
18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 1 of 12

FPGA-AMP: FPGA Accelerated Motion Planning
Matt Ngaw, Yufei Shi, Chris Stange

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Hardware acceleration of key robotic
computations is essential to make robots more viable for
tasks that require fast response times and reactivity to
the environment. Motion planning is a critical step in
the robotics pipeline that generates paths for the robot
to follow. Motion planning algorithms, such as Rapidly-
exploring Random Trees (RRT), is too slow when run
on CPUs and too power-inefficient when run on GPUs.
In our capstone project, we used a Field-Programmable
Gate Array to accelerate motion planning and reduce
its power consumption. Our FPGA implementation of
RRT achieves 18x speedup over the baseline implemen-
tation at a 70 percent decrease in power and a 98 per-
cent decrease in energy.

Index Terms—Field-Programmable Gate Array,
Hardware Acceleration, High-level Synthesis, Motion
Planning, Rapidly-exploring Random Trees, Robotics)

1 INTRODUCTION

Recent advancements in computing technologies have
facilitated the emergence of increasingly sophisticated
robots, which play an ever-growing role in our society [1],
[2]. Robots are becoming more capable of performing tasks
that normally risk people’s safety and health. These tasks
typically require quick thinking and fast reaction times.
Thus, the hardware driving the computation within robots
must keep up with the increasing challenges of their use
cases.

Key steps in the robotics computing pipeline include
perception, motion planning and dynamics. Motion plan-
ning is particularly crucial because it is one of the more
compute-intensive tasks. Motion planning is the task of cal-
culating a series of valid configurations to get from a start-
ing position to a destination position [3]–[5]. There are var-
ious algorithms for generating motion plans, among which
Rapidly-exploring Random Trees (RRT) is often used to
efficiently search a high-dimensional space for collision-free
trajectories. [6]–[9].

RRT has conventionally been run on central process-
ing units (CPUs) and graphics processing units (GPUs).
While providing generality in computing and ease of pro-
gramming, CPUs are not performant at computing RRT.
GPUs, while better suited for an algorithm with parallelism
like RRT, are not power efficient enough to be viable in a
robotics system with power constraints. There are many
use cases for robots where performance and power efficiency
are paramount. Thus, it is necessary to find a different so-
lution.

Field Programmable Gate Arrays (FPGAs) are capa-
ble of significantly accelerating algorithms like RRT while

consuming less power compared to traditional CPU or
GPU implementations. Hence our project aims to lever-
age FPGAs to enhance the speed and efficiency of motion
planning. We plan to develop an end-to-end system that
uses the FPGA-AMP accelerator to guide the motion of a
robotic arm.

2 USE-CASE REQUIREMENTS

2.1 Accurate Motion Planning

Motion plans that are collision-free are essential for
autonomous robotics. Robotic systems that fail to avoid
obstacles will likely be unsafe and be repeatedly broken.
These social and economic ramifications necessitate that
the system we create generate accurate motion plans. Our
motion planning module consists of two steps, collision de-
tection and path generation. Using data generated by a
perception system, collision detection is needed to deter-
mine what viable, collision-free paths exist in the state
space. Path generation then uses this result to find the
shortest path between the start and goal position. Al-
gorithms that are commonly used for motion planning
are Probabilistic Roadmap (PRM) and Rapidly Exploring
Random Tree (RRT). Both of these algorithms are non-
deterministic, which means they are not guaranteed to con-
verge on a single solution. Algorithms for path generation
consist of A* search, Dijkstra Algorithm, and heuristic path
smoothing steps. We targeted designing a motion plan-
ning system that will generate accurate, collision-free
paths at least 95 percent of the time.

2.2 Rapid Motion Planning

Using robotics in dangerous environments that are typ-
ically reserved for humans involves enabling the robot to
adapt and react to its surroundings. To do so, they must
be able to quickly generate motion plans that account for
dynamic, changing scenes. When run on modern CPUs,
motion planning is generally too slow to handle such situ-
ations [1]. Academic research shows that using an FPGA
for motion planning can achieve a 1000x speedup over a
CPU [4], [5]. Since motion planning makes up the major-
ity of the processing time on a robot, this speedup should
be sufficient to allow the robot to interact with dynamic
scenes [1]. Due to improvements in modern CPUs since
the research we cite, we targeted a 10x speedup of mo-
tion planning over a baseline CPU implementation.

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 2 of 12

2.3 Efficient Motion Planning

Power and energy efficiency are important when consid-
ering the environmental impacts of electricity generation
and the long-term economics of using robots. Efficiency is
also critical for robotic systems that may be used in remote
environments and/or are battery-powered. Modern CPU
implementations of motion planning are not only slow, but
they are also extremely power inefficient. While GPUs can
achieve considerable speedup over CPUs, they suffer the
same problem of power inefficiency. Therefore we use an
FPGA, which allows us to maintain the speedup advantages
of the GPU at a fraction of the power cost. We targeted
a 70 percent decrease in power and a 90 percent
decrease in energy consumption when generating
motion plans versus a baseline CPU implementa-
tion.

3 ARCHITECTURE AND
PRINCIPLES OF OPERATION

3.1 Architecture

The FPGA-AMP system is an end-to-end motion plan-
ning solution and we have integrated it into a complete
robotics pipeline. Our robotic system is able to observe
obstacles in a scene, generate a collision-free path (if one
exists), and convert the path to a motion plan. This nat-
urally separates the system architecture into three major
components:

• Perception:
Observes and maps a scene
This includes the Kinect One Camera and the laptop
in Figure 1.

• RRT Acclerator:
Generates RRT tree, representing a set of collision-
free paths through the state space
This includes the Ultra96v2 FPGA board and the
laptop in Figure 1.

• Kinematics:
Finds the shortest collision-free path, generates a vi-
able motion plan, sends commands to the arm
This includes the Robotic Arm & Controller, and the
laptop in Figure 1.

Figure 1: Overall physical system setup.

Compared with the system architecture in our design re-
port, instead of doing a full-ROS integration on the Kria
KR260 board, our final system architecture uses a laptop
to orchestrate all the components. This change was nec-
essary due to the fact that we had to switch the FPGA
we were using from the Kria to the Ultra96v2. We spent a
significant amount of the semester trying to get the Kria to
build a project but even with the help of people from AMD
we were not able to do so. We switched to the Ultra96v2
because we knew it would work and were running out of
time. The Ultra96v2 does not have native ROS2 support
which means we needed to add the laptop to run percep-
tion. The laptop receives raw perception data from the
camera which is then processed and sent to the Ultra96v2
over a local network. We run RRT on the FPGA and pass
the generated tree back to the laptop. The laptop finished
the pipeline by running kinematics and sending commands
to the arm.

3.2 Principles of Operation

3.2.1 Engineering

We applied principles of engineering both in the formu-
lation and approach we took to our project. Our project
began by identifying a real world problem for which there
existed a gap in performance when using current methods.
We then applied our systems programming and hardware
design skills to devise a solution that would improve the
state of the art. When implementing our robotics system
we broke it into three main subsystems. Dividing up the
work like this made the project more manageable and al-
lowed us to work in parallel. Despite this partitioning of
the workload, we ensured that we were still knowledge-
able about all the components and lent help to one another
whenever necessary. In short, we used the engineering skills
we developed during our time at CMU and worked collab-
oratively to solve a complex problem.

3.2.2 Science

We applied the principles of science through the formu-
lation and execution of our project. The scientific method

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 3 of 12

CPU

Depth-
sensing
Camera

FPGA

RRT & Collision Detection

Robot
Controller

①

② ③

④ System (FPGA-AMP)

External Devices

CPU & CPU Computed
Data Transfers

Accelerators & Accelerators
Computed Data Transfers

FPGA Board w/ All
Major Components

Figure 2: An overview of FPGA-AMP system pipeline. 1 The depth-sensing camera sends raw point cloud data of the
scene to a CPU. 2 The CPU processes the point cloud data, turns it into a voxelized 3D scene mapping, and passes it
to the FPGA. 3 The FPGA runs RRT, and outputs the scene’s state space as well as the tree. 4 The CPU generates
and optimizes the motion plan based on the generated tree, and sends the motion plan to the robotic arm controller.

Ultra96v2

RRT & Collision Detection

Comms &
Synchronization

MacBook Air

kinect2_bridge

kinect2_map
(including

calibration)

libfreenect2

Comms & Synchronization

rrt_comms

fwd_kinematics

inv_kinematics

(including collision
checking)

arm_comms

kine_comms

Figure 3: An overview of FPGA-AMP system components.

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 4 of 12

is defined by doing research, formulating a hypothesis,
running an experiment, and finally reaching a conclusion.
Our project began by reading multiple research papers on
the application of hardware acceleration to robotics. We
then hypothesized that implementing motion planning on
a FPGA would improve upon the state of the art. From
here we implemented our accelerator, ran tests, and com-
pared it to benchmarks. Our initial hypothesis has been
proven correct, using FPGAs for motion planning results
in significant speedup and reduces the power and energy
cost.

3.2.3 Mathematics

Throughout our project we relied heavily on linear alge-
bra and geometry. The perception camera is located behind
and above the arm so that it can get a clear view of the
state space. The camera is angled down which we must
account for by applying rotation matrices to the voxelized
data. Rotation matrices along with translation matrices
are applied during forward kinematics when converting be-
tween the link’s reference frames. Geometry is used during
inverse kinematics when we repeatedly apply the law of
cosines as well as other trigonometric identities. RRT can
be considered a Monte Carlo method [10] and A* is a graph
search algorithm [11].

4 DESIGN REQUIREMENTS

4.1 Perception System

Having a precise perception of the scene is the corner-
stone of accurate motion planning. This is because having
an inaccurate mapping of the scene would lead to inefficient
or even hazardous decisions in the motion planning process.
In addition, since the perception system is the “front end”
of the entire motion planning system, its accuracy directly
impacts all subsequent systems. Hence, we aimed to make
the perception system have a high resolution and a high
accuracy.

Given that the Kinect One camera’s IR sensor’s maxi-
mum resolution is 5mm at 50cm and > 5cm at > 5m, we
estimated that for our use case (in which the camera will be
1 meter to 2 meters away from the scene), 1cm is the finest
resolution we could theoretically achieve. Hence, the per-
ception system should have a resolution of 1cm. Quan-
titatively, the perception system should be able to
recognize a 1cm × 1cm × 1cm standard cube at
least 90% of the time.

Having set the resolution of the perception system,
we further derived the requirement for mapping accuracy.
For all mapped objects in the scene, the mapped di-
mensions should be within +/- 1cm range of its ac-
tual physical dimensions at least 90% of the time.

4.2 RRT Accelerator

By virtue of being a non-deterministic algorithm one
of the inputs to RRT is a K value, describing the number
of iterations it performs of picking a random point in the
space and attempting to grow the tree towards that space.
This K can vary depending on the scene, and it has impacts
on the effectiveness of RRT. Too low of a K value, and the
tree is less likely to grown enough to connect the start and
end voxels together. Too high of a K, and computation
done by the accelerator is wasteful. Since our accelerator is
concerned with speedup, given a scene with previously
stated resolution and an input K value, our accel-
erator running on the Ultra96v2 should achieve a
greater than 10x speedup against the software ver-
sion of RRT.

4.3 Kinematics System

Kinematics is responsible for generating commands for
the robotic arm, in the form of servo motor angles, that al-
low it follow the motion plan. If the commands kinematics
generates are inaccurate, it no longer matters how good of
a motion plan we have created; the arm will deviate from
the path and possibly result in a collision. Kinematics is
the “back end” of the motion planning system and is re-
sponsible for the successful execution of the plan, therefore
it is imperative the commands we generate are accurate.
The resolution of our states space informs us on how far
we can deviate from the path and with a high level of cer-
tainty not encounter a collision. For a path consisting of
poses within the arms reach, the commands kine-
matics generates should result in no more than a
1cm divergence from the path in any direction.

5 DESIGN TRADE STUDIES

While implementing our system we made countless de-
sign decisions. Here are a few key decisions.

5.1 Perception System: Guided Auto Cal-
ibration vs. Measurement-based Cali-
bration

One of the biggest challenges in implementing the per-
ception system is designing a camera calibration approach
that is consistent and reliable for different environment set-
tings.

We initially implemented a guided auto calibration sys-
tem. The auto calibration works by telling the user to place
the 1cm × 1cm × 1cm unit cube at different places in the
scene and taking differences in the snapshots. The system
then compares these snapshots against a pre-stored snap-
shot to estimate and adjust the camera’s parameters then
compose a transformation matrix accordingly. However,
this guided auto calibration method, while adaptable, relies
heavily on user interaction and can be time-consuming. It

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 5 of 12

also poses precision issues, as the way that the point cloud
is transformed into voxels involves some heuristic process,
so it is not always deterministic.

To mitigate these issues, we explored an alternative ap-
proach: measurement-based calibration. This method in-
volves asking the user to measure (or estimate) the differ-
ence between an uncalibrated mapped scene and a real-
world scene and using the user input to compose transfor-
mation matrices. This method tends to be time-consuming,
as it is an iterative process that requires the user to keep
adjusting the parameters until the mapping has been cor-
rectly calibrated. On the other hand, it did appear to be
more precise. Since accuracy and precision are what we
care about the most in the perception system, and calibra-
tion only needs to be done once for a new environment,
we eventually opted to integrate the measurement-based
calibration approach into our perception system.

5.2 Robot

We chose to work with a robotic arm because it has mul-
tiple degrees of freedom and motion planning is more com-
putationally expensive in higher dimensional state spaces.
This means we tested our accelerator in an environment
where it is most likely to be useful. This also allows us
to provide a more accurate assessment of the accelerator’s
performance.

5.3 Motion Planning Algorithm

The two motion planning algorithms used most often
in robotics are Probabilistic Roadmap (PRM) and Rapidly
Exploring Random Tree (RRT) [1]. Both algorithms are
non-deterministic and involve taking random samples of the
state space. These random samples are then connected via
edges to form a graph. Eventually, the graph represents a
subset of the viable, collision-free trajectories. Our decision
to use RRT was primarily based on the host of high-quality
literature on its acceleration [4], [5]. RRT contains intrin-
sically parallel properties which make it ideal for hardware
acceleration.

5.4 Shortest Path Algorithm

The two shortest path algorithms we considered are Di-
jkstra’s Algorithm and A* search. Dijkstra’s is ideal when
using PRM [12]. However, research has been done to com-
bine RRT and A* into a more efficient algorithm called
RRT* [8]. For this reason, we decided on using A*. Do-
ing this left the door open to later integration of RRT and
A* into RRT* which would have resulted in even larger
performance gains.

5.5 Acceleration Device

5.5.1 CPU

Running motion planning on a CPU is relatively simple
as open-source implementations of it are widely available in

robotics libraries. As discussed before, there is parallelism
to be reaped from RRT but it is hard to take advantage
of on CPUs. Collision detection entails many independent,
parallel calculations, while conventional CPUs only have
around 8-16 threads available. The only benefit of keep-
ing the motion planning computation on a CPU is that the
CPU is responsible for orchestrating the rest of the robotics
system, there is no overhead associated with transferring
data to some external processor.

5.5.2 GPU

Graphics Processing Units (GPUs) are able to exploit
the parallelism in algorithms like RRT and achieve signifi-
cant speedup over CPUs. This being said, they suffer from
extreme power inefficiency. Modern consumer GPUs can
consume up to 450 Watts. The long-term economics and
environmental impact of such a solution do not make sense.

5.5.3 ASIC

Application-specific integrated circuits (ASICs) take
hardware acceleration to the extreme, providing even more
performance gains and power efficiency than the solution
option that we settled on. However, ASICs also have draw-
backs, namely the high upfront development costs and long
design cycles. In a scenario where hardware acceleration of
robotics is operating at scale, fabricating ASICs may make
sense, but for the purpose of a semester-long design chal-
lenge, we need a platform that is not as expensive and
better suited for prototyping.

5.5.4 FPGA

We settled on FPGA acceleration because of the hard-
ware acceleration and efficiency it provides while also be-
ing easily reconfigurable, striking a middle ground between
CPUs, GPUs, and ASICs. As stated before, hardware ac-
celeration is great for computation that has lots of paral-
lelism, thus making motion planning a great use case for an
FPGA. FPGA accelerated motion planning and robotics in
general is also an active area of research, and we have ob-
tained much guidance from the literature we have read so
far on the subject.

5.6 Hardware Development

5.6.1 HDL

The traditional method for designing an accelerator is
to use a hardware description language (HDL) like Sys-
temVerilog. Using such a language allows for much lower
and finer control over the accelerator that we build. Hav-
ing full control is double-edged since the ability to control
all the details in our system means we have to worry about
all the details in our system. While all three of us in our
group have experience with SystemVerilog, for a semester-
long project we decided that we needed something that
would enable us to develop our accelerator faster.

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 6 of 12

5.6.2 High-level Synthesis

High-level synthesis (HLS) came to mind as a better
alternative to HDLs. For some background, HLS takes a
software description of some computation and extracts the
dataflow within it to get a hardware description. The trans-
lation from software to hardware preserves the correctness
of the design. When making a change to

HLS is a better choice for this project for a few rea-
sons. First, it is a more accessible development method at
the cost of control over the finer details of the design. For
example, it is hard to force the HLS compiler to put a reg-
ister in between two signals, while it is trivial in an HDL.
However, this level of control is not necessary for us to get
speedup in our accelerator. The second reason is the fast
design cycles we get from using HLS.

5.7 Writing our own kinematics solvers vs.
using an open source implementation

The main reason we decided to write our own kinemat-
ics solvers was because it gave us significantly more control
with regard to calibration and simulation. Having a simu-
lator that maps the dimensions and the angles 1:1 made it
easier to reason about and visualize the way our arm was
operating. Another reason was that the good open-source
kinematics implementations are packaged in ROS and nor-
mally work with arms that have more DOF than what we
had available. Working with the RRT output directly min-
imizes the data transfer overhead versus the extra post-
processing needed to work with it in ROS. Implementing
forward and inverse kinematics was non-trivial but it ended
up being a good learning experience.

6 SYSTEM IMPLEMENTATION

6.1 Perception System Implementation

The physical components of the perception system
are the Xbox Kinect One (v2) camera and the lap-
top. The software components include libfreenect2,
kinect2 bridge, and kinect2 map.

6.1.1 libfreenect2

libfreenect2 is an open-source driver library for
the Kinect for Windows v2 (K4W2) devices. It is
used to retrieve the raw sensor data and is required by
kinect2 bridge.

6.1.2 kinect2 bridge

kinect2 bridge is the ROS 2 version of the
iai kinect, an open-source software bridge between the
Kinect camera and the Robotic Operating System, that
reads raw sensor data from Kinect via USB port, converts
the raw sensor data to the point cloud, and publishes the
point cloud as a point cloud message to ROS 2.

6.1.3 kinect2 map

We developed kinect2 map to process the point cloud
message published by kinect2 bridge. kinect2 map
has multiple layered features:

• Calibration: kinect2 map can calibrate the cam-
era’s coordinate system such that the mapped coor-
dinate system is consistent with the real-world coor-
dinate system in the scene. This is implemented by
using Eigen to generate fully parameterized trans-
formation matrices and applying the transformations
to the points in the point cloud.

• Scene Cropping: kinect2 map can crop the point
cloud mapping to the size of the scene, which is fully
parameterized.

• Pruning: kinect2 map can prune the scene state
space by marking the unreachable voxels as occupied.
Reachability is determined by the position of the base
of the robotic arm and the maximum reach of the
robotic arm.

• Filling (in blanks): One of the fundamental limita-
tions of using a single IR-ray-based camera to gener-
ate a 3D mapping of a scene is that the camera can
only observe the surfaces of the objects. This causes
all objects to be hollow, or only have their camera-
facing surface to be mapped. To solve this issue, we
added a feature to kinect2 map such that it traces
the projection of the rays and fills the path along the
rays with occupied voxels if the ray hits an obstacle.

6.2 RRT Accelerator Implementation

The RRT accelerator is built on the Ultra96v2, an Arm-
based, Xilinx Zynq UltraScale+ FPGA development board.
Development of the kernel was done using Vitis and Vitis
HLS. The kernel source code is comprised of two parts: the
host code written in OpenCL C++, and the HLS descrip-
tion of the accelerator in Vitis HLS C. The host code is
responsible for data transfer between the laptop and Ul-
tra96 board, as well as data transfer on the board, between
itself (the Arm core) and the kernel on the actual FPGA.
The HLS C is where hardware optimizations are applied
to our kernel achieve our desired speedup, and there three
main optimizations that we used that helped us achieve
speedup.

6.2.1 Pipelining

Pipelining takes a long sequential computation and cuts
it up into smaller chunks, inserting registers between each
chunk. By cutting up the computation and drawing it out
over multiple cycles, the execution of multiple loop iter-
ations can be overlapped. Cutting up long computations
in hardware also improves the critical path of the circuit,
increasing the clock frequency.

https://github.com/OpenKinect/libfreenect2
https://github.com/YuLiHN/kinect2_ros2
https://github.com/code-iai/iai_kinect2

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 7 of 12

(a) A simple scene setup (b) Raw (uncalibrated) voxel
mapping of point cloud

(c) Calibrated voxel mapping of
point cloud (submap axes line up
with scene coordinate system)

(d) Mapping in (c) with scene-cropping(e) Mapping in (d) with pruning(f) Mapping in (e) with filling

Figure 4: An overview of kinect2 map’s calibration, mapping, post-processing pipeline.

Throughout the HLS code, there are many sequential
computations where pipelining was applied such as gener-
ating random numbers via linear feedback shift registers,
calculating unit vectors based on the randomly sampled
point and the nearest tree voxel, and reads and writes to
and from DRAM.

6.2.2 Loop Unrolling

In many algorithms, there are sections of code that are
repeatedly executed while being independent of each other.
Such loops can be unrolled so that their execution is laid
out in parallel on hardware. This allows the computation
to be done more quickly while making use of more hardware
resources.

In RRT, the most parallelizable portion of our imple-
mentation of RRT was the search for the nearest tree voxel
given a randomly samples point. In C code, this search
looked like a triply-nested loop that searched over the state
space for tree nodes and calculated distances, keeping track
of the minimum. The most speedup was gained by un-
rolling some of these loops so that rather than iteratively
calculating distances and minimums, the computations for
each point are done in parallel. There is an upper limit to
how much can be unrolled, as each time a loop is unrolled it
turns into more logic and area on the FPGA. We ultimately
settled on unrolling across the entire Z dimension, leaving
the X and Y dimensions alone (still operating iteratively).

6.2.3 Memory Reshaping

On-chip buffers (BRAM) were used to copy the input
data from DRAM into more local, faster-to-access buffers.
Vitis HLS allows the user to reshape the dimensions of the

buffers, so that instead of receiving a single word on an ac-
cess of BRAM, multiple words are received. Deciding how
to reshape the BRAM is tricky, as a poorly chosen size can
slow down the kernel. By reshaping the BRAM, one can
ensure that any parallelized portions of the kernel receive
enough data to feed their compute units.

Since we partially parallelized the search over the state
space, we reshaped our state space BRAM acrosss the en-
tire Z-dimension as well, so that given X and Y coordinates
an entire Z row’s worth of data is output and immediately
fed to the unrolled search computation, rather than requir-
ing multiple cycles to get all the Z data needed to feed the
unrolled compute.

6.3 Kinematics System Implementation

The kinematics system takes the RRT tree as input.
The system is controlled via a python script and runs the
following steps in sequence.

6.3.1 A*

A* is implemented in C and is called via python bind-
ings. A* is used to find the shortest, collision free path
through the state space. Further discussion on how A*
works can be found in subsubsection 3.2.1.

6.3.2 Inverse Kinematics

Inverse kinematics is the process of mapping the points
in the path to servo motor angles. The points represent
the location of the arm’s end effector and the servo mo-
tor angles are used to control the links of the arm. Our

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 8 of 12

robotic arm has 4 key links when it comes to solving in-
verse kinematics. The base link has length zero and rotates
around the Z-axis, aligning the arm with the target point
in the XY-plane. The other 3 links have non-zero length
and rotate around a translated Y-axis. These links work in
conjunction to align the end effector with the target point
in the YZ-plane. Solving for the base link is trivial while
solving for the remaining links yields a nonlinear system of
equations. We solve this via an analytical method, utilizing
geometric intuition and algebraic representation [13]. We
set one of the link’s angles to a known value and solve for
the remaining two, iterating until we find a valid solution.
In some cases, the arm is not physically capable of reach-
ing a point in the state space and there will be no solutions
for the angles. If a point in the path cannot be reached
then the path is not valid. Significant work was done in
the perception system to pre-process the sensor data and
bias RRT towards reachable paths.

6.3.3 Arm Control

Finally the commands are streamed over UART to the
robotic arm where we had written code to parse the packets
and set the motor angles. Unfortunately the day before the
demo two of the servo motors on our arm broke, render-
ing it effectively inoperable. When the motors broke, we
were in the process of calibrating and aligning the arm with
the perception system. Before the arm broke, inverse kine-
matics was successfully placing the end effector at targeted
positions.

6.3.4 Forward Kinematics and Simulation Envi-
ronment

Forward kinematics is the process of mapping servo mo-
tor angles, measured between links, to a point that rep-
resents the coordinates of the end effector. During this
process we also get information about the positions of the
links with regards to the global coordinate system. For-
ward kinematics is implemented via a series of translation
and rotation matrices that are used to commute the links
between local reference frames. Forward kinematics and
its simulation environment were implemented in order to
test the validity of inverse kinematics as well as aid our
understanding and debugging.

Figure 5: Arm following path in simulation environment.

7 TEST & VALIDATION

7.1 Results for Perception System’s Reso-
lution and Mapping Accuracy

We evaluated the perception system’s resolution by hav-
ing the camera calibrated and fixed, and varying the resolu-
tion parameter used when converting different point clouds
to octal trees of voxels. We used 10 different sets of point
clouds, each has the same middle-sized object in it at differ-
ent positions. We used octovis to inspect if the mapped
position of the object is correct in its resolution (+/- 1
resolution unit). To our surprise, the camera was able to
output quality point cloud data one meter away from the
scene such that using {10cm, 5cm, 1cm, 0.5cm} resolutions
all seemed to work. The only failed resolution was 0.1cm,
which produced no matched mapped position.

This was then explained by the other experiment. In
the other experiment, we fixed the resolution to 1cm, the
scene to the same static scene, but varied the distance be-
tween the camera and the scene. We randomly sampled 20
nodes in the mapped scene by clicking in octovis, and
compared their mapped coordinates to their real-world co-
ordinates, and recorded the number of correctly mapped
nodes. As the camera moves away from the scene, the
number of correctly mapped nodes significantly decreases.
While the camera had only one mismatch when it was one
meter away from the scene, it had almost half of the sam-
pled nodes were mismatched when it was three meters away
from the scene.

Overall, at one meter to two meters, the perception sys-
tem was able to achieve 1cm resolution and mapping +/-
1cm accurate > 90% of the time. These results align with
our predictions and validate the design requirements men-
tioned in subsection 4.1 and hence also use case require-
ments mentioned in subsection 2.1.

As a side note, we have also found that the camera’s
tilt angle and the material of the test object affects the ac-

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 9 of 12

curacy of the perception system. One possible explanation
is that having a too-large or too-small tilt angle, as well as
having a translucent object, could make the IR rays tend to
scatter more, which complicates the detection of reflected
IR rays.

7.2 Results for RRT Accelerator’s Accu-
racy and Performance

We evaluated the accuracy of our RRT implementation
through the use of A*. Given a high enough K value such
that the start and end voxels connect to the tree, the tree is
correct only if A* can find a path through the tree between
the start end.

Regarding performance, we timed the execution of RRT
including all necessary data transfers. In the case of our
software RRT, which already had its input data in memory,
this meant simply timing the execution of the algorithm in
C. However, in our accelerator included in our timing the
sending of input data from the host to the kernel, and the
receiving of RRT data from the kernel to the host. This
timing was done on the host side—timing began as soon as
the host fired off the kernel to run RRT, and it ended as
soon as the kernel returned with the data.

We compared both the software and accelerated ver-
sions of RRT on a scene with a size of 128x64x64 voxels,
with 1cm of resolution, and using K = 10000. The software
version took 11.53 seconds, and our accelerated kernel took
1.58 seconds, resulting in a speedup of 18.22x.

7.3 Results for Kinematics System’s Accu-
racy

Our initial plan was to evaluate the kinematics system’s
accuracy with regards to the robotic arm but due to the fail-
ure of the servo motors we were not able to conduct a sig-
nificant amount of test. That being said, the forward kine-
matics and simulation environment were developed while
the arm was still functional and designed to model its be-
havior. Therefore, using the simulator we were able to test
the commands generated by inverse kinematics and deter-
mine its accuracy. With this method we were able to verify
that if a path consists of poses within the arms reach, the
commands inverse kinematics generates result in no more
than 1cm divergence from the path in any direction as we
required.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Figure 6. There are multi-
ple differences from our schedule in our design review. The
biggest difference is that the setup of our FPGA was drawn
out over the entire semester due to our struggles with the
Kria board, resulting in our switch to the Ultra96. This had
ripple effects on when porting RRT to the FPGA finished

and when integration began, since the FPGA is at the cen-
ter of our system. Regardless of these troubles, integration
and testing nonetheless took longer than expected.

8.2 Team Member Responsibilities

• Baseline RRT: Chris

• HLS-FPGA Environment: Matt, Yufei

• Porting RRT to HLS: Matt, Chris

• Optimization: Matt

• Perception: Yufei

• Kinematics: Chris

• ROS: Yufei

• Full System Integration: Matt, Yufei, Chris

8.3 Bill of Materials and Budget

We have a total budget of $600.00 and we used $348.98
for this project.

Although we requested the Ultra96v1 board and Kria
KR260 board, we did not end up using them because we
only have the Xilinx toolchain set up for Ultra96v2. We
planned to run everything as ROS 2 nodes on the KR260
board in our design review. However, since we weren’t able
to set up the development environment for KR260, we real-
ized that we had to use a ROS 2-compatible laptop to run
all the ROS 2 nodes. Hence we added Chris’ old MacBook
Air to our bill of materials.

For the complete bill of materials, see Table 1.

8.4 Risk Management

8.4.1 Design

One of the primary design risks involved designing the
system to be versatile under varying scenes and environ-
ments. To make the solution finders as generic as possible,
we adopted existing open-source libraries, parameterized as
much as possible, and decoupled functionalities when de-
signing the individual system sub-components. For exam-
ple, the perception system is fully parameterized and can
be adopted for scenes with different dimensions. All that’s
needed to use it on a different-sized scene is to change the
dimension sizes in the ROS launch file. Because the indi-
vidual functionalities are decoupled, doing this won’t affect
how mapping, or post-processing work.

8.4.2 Schedule

Schedule risks were mitigated by implementing an agile
project management approach, which involved breraeak-
ing down the project into small milestones for individual
team members, and sprinting altogether to achieve the
milestones if they were at risk of not being met by their
deadlines. We also had regular scrum meetings scheduled

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 10 of 12

for each week, and flexible ad-hoc meetings whenever nec-
essary. This collaborative approach allowed for rapid ad-
justments and proved to be helpful to pivot quickly when
needed, especially in the final two weeks of the project.

However, we still had some scheduling problems caused
by the integration of the Kria KR260 board. For more,
see subsection 11.2.

8.4.3 Resources

From a resources perspective, both budget and per-
sonnel were considered. We established clear budget con-
straints early in the project and regularly monitored ex-
penditures against this budget. For personnel, roles were
clearly defined, and responsibilities were distributed based
on expertise and workload capacity. Regular team meet-
ings and updates ensured that all members were aware of
their tasks and deadlines.

However, we encountered some challenges in mitigat-
ing resource-related issues during the final week of the
project. Specifically, we were unexpectedly confronted with
the malfunction of the motors in the robotic arm. For more,
see subsection 11.2.

9 ETHICAL ISSUES

The deployment of robotic systems, particularly those
capable of autonomous task execution, poses ethical chal-
lenges that must be addressed to ensure safe, fair, and re-
sponsible use.

9.1 Safety and Reliability

The primary ethical concern in robotic motion planning
is safety. Robots operating in human-centric environments
must ensure the well-being of humans. An edge case would
be a malfunction or misinterpretation by the motion plan-
ning system, especially in complex or dynamically changing
environments, which could lead to accidents. People work-
ing around the moving robots would be affected adversely
by this edge case. To mitigate such risks, our system incor-
porates rigorous testing and validation to ensure reliability
and accuracy. Additionally, implementing redundant safety
mechanisms and fail-safes can further protect against un-
expected failures.

9.2 Privacy Concerns

Robots equipped with perception systems may collect
sensitive visual and spatial data, which could raise privacy
concerns. An edge case would be cameras that record video
could inadvertently capture private moments without con-
sent. To address this, data collection and storage protocols
that comply with privacy laws and ethical standards are es-
sential. Placing labels notifying camera presence near the
working environment can help minimize privacy risks.

9.3 Job Displacement

The increasing capabilities and deployment of robots
can lead to job displacement, particularly in industries
where automation is feasible. While this can enhance ef-
ficiency and safety, it also raises concerns about the eco-
nomic impact on individuals whose jobs are affected. Our
FPGA-AMP system is not designed to fully replace hu-
man workers in robotic motion planning tasks, as it still
requires human-guided calibration in various steps during
system deployment. Additionally, promoting policies that
encourage the retraining and education of workers can help
further mitigate job displacement risks.

9.4 Accessibility and Inequality

Advanced robotics technology, such as FPGA-
accelerated motion planning, could exacerbate existing in-
equalities if only accessible to well-funded organizations or
countries. An extreme case scenario would be having the
solution product be so expensive that only wealthy orga-
nizations can afford to use it, which would further widen
the socio-economic gap between the affluent and the less
affluent segments of society. To mitigate such risks, we
intentionally selected low-priced, easily-accessible compo-
nents that can be easily bought from online markets. We
also hope to open-source the software we developed for this
project once we have integrated them into a unified repos-
itory, which could help reduce the socio-economic gap.

10 RELATED WORK

Robotic motion planning using RRT is a well-researched
topic [6]–[9], yet there isn’t much work specifically acceler-
ating motion planning using FPGAs. The work by Murray
et al. [4], [5] is the closest we could find. Our work dif-
ferentiates by not using pre-computed collision data and
targeting a robotic arm, which has a higher degree of free-
dom in motion.

There is some work [14], [15] that accelerated motion
planning using RRT and targeted robotic arms. But our
work differentiates by using FPGA acceleration whereas
theirs used neural networks.

11 SUMMARY

Overall, the final FPGA-AMP system was able to meet
the design requirements.

We are happy to report that we gained 18.2× speed up
in RRT generation by using FPGA while using 77.1% less
power and 98.7% less energy consumption. Our design goal
was > 10× speed up in RRT generation, 70% less power,
and 98% less energy consumption.

The perception and kinematics systems also met the
design requirements.

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 11 of 12

11.1 Future work

We are hoping to open-source the software we devel-
oped for this project after we have unified them into one
single code repository.

If we were to work on this project further, we intend
to reduce the perception system latency and improve the
integration for all sub-components in the system.

11.2 Lessons Learned

• Be vigilant, pivot early.
If something does not work smoothly in the first week,
it is highly likely that it will not work smoothly for
many weeks too. In that case, evaluating if it is worth
trying just to make it work is very critical, as there
are likely alternatives that can do the same job well.
This happened to us with the Kria KR260 board.
We spent many weeks setting up the Linux environ-
ment, ROS 2 environment and libraries, and the HLS
toolchain for the board. This caused major delays
in meeting the project milestones, and it would have
been better if we decided to switch to using the Ul-
tra96v2 board earlier.

• Always have at least one backup.
When our faculty advisor, Prof. Hyong Kim, told us
to buy another robotic arm just to make sure, none
of us really thought that the arm failing the night
before the demo would happen to us. However, this
truly happened, and it was awful to not have a read-
ily available backup plan to switch to. In the end, we
had to stick with the broken robotic arm, demo’ed it
as if it were still functional, and shown the kinemat-
ics simulation to prove that we indeed have a working
end-to-end system.

Glossary of Acronyms

• FPGA - Field-Programmable Gate Arrays

• ROS - Robotic Operating System

• RRT - Rapidly-exploring Random Trees

• DOF - Degrees of Freedom

References

[1] S. Liu, Z. Wan, B. Yu, and Y. Wang, Robotic com-
puting on fpgas. Springer, 2021.

[2] C. R. Garrett, R. Chitnis, R. Holladay, et al., “In-
tegrated task and motion planning,” Annual review
of control, robotics, and autonomous systems, vol. 4,
pp. 265–293, 2021.

[3] Z. Wan, A. Lele, B. Yu, et al., “Robotic computing on
fpgas: Current progress, research challenges, and op-
portunities,” in 2022 IEEE 4th International Confer-
ence on Artificial Intelligence Circuits and Systems
(AICAS), IEEE, 2022, pp. 291–295.

[4] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and
D. J. Sorin, “The microarchitecture of a real-time
robot motion planning accelerator,” in 2016 49th An-
nual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), IEEE, 2016, pp. 1–12.

[5] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J.
Sorin, “A programmable architecture for robot mo-
tion planning acceleration,” in 2019 IEEE 30th In-
ternational Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), IEEE,
vol. 2160, 2019, pp. 185–188.

[6] S. M. LaValle, J. J. Kuffner, B. Donald, et
al., “Rapidly-exploring random trees: Progress and
prospects,” Algorithmic and computational robotics:
new directions, vol. 5, pp. 293–308, 2001.

[7] M. Mohanan and A. Salgoankar, “A survey of robotic
motion planning in dynamic environments,” Robotics
and Autonomous Systems, vol. 100, pp. 171–185,
2018.

[8] I. Noreen, A. Khan, and Z. Habib, “Optimal path
planning using rrt* based approaches: A survey and
future directions,” International Journal of Advanced
Computer Science and Applications, vol. 7, no. 11,
2016.

[9] M. Elbanhawi and M. Simic, “Sampling-based robot
motion planning: A review,” Ieee access, vol. 2,
pp. 56–77, 2014.

[10] Wikipedia, Rapidly exploring random tree —
Wikipedia, the free encyclopedia, http : / / en .
wikipedia . org / w / index . php ? title =
Rapidly % 20exploring % 20random % 20tree &
oldid = 1211274166, [Online; accessed 04-May-
2024], 2024.

[11] Wikipedia, A* search algorithm — Wikipedia, the
free encyclopedia, http : / / en . wikipedia .
org / w / index . php ? title = A * %20search %
20algorithm&oldid=1221291584, [Online; ac-
cessed 04-May-2024], 2024.

[12] Wikipedia, Probabilistic roadmap — Wikipedia, the
free encyclopedia, http : / / en . wikipedia .
org/w/index.php?title=Probabilistic%
20roadmap & oldid = 1209859792, [Online; ac-
cessed 01-March-2024], 2024.

[13] R. Tedrake, Robotic Manipulation, Perception, Plan-
ning, and Control. 2023. [Online]. Available: http:
//manipulation.mit.edu.

http://en.wikipedia.org/w/index.php?title=Rapidly%20exploring%20random%20tree&oldid=1211274166
http://en.wikipedia.org/w/index.php?title=Rapidly%20exploring%20random%20tree&oldid=1211274166
http://en.wikipedia.org/w/index.php?title=Rapidly%20exploring%20random%20tree&oldid=1211274166
http://en.wikipedia.org/w/index.php?title=Rapidly%20exploring%20random%20tree&oldid=1211274166
http://en.wikipedia.org/w/index.php?title=A*%20search%20algorithm&oldid=1221291584
http://en.wikipedia.org/w/index.php?title=A*%20search%20algorithm&oldid=1221291584
http://en.wikipedia.org/w/index.php?title=A*%20search%20algorithm&oldid=1221291584
http://en.wikipedia.org/w/index.php?title=Probabilistic%20roadmap&oldid=1209859792
http://en.wikipedia.org/w/index.php?title=Probabilistic%20roadmap&oldid=1209859792
http://en.wikipedia.org/w/index.php?title=Probabilistic%20roadmap&oldid=1209859792
http://manipulation.mit.edu
http://manipulation.mit.edu

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 12 of 12

[14] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stach-
niss, and W. Burgard, “OctoMap: An efficient prob-
abilistic 3D mapping framework based on octrees,”
Autonomous Robots, 2013, Software available at
https://octomap.github.io. doi: 10.1007/
s10514-012-9321-0. [Online]. Available: https:
//octomap.github.io.

[15] Q. Gao, Q. Yuan, Y. Sun, and L. Xu, “Path plan-
ning algorithm of robot arm based on improved
rrt* and bp neural network algorithm,” Journal
of King Saud University-Computer and Information
Sciences, vol. 35, no. 8, p. 101 650, 2023.

https://octomap.github.io
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://octomap.github.io
https://octomap.github.io

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 13 of 12

Description Model # Manufacturer Quantity Cost @ Total
Xbox Kinect One Camera v1 Microsoft 1 $49.99 $49.99
Kinect Adapter for Xbox One B-SPQxbox0001 KABCON 1 $24.99 $24.99
Ultra96 Development Board v1 AVNET 1 from Capstone inventory $0.00
Ultra96 Development Board v2 AVNET 1 from 18-643 inventory $0.00
Kria KR260 Robotics Starter Kit SK-KR260-G AMD 1 from AMD $0.00
Arduino Braccio Robotic Arm RB-Ard-81 RoboShop 1 $274.00 $274.00
MacBook Air MVH22LL/A Apple 1 from Chris $0.00

$348.98

Table 1: Bill of materials

18-500 Final Project Report - Team C5: FPGA-AMP - 4 May 2024 Page 14 of 12

F
ig
u
re

6
:
G
a
n
tt

C
h
a
rt

	INTRODUCTION
	USE-CASE REQUIREMENTS
	Accurate Motion Planning
	Rapid Motion Planning
	Efficient Motion Planning

	ARCHITECTURE AND PRINCIPLES OF OPERATION
	Architecture
	Principles of Operation
	Engineering
	Science
	Mathematics

	DESIGN REQUIREMENTS
	Perception System
	RRT Accelerator
	Kinematics System

	DESIGN TRADE STUDIES
	Perception System: Guided Auto Calibration vs. Measurement-based Calibration
	Robot
	Motion Planning Algorithm
	Shortest Path Algorithm
	Acceleration Device
	CPU
	GPU
	ASIC
	FPGA

	Hardware Development
	HDL
	High-level Synthesis

	Writing our own kinematics solvers vs. using an open source implementation

	SYSTEM IMPLEMENTATION
	Perception System Implementation
	libfreenect2
	kinect2_bridge
	kinect2_map

	RRT Accelerator Implementation
	Pipelining
	Loop Unrolling
	Memory Reshaping

	Kinematics System Implementation
	A*
	Inverse Kinematics
	Arm Control
	Forward Kinematics and Simulation Environment

	TEST & VALIDATION
	Results for Perception System's Resolution and Mapping Accuracy
	Results for RRT Accelerator's Accuracy and Performance
	Results for Kinematics System's Accuracy

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Management
	Design
	Schedule
	Resources

	ETHICAL ISSUES
	Safety and Reliability
	Privacy Concerns
	Job Displacement
	Accessibility and Inequality

	RELATED WORK
	SUMMARY
	Future work
	Lessons Learned

