
FPGA-AMP
Project Proposal

Matt Ngaw, Yufei Shi, Chris Stange
Team C5

Background

● Recent advances in computing have enabled the
development of more sophisticated robots which
are increasingly important in our society.

● Motion planning: Critical step in the robotics
pipeline [2-5].
○ Guides motion of the robot
○ Finds collision-free trajectories from a start

position to a goal position
○ Run A* or Dijkstra’s on the set of

collision-free trajectories in order to find
optimal route

● Our focus: Rapidly-exploring Random Trees [1]

[1]

[1]

Use Case and Motivation

● Problem
○ For complex, latency sensitive robots, RRT is too slow on CPUs and too power-inefficient

on GPUs

● Solution
○ Use FPGAs to accelerate motion planning while also consuming less power

● ECE Areas
○ Hardware and Software

Use Case Requirements
● Accuracy

○ RRT is not deterministic so we have to ensure FPGA-AMP generates a collision free path.
○ >95% accuracy on this task will mean FPGA-AMP is reliable for real world scenarios.
○ We will also measure how similar the FPGA-AMP solution is to that of our CPU reference solution and a manually generated optimal path. We want to

ensure that the path generated by FPGA-AMP is at least as close to optimal as the reference solution.
○ >95% accuracy on this task will mean that there is no difference in usability between the reference solution and FPGA-AMP.

● Speedup (Latency, seconds)
○ Research has shown that 1000x speedup over CPUs is attainable. These papers used underpowered CPUs and FPGAs that are more powerful than

what we have available [4-5].
○ We hope to achieve 10x speedup over a CPU implementation.

● Power Efficiency (watts)
○ Power while servicing motion planning query
○ 70% decrease (130W CPU vs 30W FPGA)
○ The cost of a 130W CPU and a 30W FPGA are comparable (~$350). While a 130W CPU is not a direct competitor in an embedded scenario, it puts an

upper limit on the types of systems we want to outperform.

● Energy Efficiency (latency x power, joules)
○ Energy consumed to complete motion planning query
○ If the speedup and power efficiency targets are hit, a 98% decrease in energy consumption per query should be achieved.

Technical Challenges

● Motion Planning is hard!
○ It is non-trivial to generate motion plans for robots with many degrees of freedom

● Realizing the accelerator microarchitecture in high-level synthesis
○ Easy to copy-paste C code into HLS and get hardware
○ Hard to make the hardware good

■ Meet latency goals
■ Exploit data parallelism

● Data transfer between CPU and FPGA slows us down
○ This is the sequential part of our program. Amdahl’s Law

● System integration

Solution Motivation

● Why FPGA?
○ Hardware acceleration of an algorithm can be much faster than execution on a CPU
○ Motion planning algorithms (RRT) are highly data-parallel which maps well to FPGA
○ Easy for prototyping, fast iteration cycles
○ GPUs can achieve similar performance enhancements to FPGAs but achieve even

worse power figures than the CPU

● Why accelerate motion planning?
○ Motion planning makes up a majority of compute time on a robot [3,4]

● To the best of our knowledge, no open source implementation of RRT for FPGAs exists

Solution Algorithm (Rapidly-exploring Random Trees)

https://en.m.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_%28RRT%29_500x373.gif

[1]

[1]

Basic algorithm for the extension of RRT.
Starting at a given node, the function attempts to
generate a new node closer to the target.

Graph demonstrating the EXTEND function.

https://en.m.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_%28RRT%29_500x373.gif

Solution Approach

The diagram on the top is for the FPGA-AMP accelerator. This
accelerator will be tested in a simulation environment in which the
CPU is used to run Linux and feed perception data (generated by a
python script) to the FPGA. The generated path will be visualized
and metrics will be collected. This is our MVP.

The diagram on the on the bottom is the FPGA integrated with a
real robotic arm. The CPU will be used to run ROS and will use
open source perception, localization and mapping libraries.

https://github.com/indraneelpatil/bottleneck_guided_rrt/blob/master/images/Intelligent%20Exploration.png

● The diagram above shows a robotic arm running RRT to
generate a path, allowing it can maneuver around
obstacles.

● We plan on having our robotic arm doing pick and place.
This is an extremely common tasks for robotic arms that are
used in a wide range of areas such as manufacturing.

● FPGA-AMP will truly shine when it comes to dynamic
collision detection scenarios.

○ In static scenarios, only one path must be
generated.

○ In dynamic environments, paths must be
continually updated.

https://github.com/indraneelpatil/bottleneck_guided_rrt/blob/master/images/Intelligent%20Exploration.png

Testing, Verification, and Metrics
Requirements Testing Metrics

Generate Collision Free Paths Check that the path generated avoids
collisions

Avoid collisions on >95% of scenes tested

Generate Optimal Paths Ensure the delta between the optimal path
and the reference solution is similar to the
delta between the optimal path and
FPGA-AMP

Similar deltas on >95% of scenes tested

Low Latency FPGA-AMP generates paths significantly
faster than the reference solution

10x speedup vs. reference solution

Power Efficient FPGA-AMP generates paths while being
significantly more power efficient than
reference solution

70% decrease in power consumption vs.
reference solution

Energy Efficient FPGA-AMP generates paths while being
significantly more energy efficient than
reference solution

98% decrease in energy consumption per
path vs. reference solution

Note: All requirements will be tested in both simulation and with real hardware.

Tasks and Division of Labor

● Baseline RRT (Yufei, Chris)

● Simulation Environment (Yufei, Chris)

● HLS-FPGA environment (Matt)

● Uarch design (Matt, Yufei, Chris)

● Porting RRT to HLS (Matt)

● Optimization (Matt, Yufei, Chris)

● Perception (Chris)

● Robotic Arm Dynamics (Yufei)

● Robotic Arm & FPGA Integration (Matt)

● Full System Integration (Matt, Yufei, Chris)

Schedule

References

[1] LaValle, S., et al. “Rapidly-exploring random trees: Progress and prospects,'' in Algorithmic and computational
robotics: new directions, vol. 5, pp. 293–308, 2001.

[2] Liu, S., et al, “Robotic computing on fpgas,'' Synthesis Lectures on Computer Architecture, vol. 16, no. 1, pp. 1-218,
2021.

[3] Wan, Z., et al, “Robotic Computing on FPGAs: Current Progress, Research Challenges, and Opportunities,'' in
2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022, pp. 291-295.

[4] Murray, S., et al, “The microarchitecture of a real-time robot motion planning accelerator," in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016, pp. 1–12.

[5] Murray, S., et al, “A programmable architecture for robot motion planning acceleration,'' in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2019, pp. 185–188.

