) for more than 75 
percent of a lap. Analyze the position of the car within the 
frame throughout the lap and verify compliance with the 
centering requirement. An easily identifiable marker will be 
placed in the front of the car. Gathering the race footage we 
can measure the amount of time the front of the car was 
visible on screen. Here car front view time/front detectable 
time and car in center of frame time/car in detectable zone 
time should be more than 75 percent. This is in accordance 
with car racing streaming standards that prefer to show the 
fronts of the cars and keep the cars centered in the shot. 

Additional Tests

Detection to motor latency Test: 
This latency is crucial for ensuring real-time responsiveness 

in tracking the car's movement. The latency measurement 
encompasses the time it takes for the camera to pan correctly 
in response to the detected movement of the car, as determined 
by the GOTURN algorithm. When the algorithm detects that 
the car is moving out of the specified region of interest, it 
signals the camera to adjust its position accordingly to keep 
the car within the frame. The camera's pan speed is critical in 
maintaining the car within the area of interest and minimizing 
any lag between the detection and the camera's response. To 
measure latency, we utilize the time module in Python, which 
allows precise timing of events. The process involves time-
stamping the moment when the algorithm detects the car's 
movement and time-stamping the moment when the camera 
completes the pan adjustment. The difference between these 
two timestamps represents the latency between the detection 
and the camera's response. By repeating this process for 
multiple instances of car movement detection, we gather a 
dataset of latency measurements. We are hoping for a latency 
of 5ms, a bit of room since the camera may lag behind the 
moving car as long as it keeps it in frame.

Scalability Test: 
The scalability test evaluates the system's ability to handle 

the addition or removal of cameras placed anywhere on the 
track while maintaining optimal performance and 
functionality. We will test how the system performs with 
different levels of separation between the two cameras - 
whether they are stuck together or on opposite parts of the 
track. The system should also handle blind spots in the track, 
if too few cameras are placed, without breaking the stream.   

VIII. PROJECT MANAGEMENT 

A. Schedule 
Our weekly schedule is provided in detail in Fig. 4. of the 

Appendix. 

B. Team Member Responsibilities 
For the scope of the project, we decided to split the 

responsibilities into three sections of hardware, computer 
vision, and feed selection algorithm. Jae’s primary 
responsibility will be to take charge of the hardware tasks of 
this project, including camera stand assembly, determination 
of camera stand locations, servo motor control, and Arduino 
programming. He will also take the lead in interfacing Python 
with Arduino to allow communication from computer vision 
to the Arduino for motor control. His secondary responsibility  
will be to take initiative in integration and testing approaches 
after finishing hardware tasks, as others may need more time 
to refine their parts. Bhavya’s primary responsibility is car 
detection and tracking using OpenCV. His tasks include 
detection of cars using libraries, tracking of cars and sending 
location information to Arduino, real-time multithread car 
tracking for four cameras, and sending relevant information 
for feed switching to the feed selection module. His secondary 
responsibility will be updating our block diagram and 
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schedule, as well as communicating with Thomas on the 
interface between OpenCV and feed selection. Lastly, 
Thomas’ primary responsibility is feed selection algorithm 
development. He will be responsible for designing an 
algorithm to reasonably switch feeds between the four 
cameras to provide the best stream. He will communicate with 
Bhavya to attain the data points he needs to make these feed 
switches. His secondary responsibility will be to communicate 
to Jae and Bhavya continuously on the things that can be done  
on the hardware and computer vision part to improve the 
quality of the stream. 

C. Bill of Materials and Budget 
Bill of Materials and Budget is broken down in Table I of 

the Appendix. 

D. Risk Mitigation Plans 
One of the risks we may encounter is that the race car 

moves too fast around the track for our system to continuously 
track. This could occur if the motors are too slow or if the 
feedback control incurs too much processing time. In order to 
account for this risk, we will plan levels of distances for the 
cameras from the track so that we can move the cameras 
farther away if the close-distance configuration is not possible, 
resulting in lower motor rotational speed requirements and 
motor feedback processing time requirements.

Another risk we may encounter is that one of the cameras 
detects the race car on the wrong side of the track and the 
system erroneously switches to that camera to follow the race 
car. In this case, because a real racetrack would involve longer 
distances and obstructions and this risk is due to unique toy 
racetrack conditions, we plan on building obstructions around 
the track to simulate real racetrack obstructions and prevent 
the cameras from detecting the car from the other side of the 
track.

Another risk we may encounter is that the camera motors 
stutter during tracking due to unforeseen mechanical or 
control challenges with our current implementation plan. In 
order to account for this risk, we plan on researching a PID 
motor control module that could be implemented if necessary 
to ensure the motor tracks properly. 

IX. REACH GOALS 
Beyond our MVP, we have reach goals that we will strive 

for if time allows. First is our system’s flexibility to different 
camera stand locations. While our specifications will work 
with stationary camera stands at specific locations around the 
track, our goal is to remove the dependency of our system on 
knowing where the camera stands are around the track. This 
will allow for different angles of footage and therefore 
enhance the stream controllability. Another reach goal is to 
accommodate for different track configurations. Similar to the 
previous goal, since our track is configurable, if time allows, 
we would like to remove the dependency of our system on 
knowing what the track is. This will increase the usability of 
our product. Lastly, we would also like to take the zoom of the 
camera and incorporate it into our footage. For example, when 
a car is far away, our system would be able to zoom into that 
car, and zoom out as the car approaches the camera. This is 

how cars are captured in real racing, and we look to 
implement it into our system if time allows. 

X. RELATED WORK 
We have identified currently existing products on the 

market which have a similar purpose and nature to our 
product, though with slightly different applications and 
technical challenges. One of these products is Streamline - 
United Sports Services. This product, similar to ours, seeks to 
deliver a real-time livestream of a race with multiple camera 
angles and autonomous camera switching. They use a 
computer, cameras, and cabling, like us. They differ from our 
project notably by focusing on pool championships, in which 
humans race back and forth along a pool line instead of around 
a race track which has more variability in geometry. They also 
differ from our project by using fixed cameras instead of CV-
based tracking cameras.

 Another one of these products is Multi-Angle Remote 
Production - PlaySight. This product, similar to ours, seeks to 
deliver multi-angle production of a livestream with smooth 
camera switching. They differ from our project notably by not 
having autonomous switching between multiple camera 
angles, though they do have multiple camera angles and CV-
based camera tracking separately. They also focus on sports 
with human players, while we focus on race cars on a race 
track which involves higher speeds and longer distances to be 
covered. 

XI. SUMMARY 
Overall, our system fills in the gap of human labor, error, 

and danger in the production of live streams by developing 
auto-tracking cameras as well as generating a live stream 
autonomously. The danger of cameramen having to stay near 
the track to capture good footage is no longer a factor in our 
system. Additionally, the labor and possible errors that come 
with the production of the stream using these footages are also 
mitigated by our system. Some challenges that are within 
discussions include the system’s ability to track the car at high 
speeds, quantifying and improving the quality of stream (feed 
switching aspect), and our reach goal of achieving flexibility 
to different camera stand locations as well as different track 
configurations. Although they are challenges, we hope to 
overcome them in order to create a useful and impressive 
produce, as well as to enjoy the process of this project. 

GLOSSARY OF ACRONYMS 
CLAHE - Contrast Limited Adaptive Histogram Equalization 
CV - Computer Vision 
F1 - Formula One 
GND - Ground 
GOTURN - Generic Object Tracking Using Regression 
Networks 
GPIO - General Purpose Input/Output 
HSV - Hue, Saturation, Value 
I/O - Input/Output 
LAB - Lightness, a coloring, b coloring 
MVP - Minimum Viable Product 
NMS - Non-maximum Suppression 
PC - Personal Computer 
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PID - Proportional-Integral-Derivative 
PWM - Pulse Width Modulation 
ROI - Region of Interest 
USB - Universal Serial Bus 
YOLOv4 - You Only Look Once version 4 
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Appendix 

Fig. 3:  Closer View of Block Diagram (overall system) 
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Table I.  Bill of Materials (from section VIII.C) 

Fig. 4.  Schedule (from section VIII.A) 
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