
18-500 Design Review Report - 1 March 2023 Page 1 of 7

FPGA-AMP: FPGA Accelerated Motion Planning
Matt Ngaw, Yufei Shi, Chris Stange

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Hardware acceleration of key robotic
computations is essential to make robots viable for
tasks that require fast response times and reactivity
to the environment. This report describes the moti-
vation, design, and testing plans of a system capable
of improving the performance and power efficiency of
robotics motion planning through Field-Programmable
Gate Array acceleration.

Index Terms—Field-Programmable Gate Array,
Hardware Acceleration, High-level Synthesis, Motion
Planning, Rapidly-exploring Random Trees, Robotics

1 INTRODUCTION

Recent advancements in computing technologies have
facilitated the emergence of increasingly sophisticated
robots, which play an ever-growing role in our society [1],
[2]. Robots are becoming more capable of performing tasks
that normally risk people’s safety and health. These tasks
typically require quick thinking and fast reaction times.
Thus, the hardware driving the computation within robots
must keep up with the increasing challenges of their use
cases.

Key steps in the robotics computing pipeline include
perception, motion planning and dynamics. Motion plan-
ning is particularly crucial because it is one of the more
compute-intensive tasks. Motion planning is the task of cal-
culating a series of valid configurations to get from a start-
ing position to a destination position [3]–[5]. There are var-
ious algorithms for generating motion plans, among which
Rapidly-exploring Random Trees (RRT) is often used to
efficiently search a high-dimensional space for collision-free
trajectories. [6]–[9].

RRT has conventionally been run on central process-
ing units (CPUs) and graphics processing units (GPUs).
While providing generality in computing and ease of pro-
gramming, CPUs are not performant at computing RRT.
GPUs, while better suited for an algorithm with parallelism
like RRT, are not power efficient enough to be viable in a
robotics system with power constraints. There are many
use cases for robots where performance and power efficiency
are paramount. Thus, it is necessary to find a different so-
lution.

Field Programmable Gate Arrays (FPGAs) are capa-
ble of significantly accelerating algorithms like RRT while
consuming less power compared to traditional CPU or
GPU implementations. Hence our project aims to lever-
age FPGAs to enhance the speed and efficiency of motion
planning. We plan to develop an end-to-end system that

uses the FPGA-AMP accelerator to guide the motion of a
robotic arm.

2 USE-CASE REQUIREMENTS

2.1 Accurate Motion Planning

Motion plans that are collision-free are essential for
autonomous robotics. Robotic systems that fail to avoid
obstacles will likely be unsafe and be repeatedly broken.
These social and economic ramifications necessitate that
the system we create generate accurate motion plans. Our
motion planning module will consist of two steps, collision
detection and path generation. Using data generated by
a perception module, collision detection is needed to de-
termine what viable, collision-free paths exist in the state
space. Path generation then uses this result to find the
shortest path between the start and goal position. Al-
gorithms that are commonly used for motion planning
are Probabilistic Roadmap (PRM) and Rapidly Exploring
Random Tree (RRT). Both of these algorithms are non-
deterministic which means they are not guaranteed to con-
verge on a single solution. Algorithms for path genera-
tion consist of A* search, Dijkstra Algorithm, and heuristic
path smoothing steps. We target designing a motion plan-
ning system that will generate accurate, collision-free
paths 95 percent of the time.

2.2 Rapid Motion Planning

Using robotics in dangerous environments that are typ-
ically reserved for humans involves enabling the robot to
adapt and react to its surroundings. In order to do so
they must be able to quickly generate motion plans that
account for dynamic, changing scenes. When run on mod-
ern CPUs, motion planning is generally too slow to handle
such situations [1]. Academic research shows that using
an FPGA for motion planning can achieve a 1000x speedup
over a CPU [4], [5]. Due to the fact that motion planning
makes up the majority of the processing time on a robot,
this speedup should be sufficient to allow the robot to in-
teract with dynamic scenes [1]. Due to improvements in
modern CPUs since the research we cite, we target a 10x
speedup of motion planning over a baseline CPU
implementation.

2.3 Efficient Motion Planning

Power and energy efficiency are important when consid-
ering the environmental impacts of electricity generation
and the long-term economics of using robots. Efficiency is

18-500 Design Review Report - 1 March 2023 Page 2 of 7

also critical for robotic systems that may be used in remote
environments and/or are battery-powered. Modern CPU
implementations of motion planning are not only slow, they
are also extremely power inefficient. While GPUs achieve
considerable speedup over CPUs, they suffer the same prob-
lem of power inefficiency. Therefore we plan on using an
FPGA which will allow us to maintain the speedup advan-
tages of the GPU at a fraction of the power cost. We target
a 70 percent decrease in power and a 90 percent de-
crease in energy consumption when generating mo-
tion plans versus a baseline CPU implementation.

3 ARCHITECTURE

The solution architecture is comprised of three major
components: perception module, motion planning acceler-
ator, and dynamics module.

3.1 Perception Module

The perception module is responsible for gathering and
shaping environmental data, subsequently translating this
information into a data structure that represents the real
3D space. This module is important in recognizing the
forms and spatial positioning of objects within the scene.
This module consists of both the depth-sensing camera and
the on-board CPU in Figure 1.

Achieving accurate environmental perception is possi-
ble by employing computer vision and space mapping al-
gorithms. While a multi-camera setup is one approach,
offering extensive visual coverage, we have opted for using
depth-sensing cameras. The rationale behind this choice is
our aim to ensure the module’s effectiveness in navigating
complex and dynamically changing environments, where
deploying numerous cameras may not be feasible.

The process of environment modeling and its conversion
into a 3D data structure are integrated as one step through
the execution of mapping algorithms on a CPU. In our de-
sign, we choose to adopt the voxel representation for its
flexibility and compatibility with both software and hard-
ware systems. This allows us to easily build an octo-tree of
voxels and also encode them into a bit-stream, which can
be stored compactly in a contiguous chunk of memory.

3.2 Motion Planning Accelerator

The motion planning accelerator stands as the corner-
stone of our system, embodying the project’s primary fo-
cus. Its responsibility is to guide the movement of the
robot by finding a collision-free motion plan given a pair of
<start,end positions. It leverages the 3D scene model
generated by the perception module and runs motion plan-
ning algorithms on top of it.

To optimize performance and efficiency, we plan to
divide the motion planning accelerator into two sub-
components: the RRT and collision detection accelerator,
alongside the shortest path Accelerator. This division is

illustrated in Figure 1. The RRT and collision detection
accelerator is designed to rapidly generate a collision-free
path through the environment, navigating the complexities
of the 3D model with agility and precision. Complement-
ing this, the shortest path accelerator takes the feasible
paths identified by its counterpart and refines them, calcu-
lating the most efficient route from all possibilities. This
component is instrumental in optimizing the trajectory for
minimal distance or time, depending on the application’s
specific requirements.

Together, these accelerators form a system capable of
delivering accurate, collision-free, high-performance mo-
tion planning solutions. The segregation of the two sub-
components enables us to perform optimizations such as
pipelining, which can potentially bring significant perfor-
mance improvements.

3.3 Dynamics Module

The dynamics module is the final module in the sys-
tem that is responsible for converting the output from the
motion planning accelerator into actionable control com-
mands for the robot. This module’s core functionality in-
volves taking the computed path from the motion planning
accelerator and ensuring that the motion can be physically
feasible for the robot.

Once a path has been validated for physical feasibility,
the dynamics module proceeds to translate this path into
a series of control commands in a format recognizable by
the robot controller. The integration of inverse-kinematics
modules within this phase is crucial, as it enables the sys-
tem to adapt the planned path to the unique capabilities
and limitations of the robot’s arm. This ensures that every
movement is not only possible but also optimized for me-
chanical efficiency and safety, reducing the risk of errors or
mechanical stress on the robot.

4 DESIGN REQUIREMENTS

4.1 Accurate Motion Planning

In order for our motion planning module to generate
accurate and near optimal paths, we must maintain a high
granularity representation of our state space. Voxels will
be used to represent a partition of the state space and will
be labeled by the perception module as either free or occu-
pied. In order to achieve a high granularity representation,
each voxel will only represent a minuscule volume. This
will allow for precise paths and the ability to maneuver in
tight spaces. We will partition the state space into 3
dimensions, with each dimension spanning on the
order of 1000 voxels. The radius of reach for our robotic
arm is approximately 0.5 meters. Using 1000 voxels in each
dimension means each voxel represents 1 cubic centimeter.

18-500 Design Review Report - 1 March 2023 Page 3 of 7

On-board
CPU

Block RAM

Depth-
sensing
Camera

FPGA

RRT &
Collision

Detection
Shortest Path

Robot
Controller

①

②

③

④ ⑤

⑥

⑦

⑧
System (FPGA-AMP)

External Devices

CPU & CPU Computed
Data Transfers

Accelerators & Accelerators
Computed Data Transfers

Memory & Data
Transfers

FPGA Board w/ All
Major Components

Figure 1: Overview of the FPGA-AMP solution architecture. 1 : The depth-sensing camera feeds the raw 3D data it
captures to the on-board CPU. 2 : The on-board CPU processes the raw 3D data, maps it into a grid of voxels, and
serializes all voxels into a bit-stream, which is then stored on the block RAM on the FPGA board. 3 , 4 : The RRT
and collision detection accelerator builds an RRT from a given pair of <start,end> positions while doing collision
detection. It then stores the RRT it built as well as a collision-free path from start to end into the block RAM. 5 ,
6 : The shortest path accelerator runs search algorithms to find the shortest collision-free path based on the output
from the RRT and collision detection accelerator and stores the result in the block RAM. 7 , 8 : The CPU accesses the
final result, runs inverse-kinematics algorithms to make sure that the robot arm can move along the path, and converts
the path to a series of movement commands to the robot arm control Arduino board.

4.2 Rapid Motion Planning

In order to react to dynamic scenes, the robotics
pipeline latency must be minimized. The average human
reaction time is on the order of 200ms [10]. Because our
system targets replacing humans in dangerous scenarios, it
will have to react in a similar time frame. Our system has 3
main pipeline stages, perception, motion planning, and dy-
namics. We target a 300ms reaction time, which gives each
stage 100ms to operate. Therefore, the perception sys-
tem must sample and generate collision voxels ev-
ery 100ms in order to feed the other pipeline stages
and meet the reaction time requirement.

4.3 Efficient Motion Planning

In order for our system to achieve efficient motion plan-
ning, we must use a highly efficient and powerful FPGA.
We will use an AMD Kria KR260 FPGA that consumes
30 Watts, an optimal level of power consumption for
battery-powered robots. The AMD Kria KR260 contains
scalar cores, over 1000 DSPs, and significant block ram [11].
Our baseline CPU implementation will be run on an AMD
5950x. The 5950x has 16 cores, consumes 105 Watts, and
is at a similar price point as the FPGA. We used these

numbers to generate our targeted power reduction. Our
targeted energy reduction was calculated using the power
figure and our targeted speedup.

5 DESIGN TRADE STUDIES

For this project, we had many design choices to make
and thus performed trade studies for each design decision.
The decisions include: motion planning algorithms, short-
est path algorithms, acceleration devices, hardware devel-
opment tooling, and robot type.

5.1 Motion Planning Algorithm

The two motion planning algorithms used most often
in robotics are Probabilistic Roadmap (PRM) and Rapidly
Exploring Random Tree (RRT) [1]. Both algorithms are
non-deterministic and involve taking random samples of the
state space. These random samples are then connected via
edges to form a graph. Eventually, the graph represents a
subset of the viable, collision-free trajectories. Our decision
to use RRT was primarily based on the host of high-quality
literature on its acceleration [4], [5]. RRT contains intrin-
sically parallel properties which make it ideal for hardware

18-500 Design Review Report - 1 March 2023 Page 4 of 7

acceleration.

5.2 Shortest Path Algorithm

The two shortest path algorithms we considered are Di-
jkstra’s Algorithm and A* search. Dijkstra’s is ideal when
using PRM [12]. However, research has been done to com-
bine RRT and A* into a more efficient algorithm called
RRT* [8]. For this reason, we plan on using A*. We will
integrate our RRT and A* implementations into RRT* if
there is sufficient time and perceived performance gains.

5.3 Acceleration Device

5.3.1 CPU

Running motion planning on a CPU is relatively simple
as open-source implementations of it are widely available in
robotics libraries. As discussed before, there is parallelism
to be reaped from RRT but it is hard to take advantage
of on CPUs. Collision detection entails many independent,
parallel calculations, while conventional CPUs only have
around 8-16 threads available. The only benefit of keep-
ing the motion planning computation on a CPU is that the
CPU is responsible for orchestrating the rest of the robotics
system, there is no overhead associated with transferring
data to some external processor.

5.3.2 GPU

Graphics Processing Units (GPUs) are able to exploit
the parallelism in algorithms like RRT and achieve signifi-
cant speedup over CPUs. This being said, they suffer from
extreme power inefficiency. Modern consumer GPUs can
consume up to 450 Watts. The long-term economics and
environmental impact of such a solution do not make sense.

5.3.3 ASIC

Application-specific integrated circuits (ASICs) take
hardware acceleration to the extreme, providing even more
performance gains and power efficiency than the solution
option that we settled on. However, ASICs also have draw-
backs, namely the high upfront development costs and long
design cycles. In a scenario where hardware acceleration of
robotics is operating at scale, fabricating ASICs may make
sense, but for the purpose of a semester-long design chal-
lenge, we need a platform that is not as expensive and
better suited for prototyping.

5.3.4 FPGA

We settled on FPGA acceleration because of the hard-
ware acceleration and efficiency it provides while also be-
ing easily reconfigurable, striking a middle ground between
CPUs, GPUs, and ASICs. As stated before, hardware ac-
celeration is great for computation that has lots of paral-
lelism, thus making motion planning a great use case for an
FPGA. FPGA accelerated motion planning and robotics in

general is also an active area of research, and we have ob-
tained much guidance from the literature we have read so
far on the subject.

5.4 Hardware Development

5.4.1 HDL

The traditional method for designing an accelerator is
to use a hardware description language (HDL) like Sys-
temVerilog. Using such a language allows for much lower
and finer control over the accelerator that we build. Hav-
ing full control is double-edged since the ability to control
all the details in our system means we have to worry about
all the details in our system. While all three of us in our
group have experience with SystemVerilog, for a semester-
long project we decided that we needed something that
would enable us to develop our accelerator faster.

5.4.2 High-level Synthesis

High-level synthesis (HLS) came to mind as a better
alternative to HDLs. For some background, HLS takes a
software description of some computation and extracts the
dataflow within it to get a hardware description. The trans-
lation from software to hardware preserves the correctness
of the design. When making a change to

HLS is a better choice for this project for a few rea-
sons. First, it is a more accessible development method at
the cost of control over the finer details of the design. For
example, it is hard to force the HLS compiler to put a reg-
ister in between two signals, while it is trivial in an HDL.
However, this level of control is not necessary for us to get
speedup in our accelerator. The second reason is the fast
design cycles we get from using HLS.

5.5 Robot

There are multiple reasons why we decided to use a
robotic arm as the testbed for FPGA-AMP. Accelerated
motion planning is most useful in high-dimensional spaces
and for systems that have multiple degrees of freedom. In
these scenarios, motion planning is inherently more com-
plex and computationally intensive. Using a robotic arm
means that we must do motion planning in 3D space. The
robotic arm we have selected has 6 servo motors which
means many degrees of freedom. Working with a robotic
arm provides a sufficiently complex problem and real-world
applications.

6 SYSTEM IMPLEMENTATION

Our hardware platform of choice is the AMD Kria
KR260 Robotics Kit. This platform is new to us, and so
since we are uncertain if we can get our tools (namely Vitis
and Vitis HLS) to run on it, we also have the Avnet Ul-
tra96v2 FPGA board as a backup. This is the same board
that we used in 18-643.

18-500 Design Review Report - 1 March 2023 Page 5 of 7

6.1 Datapath Optimizations

6.1.1 Loop Unrolling

In many algorithms, there are sections of code that are
repeatedly executed while being independent of each other.
Such loops can be unrolled so that their execution is laid
out in parallel on hardware. This allows the computation
to be done more quickly while making use of more hardware
resources.

In RRT, the most parallelizable portion is collision de-
tection, since all points on a motion path can be paired
with all potential collision points and checked for collisions
in parallel. In high-level synthesis, loop unrolling is done
explicitly by annotating loops in the software description
of the computation with pragmas describing how the loop
should be unrolled.

6.1.2 Pipelining

For long sequential computations, pipelining is another
optimization technique that we will use in our accelerator
to improve performance. Pipelining takes a long computa-
tion and cuts it up into smaller chunks, inserting registers
between each chunk. By cutting up the computation and
drawing it out over multiple cycles, the execution of mul-
tiple loop iterations can be overlapped. Cutting up long
computations in hardware also improves the critical path
of the circuit, increasing the clock frequency.

For RRT, there is a sequential step in generating the
next random point and trying to extend the tree towards
that point. Similar to loop unrolling, there is an HLS an-
notation that we must make to pipeline a certain compu-
tation.

6.2 Memory I/O Optimizations

6.2.1 DRAM

The DRAM on the FPGA serves as the intermediary
location for both incoming data and the results generated
during the execution of RRT. Facilitating this process, the
host program running on the Arm core is responsible for
transferring the perception data to the DRAM. The FPGA
will continuously retrieve information from the perception
data from the DRAM. Subsequently, the kernel performs
calculations on the perception data and sends a motion
plan back to DRAM for the CPU to read. The DRAM
embedded within the Ultra96-V2 FPGA has a storage ca-
pacity of 2GB, accompanied by a measured read latency
of approximately 500ns, which equates to several dozen cy-
cles, contingent upon the computation’s target frequency.
This long latency emphasizes the need to do computations
on locally buffered data, thereby minimizing the frequency
of access to DRAM. The access pattern of DRAM is con-
figurable using high-level synthesis.

6.2.2 LUTRAM & BRAM

For faster, more local storage of data to process, both
LUTRAM and BRAM are memories available on-chip. LU-
TRAM is memory implemented using look-up-tables, the
basic logic element for FPGAs. LUTRAM is the most local
form of memory, but it comes with a trade-off that using
LUTs for memory means fewer LUTs for logic/computa-
tion.

On the other hand, BRAM is a specialized memory,
meant specifically for storing data on-chip. They allow for
dual-ported accesses, meaning we are able to read and write
to the memory simultaneously. Using HLS, we are able to
configure the memory to different shapes. This means we
can take a long array of bits and shape it such that we ac-
cess it on a wider front, grabbing multiple bits at a time,
allowing us to feed our datapath with more data. Most of
our on-chip memory use will be done using BRAM.

6.3 Perception

The raw environmental data is collected by an Xbox
Kinect One camera using its depth-sensing module. The
camera is connected to the CPU via an adapter and USB
link. The raw data is transferred by establishing a software
bridge between the camera and the CPU through an open-
source Kinect vision library, iai kinect2 [13]. The CPU
processes the raw data and maps the raw environmental
data into voxels in a 3D scene by running octomap, an
open-source library [14]. The octomap library provides
functionalities such as adding nodes, traversing the map,
as well as its visualization component, octovis.

6.4 Inverse-Kinematics and Arm Control

Inverse-kinematics is the process of converting the path
generated by the Motion Planning Accelerator into control
signals for the robotic arm. In order to do this, we plan on
using an open-source library called Visual-Kinematics [15].
The robotic arm is controlled by an Arduino which uses a
simple API to set the angles of the servo motors [16]. The
commands will be communicated from the scalar cores on
the FPGA to the Arduino over UART [17].

7 TEST & VALIDATION

For all test iterations, we will use the same setup of
the Xbox Kinect One camera and the robotic arm. The
only difference is the motion planner, which can be either
FPGA-AMP or the reference CPU implementation. The
scene will be either static (pick and place task for the arm)
or dynamic (pick from a shelf and place on a moving belt)
and each scene will be used in 20 test iterations. A Python
script will be used to generate random <start,end> po-
sition pairs for each test iteration.

18-500 Design Review Report - 1 March 2023 Page 6 of 7

7.1 Tests for Accurate Motion Planning

This section addresses our testing for the accuracy of
FPGA-AMP’s motion planning output (a design require-
ment mentioned in subsection 4.1).

For each test iteration, we will observe if the robot arm
collides with any obstacle in the scene. Each collision indi-
cates an incorrectly generated motion plan and counts as a
failure.

Due to RRT being a heuristic algorithm, there is no
guarantee that it will always generate the exact motion
plan. So for all correctly generated motion plans, we com-
pare the swept volume of the robotic arm’s motion to the
swept volume of the robotic arm’s motion based on a refer-
ence implementation run on a CPU. Each comparison with
less than 90% overlapped swept volume counts as a failure.

To meet the design requirement, the number of failures
should be equal to or less than 5% of the total number
of test iterations. Meeting the design requirement of 95%
accuracy means that FPGA-AMP is able to meet the cor-
responding use-case requirement.

7.2 Tests for Rapid Motion Planning

This section addresses our testing for the performance
of FPGA-AMP’s motion planning algorithm execution (a
design requirement mentioned in subsection 4.2).

For each test iteration, we will measure the wall-clock
time of FPGA-AMP and the CPU reference implemen-
tation running motion planning algorithms for the same
pair of <start,end> parameters. The time measurement
starts when the motion planner receives the pair of param-
eters and stops when it produces a motion plan.

To meet the design requirement, FPGA-AMP’s mea-
sured wall-clock time should be equal to or less than 10%
of the CPU reference implementation’s measured wall-clock
time. Meeting the design requirement of 10× speedup
means that FPGA-AMP is able to meet the correspond-
ing use-case requirement.

7.3 Tests for Efficient Motion Planning

This section addresses our testing for the energy effi-
ciency of FPGA-AMP’s motion planning algorithm output
(a design requirement mentioned in subsection 4.3).

For each test iteration, we will record the average power
consumption and total energy consumption of FPGA-AMP
and the CPU reference implementation running motion
planning algorithms for the same pair of <start,end>
parameters. The power and energy measurements for both
implementations include all components necessary for boot-
ing the system and keeping it running.

To meet the design requirement, FPGA-AMP’s mea-
sured energy consumption should be equal to or less than
2% of the CPU reference implementation’s energy con-
sumption. Meeting the design requirement of 98% less
energy means that FPGA-AMP is able to meet the cor-
responding use-case requirement.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Figure 2.

8.2 Team Member Responsibilities

• Baseline RRT: Yufei, Chris

• Simulation Environment: Matt, Yufei, Chris

• HLS-FPGA Environment: Matt

• µarch Design: Matt, Yufei, Chris

• Porting RRT to HLS: Matt

• Optimization: Matt, Yufei, Chris

• Perception: Yufei

• Robotic Arm Dynamics: Chris

• Robotic Arm & FPGA Integration: Matt

• Full System Integration: Matt, Yufei, Chris

8.3 Bill of Materials and Budget

We have a total budget of $600.00 and we are using
$348.98 so far. For the bill of materials, see Table 1.

8.4 Risk Mitigation Plans

The biggest risk is that none of us have extensive ex-
perience with robotic perception and dynamics before. To
account for this, we have started learning and reading about
relevant topics and existing solutions that we could adopt
early into the project. We have sourced some open-source
libraries and plan to adopt them instead of writing our im-
plementation of the algorithms for perception and dynam-
ics tasks. In addition, we have also budgeted approximately
two weeks of dynamic slack time in case any surprises come
up.

9 RELATED WORK

Robotic motion planning using RRT is a well-researched
topic [6]–[9], yet there isn’t much work specifically acceler-
ating motion planning using FPGAs. The work by Murray
et al. [4], [5] is the closest we could find. Our work dif-
ferentiates by not using pre-computed collision data and
targeting a robotic arm, which has a higher degree of free-
dom in motion.

There are some work [14], [18] that accelerated motion
planning using RRT and targeted robotic arms. But our
work differentiates by using FPGA acceleration whereas
theirs used neural networks.

18-500 Design Review Report - 1 March 2023 Page 7 of 7

10 SUMMARY

In summary, our design of FPGA-AMP uses FPGA to
accelerate motion planning, a critical step in robotic com-
puting. Our design aims to improve the performance of
running motion planning by 10× compared to traditional
CPU-based approaches with approximately the same ini-
tial cost and much less operating cost (due to less power
consumption).

The upcoming challenges we are facing are robotic per-
ception and dynamics systems implementation and system
integration (described in more detail in subsection 8.4).
One other challenge is in optimizing the FPGA-AMP im-
plementation to make sure it meets the performance re-
quirements. Since we have not started optimization yet,
it is unclear to us how much optimization techniques and
efforts are needed to meet the 10× performance goal.

Glossary of Acronyms

• CPU - Central Processing Unit

• FPGA - Field-Programmable Gate Array

• GPU - Graphics Processing Unit

• RRT – Rapidly-exploring Random Trees

References

[1] S. Liu, Z. Wan, B. Yu, and Y. Wang, Robotic com-
puting on fpgas. Springer, 2021.

[2] C. R. Garrett, R. Chitnis, R. Holladay, et al., “In-
tegrated task and motion planning,” Annual review
of control, robotics, and autonomous systems, vol. 4,
pp. 265–293, 2021.

[3] Z. Wan, A. Lele, B. Yu, et al., “Robotic computing on
fpgas: Current progress, research challenges, and op-
portunities,” in 2022 IEEE 4th International Confer-
ence on Artificial Intelligence Circuits and Systems
(AICAS), IEEE, 2022, pp. 291–295.

[4] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and
D. J. Sorin, “The microarchitecture of a real-time
robot motion planning accelerator,” in 2016 49th An-
nual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), IEEE, 2016, pp. 1–12.

[5] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J.
Sorin, “A programmable architecture for robot mo-
tion planning acceleration,” in 2019 IEEE 30th In-
ternational Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), IEEE,
vol. 2160, 2019, pp. 185–188.

[6] S. M. LaValle, J. J. Kuffner, B. Donald, et
al., “Rapidly-exploring random trees: Progress and
prospects,” Algorithmic and computational robotics:
new directions, vol. 5, pp. 293–308, 2001.

[7] M. Mohanan and A. Salgoankar, “A survey of robotic
motion planning in dynamic environments,” Robotics
and Autonomous Systems, vol. 100, pp. 171–185,
2018.

[8] I. Noreen, A. Khan, and Z. Habib, “Optimal path
planning using rrt* based approaches: A survey and
future directions,” International Journal of Advanced
Computer Science and Applications, vol. 7, no. 11,
2016.

[9] M. Elbanhawi and M. Simic, “Sampling-based robot
motion planning: A review,” Ieee access, vol. 2,
pp. 56–77, 2014.

[10] Wikipedia, Mental chronometry — Wikipedia, the
free encyclopedia, http : / / en . wikipedia .
org / w / index . php ? title = Mental %
20chronometry & oldid = 1206420368, [Online;
accessed 01-March-2024], 2024.

[11] [Online]. Available: https : / / www . xilinx .
com/products/som/kria/kr260-robotics-
starter-kit.html#specifications.

[12] Wikipedia, Probabilistic roadmap — Wikipedia, the
free encyclopedia, http : / / en . wikipedia .
org/w/index.php?title=Probabilistic%
20roadmap & oldid = 1209859792, [Online; ac-
cessed 01-March-2024], 2024.

[13] T. Wiedemeyer, Iai kinect2, University Bremen: In-
stitute for Artificial Intelligence, 2014 – 2015. [On-
line]. Available: https://github.com/code-
iai/iai_kinect2.

[14] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stach-
niss, and W. Burgard, “OctoMap: An efficient prob-
abilistic 3D mapping framework based on octrees,”
Autonomous Robots, 2013, Software available at
https://octomap.github.io. doi: 10.1007/
s10514-012-9321-0. [Online]. Available: https:
//octomap.github.io.

[15] Dbddqy, Dbddqy/visual kinematics: Simple python-
based kinematics solver for robot arm. [Online]. Avail-
able: https://github.com/dbddqy/visual_
kinematics?tab=readme-ov-file.

[16] Arduino-Libraries, Arduino-libraries/braccio: Ar-
duino braccio library. [Online]. Available: https://
github.com/arduino-libraries/Braccio.

[17] [Online]. Available: https : / / www . arduino .
cc / reference / en / language / functions /
communication/serial/.

[18] Q. Gao, Q. Yuan, Y. Sun, and L. Xu, “Path plan-
ning algorithm of robot arm based on improved
rrt* and bp neural network algorithm,” Journal
of King Saud University-Computer and Information
Sciences, vol. 35, no. 8, p. 101 650, 2023.

http://en.wikipedia.org/w/index.php?title=Mental%20chronometry&oldid=1206420368
http://en.wikipedia.org/w/index.php?title=Mental%20chronometry&oldid=1206420368
http://en.wikipedia.org/w/index.php?title=Mental%20chronometry&oldid=1206420368
https://www.xilinx.com/products/som/kria/kr260-robotics-starter-kit.html#specifications
https://www.xilinx.com/products/som/kria/kr260-robotics-starter-kit.html#specifications
https://www.xilinx.com/products/som/kria/kr260-robotics-starter-kit.html#specifications
http://en.wikipedia.org/w/index.php?title=Probabilistic%20roadmap&oldid=1209859792
http://en.wikipedia.org/w/index.php?title=Probabilistic%20roadmap&oldid=1209859792
http://en.wikipedia.org/w/index.php?title=Probabilistic%20roadmap&oldid=1209859792
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
https://octomap.github.io
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://octomap.github.io
https://octomap.github.io
https://github.com/dbddqy/visual_kinematics?tab=readme-ov-file
https://github.com/dbddqy/visual_kinematics?tab=readme-ov-file
https://github.com/arduino-libraries/Braccio
https://github.com/arduino-libraries/Braccio
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/

18-500 Design Review Report - 1 March 2023 Page 8 of 7

Description Model # Manufacturer Quantity Cost @ Total
Xbox Kinect One Camera v1 Microsoft 1 $49.99 $49.99
Kinect Adapter for Xbox One B-SPQxbox0001 KABCON 1 $24.99 $24.99
Ultra96 Development Board v1 AVNET 1 from Capstone inventory $0.00
Ultra96 Development Board v2 AVNET 1 from 18-643 inventory $0.00
Kria KR260 Robotics Starter Kit SK-KR260-G AMD 1 from AMD $0.00
Arduino Braccio Robotic Arm RB-Ard-81 RoboShop 1 $274.00 $274.00

$348.98

Table 1: Bill of materials

18-500 Design Review Report - 1 March 2023 Page 9 of 7

F
ig
u
re

2:
G
an

tt
C
h
ar
t.

T
a
sk
s
a
re

la
b
el
ed

w
it
h
ty
p
es
.
R
ef
er

to
su
b
se
ct
io
n
8
.2

fo
r
d
iv
is
io
n
o
f
la
b
o
r.

	INTRODUCTION
	USE-CASE REQUIREMENTS
	Accurate Motion Planning
	Rapid Motion Planning
	Efficient Motion Planning

	ARCHITECTURE
	Perception Module
	Motion Planning Accelerator
	Dynamics Module

	DESIGN REQUIREMENTS
	Accurate Motion Planning
	Rapid Motion Planning
	Efficient Motion Planning

	DESIGN TRADE STUDIES
	Motion Planning Algorithm
	Shortest Path Algorithm
	Acceleration Device
	CPU
	GPU
	ASIC
	FPGA

	Hardware Development
	HDL
	High-level Synthesis

	Robot

	SYSTEM IMPLEMENTATION
	Datapath Optimizations
	Loop Unrolling
	Pipelining

	Memory I/O Optimizations
	DRAM
	LUTRAM & BRAM

	Perception
	Inverse-Kinematics and Arm Control

	TEST & VALIDATION
	Tests for Accurate Motion Planning
	Tests for Rapid Motion Planning
	Tests for Efficient Motion Planning

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Mitigation Plans

	RELATED WORK
	SUMMARY

